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Abstract In the process of human learning, training sam-
ples are often obtained successively. Therefore, many
human learning tasks exhibit online and semi-supervision
characteristics, that is, the observations arrive in sequence
and the corresponding labels are presented very sporadi-
cally. In this paper, we propose a novel manifold regularized
model in a reproducing kernel Hilbert space (RKHS) to
solve the online semi-supervised learning (OS2L) problems.
The proposed algorithm, named Model-Based Online Man-
ifold Regularization (MOMR), is derived by solving a con-
strained optimization problem. Different from the stochastic
gradient algorithm used for solving the online version of
the primal problem of Laplacian support vector machine
(LapSVM), the proposed algorithm can obtain an exact
solution iteratively by solving its Lagrange dual problem.
Meanwhile, to improve the computational efficiency, a fast
algorithm is presented by introducing an approximate tech-
nique to compute the derivative of the manifold term in the
proposed model. Furthermore, several buffering strategies
are introduced to improve the scalability of the proposed
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algorithms and theoretical results show the reliability of the
proposed algorithms. Finally, the proposed algorithms are
experimentally shown to have a comparable performance to
the standard batch manifold regularization algorithm.

Keywords Human learning · Manifold regularization ·
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Introduction

Online learning techniques get great progress in recent years
[1–10]. In general, online learning has several characteris-
tics: (1) the samples arrive sequentially in a stream and only
one new sample is available in each online learning round;
(2) the label of the new arrived sample is predicted by the
current classifier and the true label of the sample is revealed;
(3) when a new sample is misclassified, the classifier should
be updated in time to improve its generalization ability; and
(4) the classifier can be updated without re-training all the
visible samples.

In literature, much attention has been put on online super-
vised learning, e.g., [11–14], that is, the true labels are avail-
able in the online training process. However, in practice,
we frequently face online semi-supervised learning prob-
lems [15–17], such as the human categorization problem. In
[16], Zhu et al. designed a series of experiments to demon-
strate that the human learning behavior is closely related
to the semi-supervised learning pattern. Furthermore, Gib-
son et. al. [18] applied the learned semi-supervised model
to human learning tasks. In human learning, learners can
incrementally learn the classes of various objects from the
surrounding environment, where only a few objects are
labeled by a knowledgeable source. This scenario can be
actually regarded as online semi-supervised learning, that is,
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the label of a new arrived sample is unavailable or presented
very sporadically in the online process.

In this paper, we focus on the online semi-supervised
learning problems (OS2L). Several OS2L algorithms have
been proposed in the past several years. By using a heuristic
method to greedily label the unlabeled examples, Babenko
et al. [19] and Grabner et al. [20] tried to solve the
OS2L problems in an online supervised learning framework.
Dyer et al. [21] presented a semi-supervised learning (SSL)
framework called COMPOSE (COMPacted Object Sample
Extraction), where a few labeled samples are given initially,
and then a SSL problem is solved based on the currently labeled
samples and new unlabeled samples, which follow a drift
distribution. To reduce the computational complexity of
manifold construction in the online training process, Kveton
et al. [22] and Farajtabar et al. [23] proposed the harmonic
solution formanifold regularization on an approximate graph.

By using online convex programming, Goldberg et al.
[24] proposed an online manifold learning framework for
SSL in a kernel space with stochastic gradient descent. In
addition, they extended their method to online active learn-
ing by adding an optional component to select the instances
to be labeled [25]. Sun et al. [26, 27] exploited the prop-
erty of Fenchel conjugate of hinge loss and gradient ascend
method to solve the dual problem of their online mani-
fold learning model. Those algorithms in [24, 26, 27] are
derived by using online gradient methods, implying that
these methods can be regarded as solving the off-line semi-
supervised learning models by stochastic gradient methods.
However, none of these stochastic gradient methods can
obtain an exact solution because they do not directly solve
the constrained optimization problem involved.

In practice, we prefer an exact solution, which can usu-
ally achieve a more accurate result and meanwhile more
efficiently. In this paper, we propose an algorithm with ana-
lytical solution to solve the online semi-supervised problem.
Specifically, we propose a novel online manifold regulariza-
tion learning model in a reproducing kernel Hilbert space
(RKHS), by exploiting the internal geometry information of
the unlabeled data and take advantage of the kernel methods.
In each iteration of online training, by considering the new
arrived sample and the previous samples, an online model
based on a constrained optimization problem is presented,
and the exact solution of the proposed model is obtained
with the help of the Lagrange dual problem. Meanwhile,
a fast learning algorithm (named FMOMR) is presented
by introducing an approximate technique to compute the
derivative of the manifold term. In addition, the regulariza-
tion parameter of the proposed model can be regarded as a
forgetting factor, which provides a reasonable and consistent
way to control the number of support vectors. By such mer-
its, the proposed online predictors experimentally exhibits a
high accuracy comparable to batch algorithm LapSVM.

This paper substantially extend our previous work [28]
by providing (a) a fast algorithm of the proposed model
(“Fast Algorithm of the Proposed Model” section), (b) sev-
eral buffering strategies (“Buffering Strategies” section), (c)
a brief theory analysis of the proposed algorithms (“Theory
Analysis” section), (d) more experiments (“Action Video
Categorization” section), and (e) some background knowl-
edge (“Background Knowledge” section).

The rest of this paper is organized as follows. The
background knowledge is briefly reviewed in “Background
Knowledge” section, and the proposed model and algorithms
are detailed in “Online Manifold Learning with Kernels”
section.After giving someexperimental results in “Experiments”
section, the paper is concluded by “Conclusion” section.

