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Abstract Electrooculogram (EOG) is one of the major arti-
facts in the design of electroencephalogram (EEG)-based
brain computer interfaces (BCIs). That removing EOG arti-
facts automatically while retaining more neural data will ben-
efit for further feature extraction and classification. In order to
remove EOG artifacts automatically as well as reserve more
useful information from raw EEG, this paper proposes a novel
blind source separation method called CCA-EEMD (canoni-
cal correlation analysis, ensemble empirical mode decompo-
sition). Technically, the major steps of CCA-EEMD are as
follows: Firstly, the multiple-channel original EEG signals
are separated into several uncorrelated components using
CCA. Then, the EOG component can be identified automati-
cally by its kurtosis value. Next, the identified EOG compo-
nent is decomposed into several intrinsic mode functions
(IMFs) by EEMD. The IMFs uncorrelated to the EOG com-
ponent are recognized and retained, and a new component will
be constructed by the retained IMFs. Finally, the clean EEG
signals are reconstructed. Keep in mind that the novelty of this
paper is that the identified EOG component is not removed
directly but used to extract neural EEG data, which would
keep more effective information. Our tests with the data of
seven subjects demonstrate that the proposed method has dis-
tinct advantages over other two commonly used methods in

terms of average root mean square error [37.71 ± 0.14 (CCA-
EEMD), 44.72 ± 0.13 (CCA), 49.59 ± 0.16 (ICA)], signal-to-
noise ratio [3.59 ± 0.24 (CCA-EEMD), −6.53 ± 0.18(CCA),
−8.43 ± 0.26 (ICA)], and classification accuracy [0.88 ± 0.002
(CCA-EEMD), 0.79 ± 0.001 (CCA), 0.73 ± 0.002 (ICA)]. The
proposed method can not only remove EOG artifacts automat-
ically but also keep the integrity of EEG data to the maximum
extent.
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Introduction

Brain computer interfaces (BCIs) establish direct passages
between brain and external devices for communication and
control [1]. Electroencephalogram (EEG) is the most widely
used brain signal in BCIs, due to its advantages of portability,
economy, and reliability. However, it is known that EEG
is also very easily interfered by various artifacts.
Electrooculogram (EOG) is one of the most important artifacts
in EEG, causing influence on the performance of BCIs [2]. So,
it is significant to remove EOG artifacts automatically while
retaining more effective neural data.

In the existing literature, blind source separation (BSS)
techniques are widely used in artifacts removal from EEG
signals [3–5], which mainly can be classified into the follow-
ing three categories. (1) Principal component analysis (PCA):
its decomposition produces components from unrelated
sources, but its orthogonality assumption is not often consis-
tent with the EEG data in practice [6]. (2) Independent com-
ponent analysis (ICA): it uses higher-order statistics to sepa-
rate the recorded signals into some independent components
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[7] and thus increases the computational complexity greatly.
Besides, ICA requires that no more than one source signal
should obey the Gaussian distribution, which significantly
limits its application in EEG data. (3) Canonical correlation
analysis (CCA): it is an analysis method based on second-
order statistics with using less processing time. CCA is used
to generate components derived from their uncorrelated
sources [8]. Previous studies have shown the superiority of
CCA over ICA in removing artifacts from EEG [9, 10].

In summary, CCA method costs less processing time than
ICA. At the same time, CCA does not need the conditions of
orthogonality assumption and no more one source signal
obeying the Gaussian distribution, which can overcome these
shortcomings in PCA and ICA. However, if the identified
EOG component is set to zero directly, some useful neural
data contained would be removed. What is worse, this direct
removal may cause bad final analysis results. Fortunately, em-
pirical mode decomposition (EMD) is an adaptive signal de-
composition method, which can be used to extract the neural
data from the EOG component. It decomposes the EOG com-
ponent into a set of intrinsic mode functions (IMFs). Then, the
IMFs uncorrelated to EOG component, i.e., the IMFs contain-
ing neural data, are extracted and retained. But, EMD has the
mode mixing problem [11], which will lead to extracting the
desired IMFs inaccurately. The ensemble empirical mode de-
composition (EEMD) is one improvement of EMD [12], and
it has advantages of the EMD while solving the mixing mode
problem.

