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Abstract Extreme learning machine (ELM) is proposed for
solving a single-layer feed-forward network (SLFN) with fast
learning speed and has been confirmed to be effective and
efficient for pattern classification and regression in different
fields. ELM originally focuses on the supervised, semi-super-
vised, and unsupervised learning problems, but just in the
single domain. To our best knowledge, ELM with cross-
domain learning capability in subspace learning has not been
exploited very well. Inspired by a cognitive-based extreme
learning machine technique (Cognit Comput. 6:376–390, 1;
Cognit Comput. 7:263–278, 2.), this paper proposes a unified
subspace transfer framework called cross-domain extreme
learning machine (CdELM), which aims at learning a com-
mon (shared) subspace across domains. Three merits of the
proposed CdELM are included: (1) A cross-domain subspace
shared by source and target domains is achieved based on
domain adaptation; (2) ELM is well exploited in the cross-
domain shared subspace learning framework, and a new per-
spective is brought for ELM theory in heterogeneous data
analysis; (3) the proposed method is a subspace learning
framework and can be combined with different classifiers in

recognition phase, such as ELM, SVM, nearest neighbor, etc.
Experiments on our electronic nose olfaction datasets demon-
strate that the proposed CdELM method significantly outper-
forms other compared methods.

Keywords Extreme learningmachine (ELM) . Subspace
learning . Domain adaptation . Electronic nose

Introduction

Although many cognitive computational models (e.g. neural
networks and support vector machines, etc.) have been pro-
posed to solve classification problem, those methods encoun-
ter lots of challenges, such as poor computational scalability,
trivial human intervention, etc. Recently, extreme learning
machines (ELM) [1–5], as a cognitive-based technique, are
proposed for Bgeneralized^ Single-Layer Feed-forward
Networks (SLFNs) [1, 2, 4, 6, 7]. ELM can analytically deter-
mine the output layer usingMoor-Penrose generalized inverse
by adopting the square loss of prediction error. Huang et al. [4,
6, 8, 9] have rigorously proved that, in theory, ELM can ap-
proximate any continuous functions and also proved the clas-
sification capability of ELM [4]. Moreover, different from
traditional learning algorithms [10], ELM tends to achieve
not only the smallest training error but also the smallest norm
of output weights for better generalization performance [3, 7].
Its variants [11–19] also focus on the regression, classifica-
tion, and pattern recognition applications.

For the past years, there are a number of improved versions
of ELM. Aweighted ELMwas proposed for binary/multiclass
classification tasks with both balanced and imbalanced data
distribution [20]. Bai et al. [21] proposed a sparse ELM for
reducing storage space and testing time. Huang et al. [22]
proposed a semi-supervised ELM for classification, in which
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a manifold regularization with graph Laplacian was imposed
as constraint, and an unsupervised ELMwas also explored for
clustering. Liu et al. [23–25] proposed many methods to ad-
dress the issue of tactile object recognition. Recently, Liu et al.
[26] also proposed an extreme kernel sparse learning for tac-
tile object recognition, which combines the ELM and kernel
dictionary learning.

The data distribution obtained in different stages with dif-
ferent sampling conditions would be different, which is iden-
tified as cross-domain problem. Traditional ELM assumes that
the data distribution between training and testing data should
be similar and therefore cannot address this issue. To handle
this problem, domain adaptation has been proposed for het-
erogeneous data (i.e. cross-domain problem), by leveraging a
few labeled instances from another domain with similar se-
mantic [27, 28]. Inspired by domain adaptation, Zhang et al.
[29] proposed a domain adaption ELM (DAELM) for classi-
fication across tasks (source domain vs. target domain), which
is the first paper to study the cross-domain learning mecha-
nism in ELM. However, DAELM was proposed as a cross-
domain classifier, and how to learn a shared (common) sub-
space with source and target domains, to our knowledge, has
never been studied in ELM. Therefore, in this paper, we ex-
tend ELMs to handle cross-domain problems by transfer
learning and subspace learning, and explore its capability in
multi-domain application for ELMs. Inspired by DAELM, we
propose a cross-domain extreme learning machine (CdELM)
for common subspace learning, the basic idea of the proposed
CdELM method is illustrated in Fig. 1, in which we aim at
learning a shared subspace β. Notably, the proposed CdELM
is different from DAELM that we would like to learn a shared
subspace for source and target domains, instead of a shared
classifier.

The remainder of this is as follows. Section 2 contains a
brief review of ELM. In Section 3, the proposed CdELM
method with detailed model formulation and optimization al-
gorithm is presented. The experiments and results have been
discussed in Section 4. Finally, Section 5 concludes this paper.