Background Knowledge

The background knowledge consists of two parts, Lagrange
dual problemandLapSVM, a batch manifold learning model.

Lagrange Dual Problem

The Lagrange dual technique is frequently used for solving
the primal optimization problem in RKHS. Thus, we give a
brief review of the Lagrange dual problem in this section.
Consider the primal constrained optimization problem:

minx f0(x)

s.t. fi(x) ≤ 0, i = 1, ..., p
hi(x) = 0, i = 1, ..., q,

(1)

where x ∈ Rn and f0(x) is an objective cost function that is
minimized under the p inequality constraints fi(x) ≤ 0 and
q equality constraints hi(x) ≤ 0. The Lagrange function of
Eq. 1 is

L(x, α, β) = f0(x) +
p∑

i=1
αifi(x) +

q∑

i=1
βihi(x) (2)

where α = (α1, ..., αp)T and β = (β1, ..., βq)T are
Lagrange multipliers. By minimizing (2) over x, the
Lagrange dual function g is defined as:

g(α, β) = minx L(x, α, β) (3)

Then the Lagrange dual problem of Eq. 1 is to maximize (3)

maxα,β g(α, β)

s.t. αi ≥ 0, i = 1, ..., p.
(4)

The strong duality, that is, the optimal value of Eqs. 1 and
4 being equal to each other, holds under the Slater’s con-
dition [29], that is, the primal problem is convex and there
exists x0 such that fi(x0) < 0, i = 1, ..., p. Therefore, the
solution of the primal problem can be obtained by solving
its Lagrange dual problem. Actually, the standard Laplacian
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SVM (SVM based on manifold regularization) is commonly
solved by Lagrange dual technique, as reviewed below.

Manifold Regularization for Semi-supervised Learning

Laplacian support vector machine [30] (LapSVM) is
derived by adding the manifold regularization term into
support vector machine (SVM). Given the labeled train-
ing data (x1, y1), ..., (xl, yl) and unlabeled training data
xl+1, ..., xl+u, where xi ∈ X and yi ∈ {−1, 1}, LapSVM is
given by the following optimization problem:

min
f ∈HK

1
l

l∑

i=1
(1 − yif (xi))+ + γA||f ||2K

+ γI

(u+l)2
fT Lf.

(5)

where γA, γI are trade-off parameters, f = [f (x1), ...,

f (xl+u)], K : X ×X → R is a Mercer kernel andHK is an
associated RKHS of functions f : X → R with the corre-
sponding norm ‖ · ‖K . Especially, the graph Laplacian L is
defined by L = D−W , where W is the edge weights matrix
and D is a diagonal matrix (defined by Dii = ∑l+u

j=1 Wij ,
i = 1, ..., l+u). By the Representer Theorem (see Theorem
2 in [30]), the optimal solution of Eq. 5 can be presented as

f ∗(x) =
l+u∑

i=1
α∗

i K(x, xi). (6)

By adding a bias term b to the above formula, the primal
problem (5) can be rewritten as:

min
α∈Rl+u,ξ∈Rl

1
l

l∑

i=1
ξi + γAαT Kα + γI

(u+l)2
αT KLKα

s.t. yi

(
l+u∑

j=1
αjK(xi, xj ) + b

)

≥ 1 − ξi, i = 1, ..., l

ξi ≥ 0, i = 1, ..., l.

where α = [α1, ..., αl+u]T . Then, we can obtain the
Lagrangian:

L(α, ξ, b, β, ζ )

= 1
l

l∑

i=1
ξi + 1

2α
T

(
2γAK + 2 γA

(l+u)2
KLK

)
α

−
l∑

i=1
βi

(
yi

(∑l+u
j=1 αjK(xi, xj ) + b

)
− 1 + ξi

)

−
l∑

i=1
ζiξi .

where βi, ζi are Lagrange multipliers.
To obtain the minimum with respect to b and ξ , consider

the conditions ∂L/∂b = 0 and ∂L/∂ξi = 0. Thus, a reduced
Lagrangian can be formulated as follows:

LR(α, β) = 1
2α

T
(
2γAK + 2 γI

(u+l)2
KLK

)
α

−αT KJT Yβ +
l∑

i=1
βi.

where J = [I 0] is an l × (l +u) matrix with I as the l × l

identity matrix (assuming the first l points are labeled in the

training set) and Y is a diagonal matrix with Yii = yi for
i = 1, ..., l. By taking derivative of the reduced Lagrangian
with respect to α, we have
∂LR

∂α
=

(
2γAK + 2 γI

(u+l)2
KLK

)
α − KJT Yβ. (7)

So, we can get:

α =
(
2γAI + 2 γI

(u+l)2
LK

)−1
J T Yβ∗. (8)

Substituting back in the reduced Lagrangian, an opti-
mization problem with respect to β is derived as follows:

β∗ = max
β∈Rl

l∑

i=1
βi − 1

2β
T Qβ

s. t.
l∑

i=1
βiyi = 0

0 ≤ βi ≤ 1
l
, i = 1, ..., l

(9)

where

Q = YJK

(

2γAI + 2
γI

(u + l)2
LK

)−1

J T Y

By solving (9) and using the Eqs. 6 and 8, we can obtain the
optimal solution f ∗(x). However, the process of training
LapSVM classifier with all the training data can be very
slow when the data size is large. To improve the computa-
tional efficiency for online learning, we proposed a novel
online manifold learning model based on a constrained opti-
mization problem, which is presented in the next section.