This paper presents a novel method called CCA-EEMD
approach to remove EOG artifacts from EEG data. In the
proposed CCA-EEMD algorithm, CCA can quickly decom-
pose the original EEG data into several uncorrelated compo-
nents. Next, the EEMD is applied to extract the desired IMFs
from the EOG component precisely. As a result, CCA-EEMD
can remove EOG artifacts automatically and effectively as
well as remains more desired data. In comparison with ICA
and CCA methods, the proposed CCA-EEMD has better per-
formance in EOG artifacts removal.

This paper is organized as follows: the “Methods” section
describes the CCA, EEMD, and the proposed CCA-EEMD
algorithms as well as EEG dataset. The outcomes and analyses
of the study are given in the “Results and Discussion” section.
Finally, the “Conclusion” section gives a brief conclusion to
this paper.

Methods

BSS Using CCA

In the BSS, let S(t) = [s1(t), s2(t), … , sl(t)]
T denotes the l un-

correlated unknown source signals.With an unknown mixture
for S(t), the observed EEG signals are acquired and denoted as

X(t) = [x1(t), x2(t), … , xl(t)]
T, with t = 1,…, N, where N is the

number of samples and l is the number of recorded channels.
Thus, according to the BSS problem formulation, the relation
between X(t) and S(t) is represented as

X tð Þ ¼ WS tð Þ ð1Þ
whereW is the unknown mixing matrix. The aim of BSS is to
find the mixing matrix W and recover the source signals S(t)
satisfying

S tð Þ ¼ W−1X tð Þ ð2Þ
where W−1 is the inverse of W, called demixing matrix. CCA
solves the BSS by decomposing the source signals to be max-
imally autocorrelated and mutually uncorrelated [13].
Moreover, the mixing matrix W can also be solved in the
optimization process.

Let Y(t) be a delayed version of the raw EEG matrix Y(t) =
X(t − 1). The X tð Þ and Y tð Þ can be obtained by centralizing
X(t) and Y(t), respectively. Now by considering the linear com-
bination in X tð Þ and Y tð Þ, called the variates, we will have the
following equations:

μ ¼ a1x1 þ a2x2 þ…þ alxl ¼ ATX

ν ¼ b1y1 þ b2y2 þ…þ blyl ¼ BTY
ð3Þ

In this case, CCA aims to find the weighting vectors
A = [a1, a2, … , al]

T and B = [b1, b2, … , bl]
T that will maxi-

mize the correlation ρ between the variates μ and ν [9]:

ρ ¼ ATCxyBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATCxxA
� �

BTCyyB
� �q ð4Þ

where Cxx and Cyy are the autocovariance of μ and ν, respec-
tively, and Cxy is the crosscovariance matrix of μ and ν. In the
fact, the maximum of ρ can be obtained by setting the deriv-
atives of (4) to zero with respect to A and B and then one can
obtain the following equations:

C−1
xx CxyC−1

yy Cyxa ¼ λ2A
C−1

yy CyxC−1
xx Cxyb ¼ λ2B

ð5Þ

where the canonical correlation coefficient λ can be deter-
mined as the square root of the eigenvalue, where A and B
are the corresponding eigenvectors. The first pairs of A and B
are the eigenvectors corresponding to the largest canonical
correlation coefficient λ. The next pairs of A and B are the
remaining eigenvectors in descending order of correlation co-
efficient [14], which are uncorrelated to previous pairs. In
practice, X(t) and Y(t) contain almost the same data, so are
the matrices of A and B. Thus, it only needs to solve (5) for
A. The generated A can be used to separate the observed sig-
nals into maximally autocorrelated and mutually uncorrelated
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source signals, which is used as the estimation ofW−1 in BSS.
Furthermore, the generated variate μ can be used in the esti-
mation of the source signals S(t).