Online Manifold Learning with Kernels

In this section, the proposed model is presented in detail. In
“Online Model Based on Manifold Regularization” section,
amodel based onmanifold regularization is proposed for online
semi-supervise learning in a RKHS. In “Online Algorithm
of the Proposed Model” section, the proposed model is solved
by exploiting the property of Lagrange dual problem. Sev-
eral fast learning strategies are presented in “Fast Learning
Strategies” section. A brief theoretical analysis of the proposed
algorithms is presented in “Theory Analysis” section.

Online Model Based on Manifold Regularization

Assume that the current learning data for semi-supervised
learning are (x1, y1, δ1), (x2, y2, δ2), ..., (xt , yt , δt ) where
xi ∈ X is a point, yi ∈ Y = {−1, 1} is its label and δi is
a flag to determine whether the label yi is available (yi is
available if and only if δi = 1). At round t , the current pre-
dictor is ht (x) = sign(ft (x)) and f0 is set as f0 = 0 in
our algorithm. In online semi-supervised learning, when a
new sample (xt+1, yt+1, δt+1) is available, the function ft+1

is updated based on the current decision function ft and the
implicit feedback, that is, the manifold structure of the sam-
ples. The detailed process of online manifold learning is
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presented in Fig. 1. In Fig. 1, a new input xt is provided to
the current predictor and the decision value f (xt ) is com-
puted by the predictor. Thereafter, the learner will update
the decision function in different ways based on different
feedbacks: if the label of xt is available, the learner will
update the classifier with both the explicit feedback yt and
the implicit feedback under the manifold structure of the sam-
ples; otherwise, the classifier will be updated only based on
the implicit feedback. The process will continue until no more
new samples arrive and the final predictor hT (x) = sign
(fT (x)) (T is the final time) is derived for classification tasks.

Suppose that K(·, ·) is a chosen Kernel function over the
training samples andH is the corresponding RKHS. There-
fore, according to the Representer Theory [31], we can write
ft and ft+1 as follows:

ft (·) =
t∑

i=1
αt

iK(xi, ·),

ft+1(·) =
t∑

i=1
αt+1

i K(xi, ·) + αt+1
t+1K(xt+1, ·).

(10)

In the online learning process, our aim is to update
{αt+1

i }t+1
i=1 from {αt

i }ti=1 based on a proper algorithm. Con-
sidering the trade-off between the amount of progress made
on each round and the amount of information retained
from previous rounds, and compromise the classification
error, the manifold constraint and the complexity of f as
LapSVM, our online semi-supervised learning model with
manifold regularization is presented as follows:

min
f,ξt+1

1
2‖f − ft‖2H + λ1

2 ‖f ‖2H + Cδt+1ξt+1

+ 1
2λ2

t∑

i=1
(f (xi) − f (xt+1))

2wit+1

s.t. yt+1f (xt+1) ≥ 1 − ξt+1, ξt+1 ≥ 0

(11)

where 1
2‖f − ft‖2H measures the difference between f

and the previous ft , ‖f ‖2H controls the complexity of the

Fig. 1 Online semi-supervised learning based on manifold regulariza-
tion framework

decision function f ,
∑t

i=1(f (xi) − f (xt+1))
2wit+1 is the

manifold regularizer which depends on the edge weight
wit+1, f and xi , and ξt+1 is the slack variable denoting a
possible error for the newly arrived data (xt+1, yt+1, δt+1)

after f is determined, λ1, λ2 and C are parameters reflect-
ing the weights compromising complexity, the manifold
regularizer and the classification error.

In the objective function of Eq. 11, the manifold structure of
the samples is reflected in the term

∑t
i=1(f (xi)−f (xt+1))

2

wit+1, which can be regarded as an implicit feedback. This
regularization termmakes the new sample gain a similar deci-
sion value to its close sample in the manifold. The solution
of the proposed model is presented in the next section.

Online Algorithm of the Proposed Model

In this section, we give a detailed solution of the proposed
model by exploiting the property of Lagrange dual prob-
lem. Assuming that δt+1 = 1 (if δt+1 = 0, the solution of
Eq. 11 can be obtained by the similar process as bellow), the
Lagrange dual problem of Eq. 11 is

max
γt+1

min
f,ξt+1

L(f, ξt+1, γt+1, βt+1)

s.t. γt+1 ≥ 0, βt+1 ≥ 0
(12)
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where γt+1 and βt+1 are the Lagrange multipliers corre-
sponding to the constraints yt+1f (xt+1) ≥ 1 − ξt+1 and
ξt+1 ≥ 0, respectively, and

L(f, ξt+1, γt+1, βt+1) = 1
2‖f − ft‖2H + λ1

2 ‖f ‖2H
+ 1

2λ2
t∑

i=1
(f (xi)−f (xt+1))

2wit+1

−γt+1(yt+1f (xt+1) − 1 + ξt+1)

+Cξt+1 − βt+1ξt+1

By solving the Lagrange dual problem of Eq. 11 (the
details can be found in the Appendix), we can obtain the
new classifier at time t + 1:

ft+1(x) =
t+1∑

i=1
αt+1

i K(xt+1, x),

ht+1 = sign(ft+1(x)),

(13)

where

αt+1 = A−1(Kα̃t + δt+1yt+1γ
∗
t+1J ).

The above process is summarized in Algorithm 1. In
Algorithm 1, when the first sample arrives, the value of α1

is set to be 1.
However, thereare twodifficulties inperformingAlgorithm1:

(1) To compute the value of αt , we need to compute the
inverse of matrix A = K + λ1K + λ2KLK , which is
difficult to calculate when t is very large; (2) In the online
learning process, the online manifold learning algorithms
with kernel functions have to store the sequence up to the
current round. In a result, the set of support vectors will
grow unboundedly, which limits the applicability of the
online algorithms. Therefore, we present a fast algorithm to
solve the proposed model and introduce several buffering
strategies to reduce the number of support vectors.

Fast Learning Strategies

Fast Algorithm of the Proposed Model

In this section, we propose a fast algorithm to solve the pro-
posed model. Note that if we let λ2 = 0, the process of
calculating the inverse matrix can be avoided. There, for the
sake of taking advantage of the properties of manifold reg-
ularization and improving the computational efficiency, we
use an approximate term to replace (31).

Consider the formula (30), by replacing the term λ2KLKα

with λ2KLKαt , we have

∂LR

∂α
≈ (K + λ1K)α + λ2KLKαt

−Kαt − Jyt+1γt+1 (14)

This approximation is reasonable for that the term 1
2‖f −

ft‖2H is used to control the distance of a predicted f from
the previous ft in our model, which can guarantee that
the difference between αt+1 and αt is not very large. In
addition, the convex function M(α) = αT λ2KLKα is
continuous and differentiable, so we have

∂M

∂αt+1 ≈ ∂M
∂αt

that is,

λ2KLKαt+1 ≈ λ2KLKαt .

Now, from Eq. 14, we get

α = 1
1+λ1

[(I − λ2LK)αt + eyt+1γt+1] (15)

Taking the derivative of Eq. 29 with respect to γt+1 we get:

∂LR

∂γt+1
= 1 − yt+1α

T J = 0 (16)

Substituting (15) into (16), we have

γ t+1 = 1 + λ1 − yt+1J
T (I − λ2LK)αt (17)
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Let the approximate solution of Eq. 30 be α̂t+1 and γ̂ ∗
t+1.

Hence,

γ̂ ∗
t+1 =

⎧
⎨

⎩

0, if γ t+1 ≤ 0
C, if γ t+1 ≥ 0
γ t+1, otherwise

(18)

Similar to Eq. 13, the classifier obtained at time t + 1 is:

ft+1(x) =
t+1∑

i=1
α̂t+1

i K(xt+1, x),

ht+1 = sign(ft+1(x)),

(19)

where

α̂t+1 = 1
1+λ1

[
(I − λ2LK)αt + eδt+1yt+1γ̂

∗
t+1

]

The above process is summarized in Algorithm 2.
The main computation in Eqs. 15 and 17 is to calcu-

late the matrix multiplication L × K . It can be seen that
L = D − W is a sparse matrix by its definition (D is a
diagonal matrix and W is a matrix that only 2t elements
are non-zero), which means the computational complexity
of L × K is only O(t2). Therefore, the computational com-
plexity isO(t2) of Algorithm 2. Note that the computational
complexity becomes very high with the increasing of t . This
limits the scalability of the proposed algorithms. There-
fore, we present several buffering strategies to improve the
scalability of the online algorithms in the next section.

Buffering Strategies

In practice, kernel-based discriminative algorithms have
been shown to perform very well on semi-supervised learn-
ing problems [30, 32]. However, in the online learning
process, the set of support vectors will grow unboundedly,
which limits the applicability of the online manifold regu-
larization algorithms. To address this problem, we present
several approaches to bound the size of the support set.

Buffering strategies [5, 24, 33] keep a fixed number of
support vectors for online learning. Let the buffer size be τ .
There are several different strategies:

(1) Buffer-N. The oldest sample in the buffer is replaced
with the new incoming sample after each online learn-
ing round.

(2) Buffer-U. The oldest unlabeled sample in the buffer
is replaced with the new incoming sample after each
online learning round. When the buffer is filled with
labeled samples, the oldest labeled points is evicted
from the buffer.

To modify this for a more general case, we remove the
sample with the smallest |αt

i | in round t , where | · | is the

absolute value symbol. As suggested in [24], we choose
Buffer-U as the buffering strategy for all our experiments.

Theory Analysis

In this section, we give out a brief theory analysis of the
proposed algorithms.

Theorem 1 Suppose that K(·, ·) is a chosen Kernel func-
tion over the training samples and H is the corresponding
RKHS, then (13) is exactly the solution of the primal prob-
lem (11).

Proof Let

c1t (f ) = 1 − ξt+1 − yt+1f (xt+1),

c2t (f ) = −ξt+1.

Apparently, c1t (f ) and c2t (f ) are continuous. In addition,
since the object function of Eq. 11 is convex, by the Convex
Duality Theorem of [34] (see the Theorem 14.37 on page
532), the optimal value of the primal problem (11) is equal
to that of its Lagrange dual problem. Therefore, according
to the above derivational process, the result (13) is exactly
the solution of the primal problem (11).

Theorem 1 implies that MOMR is an exact algorithm
with respect to the proposed model (11). Next, we give
out an analysis of the relationship between the proposed
MOMR and FMOMR.

Theorem 2 Suppose λ2 = 0, then the solution of Eqs. 13
and 19 is equivalent.