On the other hand, kurtosis is a measure of signal peaks and it
has simple computation [15]. It has been proved that the kurtosis
values of EOG components are much higher than those of nor-
mal components. So, kurtosis values can be used to identify the
EOG components. Kurtosis values of each component are com-
puted by the next formula

ki ¼ m4−3m2
2 ð6Þ

where mn is the nth central moment: mn ¼ E si tð Þ−~si tð Þð Þf ng
(1 ≤ i ≤ l). By setting a threshold Kv, EOG components can be
identified automatically. The identified EOG components are
denoted by O(t) = [o1(t), o2(t), … , om(t)]

T, with m the number
of EOG components. Then, theO(t) is used to be the input signal
of EEMD method described below to extract the desired EEG
data, which is described in the “Introduction to EEMD” section.

Introduction to EEMD

EMD and Mode Mixing

EMD is a signal decompositionmethod, which can decompose a
time series signal into a set of IMFs, and also this decomposition
of the signal is data driven. So, the EMDmethod has advantages
of adaptivity and flexibility. More precisely, let oi(t) be an EOG
component from O(t) = [o1(t), o2(t), … , om(t)]

T (i = 1, 2…m).
Then, the EMD can decompose the oi(t) into a set of IMFs

denoted by cij tð Þ
� �n

j¼1
in the following equation:

oi tð Þ ¼ ∑
n

j¼1
cij tð Þ þ ri tð Þ ð7Þ

where ri(t) is the residual of data after n IMFs are extracted from
oi(t). In order to obtain some meaningful IMFs, the IMFs must
satisfy the following two conditions [16]:

(1) In the whole data series, the number of extrema and the
number of zero crossings must be equal or differ at most
by 1.

(2) The mean value of the envelopes defined by local max-
ima and minima must be 0 at all points.

The IMFs can be obtained by using the following shifting
procedure:

(1) Find all of the extrema of oi(t), including maxima and
minima.

(2) By using cubic spline interpolation, interpolate between
maxima to obtain an upper envelope qi(t) and minima to
obtain a lower envelop pi(t), respectively.

(3) Calculate the local mean, mi(t) = (qi(t) + pi(t))/2.
(4) Subtract mi(t) from oi(t) to construct oscillating signalh-

i(t) = oi(t) −mi(t).
(5) If hi(t) meets the above two conditions, ci(t) = hi(t) will

become an IMF, and then, we can replace oi(t) with the
residual ri(t) = oi(t) − ci(t) and repeat step (1); otherwise,
we replace oi(t) with hi(t) and repeat step (1).

Finally, a set of IMFs, denoted by Ci(t) = [ci1(t), ci2(t), … ,
cin(t)], where n denotes the number of IMFs, are decomposed
from the oi(t). However, if the given signal contains noise, it
will eventually lead to the uneven distribution of extrema and
thus will result in envelopes consisting of the noise envelope
and the real signal envelope. Consequently, one IMF includes
oscillations of dramatically disparate scales or a component of
similar scale residing in different IMFs [17], which is called
modemixing. In fact, EOG component oi(t) may contain EOG
signals and the signals uncorrelated to EOG (real EEG sig-
nals), so the modemixing problem is unavoidable. As a result,
the desired IMFs cannot be extracted and reserved accurately
in current analysis.

EEMD Method

In order to solve the mode mixing problem of EMD, an im-
proved method ensemble-EMD (EEMD) was proposed in [2].
Technically, the white noise is added to the given signal,
which will provide a relatively uniform reference scale and
distribution. Thus, the white noise will enhance the EEMD
to avoid the mode mixing and help to extract the true signals
in the given data [18]. The steps of EEMD method are de-
scribed as follows:

(1) Add a white noise series to the given signal.
(2) By using the EMD, we can decompose the given signal

with the added white noise into a set of IMFs.
(3) Repeat step (1) and step (2) several times, and the added

white noise must be different each time.
(4) Obtain a set of IMFs, which are obtained from the en-

semble mean of the corresponding IMFs achieved in step
(2).