Proof Suppose λ2 = 0, we have

J T A−1J = eT K(K + λ1K)−1Ke

= 1
1+λ1

eT Ke = 1
1+λ1

.
(20)

Therefore, from Eq. 33, we get

γ t+1 = 1−yt+1J
T A−1Kα̃t

J T A−1J= 1 + λ1 − yt+1J
T α̃t .

(21)

which is equivalent to Eq. 17 if λ2 = 0.
Similarly, by substituting λ2 = 0 into (31) and (15)

respectively, we have

α̂t+1 = αt+1 = 1
1+λ1

(α̃t + eyt+1γt+1). (22)

Theorem 2 is reasonable for that the Algorithm 2 is
obtained only by approximating the derivative of the mani-
fold regularization term. In addition, for that (31) and (15)
are continuous with respect to λ2, (15) is an appropriate
approximation of Eq. 31 when λ2 is very small.
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Fig. 2 Some images of the
MNIST3VS6. The top two rows
are images of “6” while the
bottom two rows are images of
“8”

Experiments

In this section, to verify the effectiveness, we compare the pro-
posed algorithms, MOMR and FMOMR, with two online
manifold regularization algorithms and a batch algorithm
on three data sets (see “Handwritten Digit Recognition—4”
section), respectively.

In all the experiments, the RBF kernel k(xi, xj ) =
exp(−‖xi − xj‖2/(2σ 2

K)) is used for classification. The
edge weight is k(xi, xj ) = exp(−‖xi − xj‖2/(2σ 2

W)),
which define a fully connected graph. The labeled rate of
training samples is 2%.

In our experiments, we focus on online manifold reg-
ularization algorithms derived from the dual problem.
Therefore, we compare the performance of our algorithms
with an online manifold regularization algorithm based
on Example-Associate Update (denoted by OMR-EA), an
online manifold regularization algorithm based on Overall
Update (denoted by OMR-Overall) [26], and a batch man-
ifold regularization algorithm LapSVM [30]. As suggested
in [26], the step sizes of the OMR-EA and OMR-Overall are
set to be a small value 0.01.

All the evaluations share the same buffering strat-
egy, Buffer-U, but employ different buffer sizes (B ∈
{50, 100, 150, 200}). The parameter values σK, σW , λ1 and
λ2 are selected by using five-fold cross validation on the first
500 samples of the training data, where σK, σW ∈ {2−3,

2−2, 2−1, 2−0, 21, 22, 23} and λ1, λ2 ∈ {10−5, 10−4,

10−3, 10−2, 10−1, 10−0, 101, 102}. In addition, the value
of parameter C is set to be 1 for the proposed algorithm
MOMR and FMOMR. The computational efficiencies of all
the algorithms are evaluated in terms of their CPU running
time (in seconds). All the experiments are implemented in

Matlab on a PC with Inter(R) Core(TM) 3.2 GHz CPU, 4G
RAM and Windows 7 operating system.

All the four online algorithms are performed in the same
way which can be divided into two steps: (1) Online pro-
cessing: training a classifier with a new arrived sample using
an online algorithm. (2) Test: testing the final model on a
test set. However, the batch algorithm LapSVM is trained
with all the visible samples in each learning round. We
repeat all the experiments ten times (each with an indepen-
dent random permutation of the training samples) and the
results presented bellow are all average over ten trials.

Handwritten Digit Recognition

In this section, we perform an evaluation experiment on the
MNIST data set [35]. We focus on the binary classification
task of separating “6” from “8” (MNIST6VS8) in our exper-
iment. The sizes of the training set and test set are 11769 and
1932 respectively. Some images of the MNIST6VS8 data
set are presented in Fig. 2.

The test accuracies are summarized in Table 1. From
the results, the test accuracies of MOMR and FMOMR are
comparable to those of LapSVM and higher than those of
OMR-EA and OMR-Overall. This is reasonable for that
MOMR is exactly the solution of the proposed model, while
OMR-EA and OMR-Overall [26] are obtained by using
the stochastic gradient methods. And, the performance of
the fast algorithm FMOMR is very similar to that of the
algorithm MOMR. It implies that FMOMR is a proper
approximate solution to the proposed model.

The online updating time is presented in Fig. 3. We can
see that: with respect to the updating time (a) MOMR is
comparable to the other three online algorithms when the

Table 1 On the MNIST6VS8,
test accuracies (%) of MOMR,
FMOMR, OMR-EA,
OMR-Overall, and LapSVM
with using different buffer sizes

B MOMR FMOMR OMR-EA OMR-Overall LapSVM

50 98.012 ± 0.442 97.940±0.493 96.491±1.775 97.495±0.714 98.030±0

100 98.613±0.318 98.685±0.206 98.427±0.265 97.940±0.553 98.030±0

150 99.068±0.146 99.068±0.073 98.913±0.073 97.904±0.622 98.030±0

200 99.048±0.078 99.120±0.097 98.954±0.177 97.981±0.543 98.030±0

Note that LapSVM is an offline algorithm for manifold regularization, and is independent of the buffer size.
The best classification results with each buffer size are marked in italics
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Fig. 3 Cumulative running time of online updating the classifiers with different buffer sizes on the MNIST6VS8 data set

buffer size is small; (b) FMOMR is comparable to the online
algorithms OMR-EA and OMR-Overall, and much faster than
the off-line algorithm LapSVM. These are reasonable for that
each sample is trained only once by the online algorithms and a
buffering strategy is used to reduce the repeated training process.