Finally, the given signal oi(t) is decomposed into a set of
IMFs, denoted by CEEMD − i(t) = [cEEMD − i1(t), cEEMD − i2(t),
… , cEEMD − in(t)], where n is the number of IMFs.

CCA-EEMD Method

Based on previous analysis, we will propose a new CCA-
EEMD approach for BSS. The flow chart of the proposed
method is illustrated in Fig. 1. We will explain each step in
more details.
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(1) The original EEG data X(t) = [x1(t), x2(t), … , xl(t)]
T

from l channels is used as the input signal.
(2) CCA is used to separate X(t) into l uncorrelated compo-

nents, and they are denoted as S(t) = [s1(t), s2(t), … ,
sl(t)]

T. In this case, the mixing matrix W can also be
obtained.

(3) The kurtosis values of each component in S(t) are com-
puted. Then, a threshold Kv is setup. The components
with kurtosis values larger than Kv are identified as the
EOG components, and they are denoted as O(t) = [o1(t),
o2(t), … , om(t)]

T, wherem is the number of the identified
EOG components.

(4) The EEMD is applied to decompose these EOG compo-
nent oi(t)(1 ≤ i ≤m) into a set of IMFs, denoted asCEEMD

− i(t) = [cEEMD − i1(t), cEEMD − i2(t), … , cEEMD − in(t)].
Then, the correlation coefficient value between each IMF
cEEMD − ij(t)(1 ≤ j ≤ n) and its corresponding EOG com-
ponent oi(t) is computed, respectively. These IMFs with
the correlation coefficient values smaller than the thresh-
old Kr are identified as the IMFs unrelated to EOG,

denoted by Ceeg − i(t) = [ceeg − i1(t), ceeg − i2(t), … , ceeg −
ik(t)], where k is the number of the IMFs uncorrelated
to EOG. The identified IMFs Ceeg − i(t) are retained and
then are used to construct the new component oiclean(t).
In the end, all of the new components oiclean(t) form a

new vector, Oclean tð Þ ¼ o
0
1 tð Þ; o0

2 tð Þ;…; o
0
m tð Þ� �

T .
(5) Now, the clean EEG data denoted as X CCA‐EEMD tð Þ ¼

x
0
1 tð Þ; x0

2 tð Þ;…; x
0
l tð Þ

� �
T are reconstructed by the new

components Oclean(t) and other EEMD-unprocessed
components.

EEG Dataset Description

In this paper, the dataset for seven healthy subjects is from the
publicly available datasets of BCI Competition IV. For each
subject, the two classes of motor imagery (MI) were selected
from three classes of left hand, right hand, and foot imagery.
Each class of MI contains 100 trails. The EEG dataset was
sampled at 1000 Hz. More details are described in [19].
Fifteen channels most relevant to MI were chosen in this
study: F3, F1, FZ, F2, F4, C5, C3, C1, CZ, C2, C4, C6, P1,
PZ, and P2.

Results and Discussion

EEG Artifact Removal

Figure 2 shows a trail of the original EEG data randomly
selected from the described EEG dataset. Obviously, the
original EEG data contain a large number of EOG arti-
facts. Figure 3 shows 15 uncorrelated components sep-
arated from original EEG data by CCA. Then, the third

Several uncorrelated components from

original data decomposed by CCA

Original EEG data

Whether the component is the EOG component

checked by threshold of kurtosis value

Compute kurtosis value of

each component

Several IMFs from the identified EOG

component separated by EEMD

Compute correlation coefficient between

each IMF and EOG component

Whether the IMF is the unrelated IMF checked

by threshold of correlation coefficient

Reconstruct new component

without EOG artifacts

Reconstruct EEG data

clear EEG data

Yes

Yes

No

Fig. 1 Flow chart of CCA-EEMD
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Fig. 2 Original EEG data
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component was identified as the EOG component auto-
matically. Figure 4 shows the comparison of decompo-
sition results for the EOG component using the EEMD
and EMD. Figure 4a shows 12 IMFs decomposed by
the EEMD. Visibly, the EOG data mainly concentrates
in the first IMF. Figure 4b shows 14 IMFs decomposed
by the EMD. Apparently, the decomposition results by
using the EEMD are better than those by using the
EMD. Figure 5 shows the comparison of correlation
coefficient values using the EEMD and EMD. Each
correlation coefficient value using the EMD is larger
than the threshold value of 0.05. So, no IMFs can be
extracted. This arises from the mode mixing problem of
the EMD. In the contrary, the correlation coefficient
values of the first IMF are up to 1 using the EEMD.
In other words, the EOG data mainly concentrates in
the first IMF. The second and third IMFs were automat-
ically recognized as the IMFs uncorrelated with the
EOG. They were retained. Besides, the correlation coef-
ficient values of the second and third IMFs are less than
all those of the IMFs decomposed by the EMD, which
can further explain that the EEMD can solve the mode
mixing problem better. Figure 6 shows the clean EEG
data by using the proposed CCA-EEMD. In comparison
with the original EEG data, it is obvious that the EOG
artifacts are removed greatly in the clean EEG data. The
remaining trails from the dataset were also processed,
and similar results were obtained.

Quantification of Performance

In this section, the performance of the proposed CCA-EEMD
method is quantified in three ways. Meanwhile, two existing
methods, ICA [7] and CCA, were also used to make compar-
isons with the proposed method.

Root Mean Square Error

The root mean square error (RMSE) canmeasure howwell the
neural data are preserved in clean EEG data after removing
EOG artifacts. The RMSE is defined as

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
L

k¼1
EEGsource−k−EEGcorrected−kð Þ2

s
ð8Þ

where L is the number of electrodes, and EEGsource − k denotes
the clear EEG of the kth electrode, which does not contain
EOG ar t i f ac t s f rom the same subjec t . Bes ides ,
EEGcorrected − k denotes the reconstructed signals of the kth
electrode after EOG artifacts removal. The smaller RMSE
value is, the more neural data in EEG will be preserved. The
average values of seven subjects’ RMSE for CCA-EEMD,
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Fig. 3 Fifteen components separated by CCA
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(a) Twelve IMFs decomposed by EEMD
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(b) Fourteen IMFs decomposed by EMD 

Fig. 4 The comparison of decomposition results using EEMD and EMD.
a Twelve IMFs decomposed by EEMD. b Fourteen IMFs decomposed by
EMD
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CCA, and ICA methods are calculated and shown in Table 1.
One can see that the value of RMSE for CCA-EEMD is the
smallest, i.e., the EEG signals after removing EOG artifacts by
CCA-EEMD can preserve more neural data than other two
methods.

Signal Noise Ratio

The larger signal noise ratio (SNR) is, the better the effects of
EOG artifacts removal are. The SNR is defined as

SNR ¼ 10log

∑
L

k¼1
EEGcorrected−kð Þ2

∑
L

k¼1
EEGsource−k−EEGcorrected−kð Þ2

ð9Þ

The average values of seven subjects’ SNR for CCA-
EEMD, CCA, and ICA methods are shown in Table 2. The

value of SNR for CCA-EEMD is the largest, i.e., the EEG
signals processed by CCA-EEMD can remove more EOG
artifacts than other two methods.