Face Recognition

This experiment is performed on the data set FACEMIT
[36] which contains 361-dimensional images of faces and
non-faces. A balanced subset (size 5000) from FACEMIT

Fig. 4 Some images of the FACEMIT. The top four rows are images of faces while the bottom four rows are images of non-faces
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Table 2 On the FACEMIT,
test accuracies (%) of MOMR,
FMOMR, OMR-EA,
OMR-Overall, and LapSVM
with different buffer sizes

B MOMR FMOMR OMR-EA OMR-Overall LapSVM

50 78.024 ± 3.411 78.024 ±3.411 77.992±3.390 78.000±3.478 77.600±0

100 78.412±3.270 78.420 ± 3.316 78.080±3.142 78.048±3.253 77.600±0

150 78.528±3.332 78.560 ± 3.347 77.996±3.129 77.960±3.240 77.600±0

200 78.552±3.360 78.608 ± 3.363 77.948±3.126 77.920±3.237 77.600±0

The best classification results with each buffer size are marked in italics
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Fig. 5 Cumulative running time of online updating the classifiers with different buffer sizes on the FACEMIT data set

Fig. 6 Some frames from the videos of biking and diving. The top two rows are frames of biking while the bottom two rows are frames of diving
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Table 3 Test accuracies (%) of
MOMR, FMOMR, OMR-EA,
OMR-Overall, and LapSVM
on a subset of UCF YouTube
[29] with different buffer sizes

Buffer MOMR FMOMR OMR-EA OMR-Overall LapSVM

50 85.260±2.151 85.272±2.142 83.094±2.3475 82.994±1.930 95.05±0

100 91.374±1.729 91.377±1.727 89.344±1.435 89.349±1.323 95.05±0

150 93.480±1.375 93.473±1.335 93.440±1.089 93.443±1.171 95.05±0

200 94.988±0.158 94.988±0.158 94.830±0.282 94.841±0.310 95.05±0

The best classification results with each buffer size are marked in italics

is randomly sampled and divided into two sets obeying a
rule that the number of training samples is equal to that of
test samples. Some images of the FACEMIT data set are
presented in Fig. 4.

The test accuracies are summarized in Table 2. We can
make the following comments: (a) The test accuracies of
MOMR and FMOMR are higher than those of the other
algorithms; (b) FMOMR surpass other algorithms with
respect to the test accuracy, which further demonstrates
that the proposed fast approximate algorithm FMOMR is
reasonable and efficient.

The online updating time of the five algorithms are pre-
sented in Fig. 5. It can be seen that FMOMR is the fastest
algorithm among all the five algorithms. Additionally, the
difference between MOMR and FMOMR increases with
the increasing of buffer size. This can be explained by that

the computational complexity of MOMR and FMOMR are
O(B3) and O(B2) respectively. Note that in Fig. 5, the
curves are plotted by using singe logarithmic coordinate
axis. Therefore, MOMR consumes more time than FMOMR
as B increases. However, when B is small, both MOMR
and FMOMR can be implemented very fast, so that the dif-
ference of cumulative running time between MOMR and
FMOMR is insignificant.

Action Video Categorization

Further, we evaluate our methods on a kind of multi-
manifold data, action video. As we know, a video is always
made up of lots of static images which keep coherence in
content and space, especially action videos. We adopt the
UCF YouTube dataset [37] which consists of 1168 video
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Fig. 7 Cumulative running time of online updating the classifiers with different buffer sizes on the UCF YouTube dataset



Cogn Comput (2018) 10:49–61 59

sequences captured under uncontrolled conditions. It is a
challenging dataset owing to tremendous variations in cam-
era motion, object pose, cluttered background, viewpoint,
illumination, etc. We select two action categories, biking
and diving (some images are presented in Fig. 6.), which
both have a better continuity. We utilize the dense trajec-
tories [38] to describe actions in the videos. The method
can extract essential features representing actions which is
robust to fast irregular motions and short boundaries. Then,
10,000 frames are sampled from these 2 action categories
respectively (so the total number of frames is 20,000). They
are divided into two sets: the training set and the test set with
a proportion 1:1 for our experiment. The task is to classify
these frames into these two action categories.

The test accuracies are summarized in Table 3. We can
make the following comments: (a) The test accuracies of
MOMR and FMOMR are comparable with the off-line algo-
rithm LapSVM and higher than those of the two online
algorithms OMR-EA and OMR-Overall; (b) the proposed
algorithms MOMR and FMOMR make 2% improvements
over the other two online algorithms when the buffer size
is small; and (c) all the online algorithms make a signifi-
cant improvement on performance with the increasing of the
buffer size.

The online updating time of the five algorithms are pre-
sented in Fig. 7. With respect to the running time, it can
be seen that (a) FMOMR is faster than the other compared
online algorithms, and (b) all the compared online algo-
rithms are much faster than the off-line algorithm LapSVM.

Considering the above results, it can be inferred that the
proposed algorithms can reach the first grade among the five
algorithms both on the test accuracy aspect and on the run-
ning time aspect. The proposed fast algorithm FMOMR is
the best among the compared online algorithms for its per-
formances on the three data sets because (a) FMOMR is
the fastest algorithm among the compared algorithm; (b) in
the aspect of generalization performance, FMOMR is bet-
ter than OMR-EA and OMR-Overall and FMOMR has a
comparable performance to the batch algorithm LapSVM.

Additionally, the test accuracy is higher with a larger
buffer, but the time cost increases with the increase of the
buffer size. In practice, the buffer size can be used to trade-
off the accuracy and the time cost of online classifiers. An
appropriate buffer size can be derived by using cross valida-
tion on the first N arrived samples, where N is a predefined
number.