Classification Accuracy

To some extent, the classification accuracy can reflect the
amount of residual information and the distortion degree of
the EEG. So, the classification accuracy is also often used as
one performance evaluation. As it is described in the “EEG
Dataset description” section, two classes of left and right hand
motor imagery tasks are classified in this study. In BCIs, com-
mon spatial patterns (CSP) method is the most widely used
spatial filtering technique and can extract discriminative fea-
tures for EEG-based BCI classification tasks. It essentially
finds spatial filters that maximize the variance for one class
and simultaneously minimize the variance for the other class.
More details of CSP are described in [20]. There are a great
many methods for classification, e.g., Sparse Bayesian
[21–23], support vector machine (SVM), probabilistic neural
network (PNN), and linear discriminant analysis (LDA)
[24–26]. Among them, LDA has simple computation and is
one of the most common classifiers. Here, CSP was used to
extract a six-dimensional feature vector of the clean EEG, in
which one spatial filter was used. Then, LDA was used to
classify the extracted features. In the case of 20 times fivefold
cross-validation, the average classification accuracies for three
methods are shown in Table 3. In addition, the standard error
is also added in Table 3. For each subject, it is obvious that the
classification accuracy using CCA-EEMD is higher than that
using CCA and ICA. The proposed CCA-EEMD has benefit
for the feature extraction and classification than two other
methods.

Discussion

In recent years, CCA and EMD have been increasingly ap-
plied to EEG analysis [27–30]. For

instance, CCA is applied to extract common basis [27].
Besides, an improved CCA method called multiset canonical

Table 1 Comparison of average RMSE for CCA-EEMD, CCA, and
ICA

Method CCA-EEMD CCA ICA

RMSE ± SE (μV) 37.71 ± 0.14 44.72 ± 0.13 49. 59 ± 0.16
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Fig. 6 Clean EEG data
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Table 2 Comparison of average SNR for CCA-EEMD, CCA, and ICA

Method CCA-EEMD CCA ICA

SNR ± SE(dB) 3.59 ± 0.24 −6.53 ± 0.18 −8.43 ± 0.26
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correlation analysis (MsetCCA) is proposed to improve fre-
quency recognition [28]. By using the EMD, the EEG signals
of epilepsy patients are decomposed into several IMFs. The
nonlinear features of IMFs are used for computer-aided diag-
nose of normal, inter-ictal, and ictal states in [29]. Moreover,
multivariate extensions of empirical mode decomposition
(MEMD) are employed with classification and its noise-
assisted mode of operation (NA-MEMD) can provide a highly
localized time-frequency representation [30].

In this study, a novel method called CCA-EEMD is pro-
posed and applied to remove EOG artifacts automatically
while retaining more neural data. Plenty of studies have
shown that the EOG artifacts overlapped with the MI-based
EEG signals in some frequency ranges. So, the EOG compo-
nent may contain the useful information of MI tasks. In this
paper, the EOG component can be identified automatically by
its kurtosis value. The identified EOG component is not re-
moved directly due to a fact that it contains useful information.
Next, the desired information can be extracted and retained
from the EOG component by EEMD. The proposed method
can retain useful signals to a greater extent. According to three
performance indexes, it is further proved that the proposed
method is superior to other two common methods.

However, the size of the dataset used in this paper is rela-
tively small. In future, large datasets will be created and put
into the research to validate the proposed CCA-EEMD. In
addition, the reference signal selected in CCA has a great
influence on the results of decomposition [28].

Conclusion

In this paper, a novel method, called CCA-EEMD, is devel-
oped for EOG artifacts removal. The CCA method is one of
the BSSmethods, which has lower computational complexity.
In the meantime, the EEMD method can extract the desired

IMFs accurately, while keeping the integrity of EEG data to
the maximum extent. Three ways are used to evaluate the
performance of the proposed CCA-EEMD. From the experi-
mental results, and after comparisons with CCA and ICA
methods, one can see that the proposed method can not only
remove EOG artifacts better but also retain more neural data
of EEG. Thus, the proposed CCA-EEMD has great signifi-
cance to the improvement of BCIs.
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