Conclusion

According to the manifold regularized online model, we
give out an analytical solution of the constrained optimiza-
tion problem by exploiting the techniques of the Lagrange

dual problem. The proposed idea offers two new algorithms
to solve the online semi-supervised leaning problem. Exper-
iment results verify the effectiveness and validity of the
proposed algorithms.

In fact, the proposed algorithms can solve not only
semi-supervised learning problems but also online super-
vise learning problems (this can be done in the algorithm
MOMR by deleting the manifold regularization term from
the object function of (11) and setting the value of λ2 to
be 0). In the future work, we will extend the proposed
algorithms to solve some specific online learning problems.
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Appendix

In this Appendix, we give out the derivation process of Eq. 13.
For simplicity, we define D and W as

Dij =
⎧
⎨

⎩

wij if 0 < i = j < t + 1
∑t

i=1 wit+1 if i = j = t + 1
0 otherwise

(23)

Wij =
⎧
⎨

⎩

wij if 0 < i < t + 1, j = t + 1
wij if i = t + 1, 0 < j < t + 1
0 otherwise

(24)

Substituting (10), (23), (24) into (12) and letting L =
D − W , we have

L(α, ξt+1, γt+1, βt+1) = 1
2αT (K + λ1K + λ2KLK)α

−γt+1(yt+1α
T J − 1 + ξt+1)

−αT Kα̃t − βt+1ξt+1 + Cξt+1 + c0

(25)

where α = [α1, ..., αt+1]T , α̃t = [αt
1, ..., α

t
t , 0]T , K is a

(t+1)×(t+1)GramMatrix withKij = K(xi, xj ), J = Ke,
e = [0, ..., 0, 1]T is a (t + 1)-dimensional vector and c0 is a
constant.

Note that L(α, ξt+1, γt+1, βt+1) attains its minimum with
respect to α and ξt+1, if and only if the following conditions
are satisfied:

∇αL(α, ξt+1, γt+1, βt+1) = 0, (26)

∇ξt+1L(α, ξt+1, γt+1, βt+1) = 0. (27)
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Therefore, we have
∂L

∂ξt+1
= −γt+1 − βt+1 + C = 0

=⇒ 0 ≤ γt+1 ≤ C.
(28)

According to the above identity, we formulate a reduced
Lagrangian:

LR(α, γt+1) = 1
2α

T (K + λ1K + λ2KLK)α

−γt+1(yt+1α
T J − 1)

−αT Kα̃t + c0.

(29)

Taking derivative of Eq. 29 with respect to α, we have:

∂LR

∂α
= (K + λ1K + λ2KLK)α

−Kα̃t − Jyt+1γt+1.
(30)

Note that ∂LR/∂α = 0. Therefore, we have:

α = (K + λ1K + λ2KLK)−1×
(Kα̃t + Jyt+1γt+1).

(31)

Substituting (31) back into the reduced Lagrangian (29),
we get:

max
γt+1

− 1
2 (Kα̃t +Jyt+1γt+1)

T A−1(Kα̃t +Jyt+1γt+1)

+γt+1

s.t. 0 ≤ γt+1 ≤ C,

(32)

where A = K + λ1K + λ2KLK .
Let γ t+1 be the stationary point of the object function of

Eq. 32.
Therefore,

γ t+1 = 1−yt+1J
T A−1Kα̃t

J T A−1J
. (33)

Assume that the optimal solution of Eq. 32 is γ ∗
t+1 . Note

that the object function (32) is quadratic, so the optimal
solution γ ∗

t+1 in the interval [0, C] is at either 0, C or γ t+1.
Hence

γ ∗
t+1 =

⎧
⎨

⎩

0, if γ t+1 ≤ 0
C, if γ t+1 ≥ 0
γ t+1, otherwise

(34)

Furthermore, if δt+1 = 0, we can obtain the solution of
the proposed model by the similar process as above. Thus,
the classifier obtained at time t + 1 is:

ft+1(x) =
t+1∑

i=1
αt+1

i K(xt+1, x),

ht+1 = sign(ft+1(x)),

(35)

where

αt+1 = A−1(Kα̃t + δt+1yt+1γ
∗
t+1J ).

References

1. Kivinen J, SmolaAJ, WilliamsonRC. Online learning with kernels.
IEEE Trans Sig Process. 2004;52(8):2165–76.

2. Li GQ, Wen CY, Li ZG, Zhang A, Yang F, Mao K. Model-based
online learning with kernels. IEEE Trans Neural Netw Learn Syst.
2013;24(3):356–69.

3. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for
online learning and stochastic optimization. J Mach Learn Res.
2011;12:2121–59.

4. Huang KZ, Yang HQ, Lyu MR. Machine learning: modeling data
locally and globally. Springer Science & Business Media. 2008.

5. Orabona F, Keshet J, Caputo B. Bounded kernel-based online
learning. J Mach Learn Res. 2009;10:2643–66.

6. Ertekin S, Bottou L, Giles CL. Nonconvex online support vector
machines. IEEE Trans Pattern Anal Mach Intell. 2011;33(2):368–
81.

7. Hoi SC, Wang JL, Zhao PL. Libol: A library for online learning
algorithms. J Mach Learn Res. 2014;15(1):495–9.

8. Ding S, Zhang J, Jia H, Qian J. An adaptive density data stream
clustering algorithm. Cogn Comput. 2016;8(1):30–8.

9. Gepperth A, Karaoguz C. A bio-inspired incremental learn-
ing architecture for applied perceptual problems. Cogn Comput.
2016;8(5):924–34.

10. Zhao J, Du C, Sun H, Liu X, Sun J. Biologically motivated model
for outdoor scene classification. Cogn Comput. 2015;7(1):20–
33.

11. Wang D, Qiao H, Zhang B, Wang M. Online support vec-
tor machine based on convex Hull vertices selection. IEEE Trans
Neural Netw Learn Syst. 2013;24(4):593–609.

12. Ding SG, Nie XL, Qiao H, Zhang B. Online classification for
SAR target recognition based on SVM and approximate convex
hull vertices selection. In: 11th World Congress on intelligent
control and automation (WCICA); 2014. p. 1473–1478.

13. Wu PC, Hoi SC, Zhao PL, Xia H, Liu ZY, Miao CY. Online
multi-modal distance metric learning with application to image
retrieval. IEEE Trans Knowl Data Eng. 2016;28(2):454–67.

14. Scardapane S, Uncini A. Semi-supervised echo state networks for
audio classification. Cogn Comput. 2016;1–11.

15. Zhang YM, Huang KZ, Geng GG, Liu CL. A fast and robust
graph-based transductive learning method. IEEE Trans Neural Netw
Learn Syst. 2015;26(9):1979–91.

16. Zhu XJ, Rogers T, Qian RC, Kalish C. Humans perform semi-
supervised classification too. In: Proceedings of the national con-
ference on artificial intelligence. vol. 22. Menlo Park, CA; Cam-
bridge, MA; London; AAAI Press; MIT Press; 1999; 2007. p.
864.

17. Yang HQ, Huang KZ, King I, Lyu MR. Maximum margin semi-
supervised learning with irrelevant data. Neural Netw. 2015;70:
90–102.

18. Gibson BR, Rogers TT, Zhu XJ. Human semi-supervised learn-
ing. Topics Cogn Sci. 2013;5(1):132–72.

19. Babenko B, Yang MH, Belongie S. Visual tracking with online
multiple instance learning. In: IEEE Conference on computer
vision and pattern recognition; 2009. p. 983–990.

20. Grabner H, Leistner C, Bischof H. Semi-supervised on-line
boosting for robust tracking. In: Computer Vision–European con-
ference on computer vision. Springer; 2008. p. 234–247.

21. Dyer KB, Capo R, Polikar R. Compose: a semisupervised learn-
ing framework for initially labeled nonstationary streaming data.
IEEE Trans Neural Netw Learn Syst. 2014;25(1):12–26.

22. Kveton B, Philipose M, Valko M, Huang L. Online semi-
supervised perception: Real-time learning without explicit feed-
back. In: IEEE Computer society conference on computer vision
and pattern recognition workshops (CVPRW); 2010. p. 15–21.

23. Farajtabar M, Shaban A, Rabiee HR, Rohban MH. Manifold
coarse graining for online semi-supervised learning. In: Machine
Learning and Knowledge Discovery in Databases. Springer; 2011.
p. 391–406.



Cogn Comput (2018) 10:49–61 61

24. Goldberg AB, Li M, Zhu XJ. Online manifold regularization: A
new learning setting and empirical study. Springer. 2008;393–407.

25. Goldberg AB, Zhu XJ, Furger A, Xu JM. OASIS: Online active
semi-supervised learning. In: Proceedings of the Twenty-Fifth
AAAI conference on artificial intelligence; 2011.

26. Sun BL, Li GH, Jia L, Zhang H. Online manifold regularization
by dual ascending procedure. Math Probl Eng. 2013;2013.

27. Sun BL, Li GH, Jia L, Huang KH. Online coregularization for
multiview semisupervised learning. Sci World J. 2013;2013.

28. Ding SG, Xi XY, Liu ZY, QiaoH, Zhang B. A novel manifold reg-
ularized online semi-supervised learning algorithm. In: International
conference on neural information processing. Springer; 2016. p.
597–605.

29. Slater M. Lagrange multipliers revisited. Springer. 2014.
30. Belkin M, Niyogi P, Sindhwani V. Manifold regularization:

a geometric framework for learning from labeled and unlabeled
examples. J Mach Learn Res. 2006;7:2399–434.

31. Schölkopf B, Herbrich R, Smola AJ. A generalized representer theo-
rem. In: Computational learning theory. Springer; 2001. p. 416–426.

32. Melacci S, Belkin M. Laplacian support vector machines trained
in the primal. J Mach Learn Res. 2011;12:1149–84.

33. Dekel O, Shalev-Shwartz S, Singer Y. The forgetron: A kernel-
based perceptron on a budget. SIAM J Comput. 2008;37(5):1342–
72.

34. Griva I, Nash SG, Sofer A. Linear and nonlinear optimization.
2009.

35. LeCunY, Bottou L, Bengio Y, Haffner P. Gradient-based learning
applied to document recognition. Proc IEEE. 1998;86(11):2278–
324.

36. Heisele B, Poggio T, Pontil M. Face detection in still gray images.
AI Memo 1697 Massachusetts Institute of Technology. 2000.

37. Liu J, Luo J, Shah M. Recognizing realistic actions from videos
“in the wild”. In: IEEE Conference on computer vision and pattern
recognition, 2009. CVPR 2009. IEEE; 2009. p. 1996–2003.
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