Related Work

Review of ELM

Briefly, the principle of ELM is described as follows. Given
the training data X = [x1, x2, … , xN] ∈ℜN × n, where n is the
dimensionality and N is the number of training samples, and
T = [t1, t2, … , tN] ∈ℜN ×m denotes the labels with respect to
the dataX, wherem is the number of classes. The output of the
hidden layer is denoted as ℋ(xi) ∈ℜ1 × L, where L is the
number of hidden nodes and ℋ(⋅) is the activation function.
The output weights between the hidden layer and the output
layer being learned is denoted as β ∈ℜL ×m. The regularized

ELM aims at minimizing the training error and the norm of the
output weights for better generalization performance, formu-
lated as follows:

min
β

ℒ ¼ 1

2
βk k2 þ C

2
∑
N

i¼1
ξik k2 s:t:ℋ xið Þβ ¼ ti−ξi; i

¼ 1;…;N ð1Þ

where ξi denotes the prediction error with respect to the ith
training pattern xi and C is a penalty constant on the training
errors.

By substituting the constraint term in (1) into the objective
function, an equivalent unconstrained optimization problem
can be obtained as follows:

min
β

ℒ ¼ 1

2
βk k2 þ C

2
∑
N

i¼1
T−Hβk k2 ð2Þ

where H = [ℋ(x1);ℋ(x2); … ;ℋ(xN)] ∈ℜN × L.
The minimization problem (2) is a regularized least square

problem. By setting the gradient of ℒ with respect to β to
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Fig. 1 Schematic diagram of the proposed CdELM method; after a
subspace projection β, the source domain and target domain of different
space distribution lie in a latent subspace with good distribution
consistency (the centers of both domains become very close and drift is
removed). Formally, the upper coordinate system denotes the raw data
points of source domain and target domain in three dimensions. We use
the word Bcenter^ to represent the mean of each domain data. From the
upper figure, we can see that the difference between the mean of source
domain and the mean of target domain is large. After a subspace
projection β in the below figure, we can see that the values of d2
become smaller, which demonstrate that the distribution difference
becomes small, and both domains of different space distribution lie in a
latent common subspace with good distribution consistency
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zero, we can get the closed-form solution of β. There are two
cases while solving β. If N is larger than L, the gradient equa-
tion is over-determined, and the closed-form solution can be
obtained as

β* ¼ HTT þ I
C

� �−1

HTT ð3Þ

where I denotes the identity matrix of size L.
Second, if the numberN of training samples is smaller than

L, an under-determined least square problem would be han-
dled. In this case, the solution of (1) can be obtained as

β* ¼ HT HHT þ I
C

� �−1

T ð4Þ

where I denotes the identity matrix of size N.
Therefore, for classification problem, the solution of β can

be computed by using Eq. (3) or Eq. (4). We direct the inter-
ested readers to [3] for more details on ELM theory and the
algorithms.

Subspace Learning

Subspace learning aims at learning a low-dimensional sub-
space. There are several common methods, such as principal
component analysis (PCA) [30], linear discriminant analysis
(LDA) [31], and manifold learning-based locality preserving
projections (LPP) [32]. All of these methods suppose that the
data distribution is consistent, namely, that they are only ap-
plicable to single domain. However, this assumption is often
violated in many real-world applications. So, for heteroge-
neous data, we proposed a new cross-domain learning method
to learn a shared subspace, which is called cross-domain ex-
treme learning machine.

The Proposed CdELM Method

Notations

In this paper, source domain and target domain are defined by
subscript S and T, respectively. The training data of source and
target domain is denoted as XS ¼ x1S ;…; xNS

S

� �
∈ℜD�NS and

XT ¼ x1T ;…; xNT
T

� �
∈ℜD�NT , respectively, where D is the

number of dimensions, NS and NT are the number of training
samples in both domains. Let β ∈ℜL × d represent the basis
transformation that maps the ELM space of source and target
data to some subspace with dimension of d. ║∙║F and ║∙║2

denote the Frobenius norm and l2-norm. Tr(∙) denotes the trace
operator and (∙)T denotes the transpose operator. Throughout
this paper, matrix is written in capital bold face, vector is
presented in lower bold face, and variable is in italics.

The Proposed Method

As illustrated in Fig. 1, the distribution between the source
domain and target domain is different. Therefore, the perfor-
mance of the learned classifier by the source domain will be
dramatically degraded. Inspired by subspace learning and
ELM, the main idea of the proposed CdELM is to learn a
shared subspace β in ELM space rather than a classifier β.
Therefore, the source domain and target domain share the
similar feature distribution in the latent projection β.

Firstly, mapping the source data and target data into the

ELM space, and then we could obtain HS ¼ h1S ;…; hNS
S

� �
∈

ℜL�NS and HT ¼ h1T ;…; hNT
T

� �
∈ℜL�NT , where hiS ¼ g

WTxiS þ bT
� �

and hj
T ¼ g WTxjT þ bT

� �
are the output

(column) vector of the hidden layer with respect to the input

xiS and x jT , respectively, i = 1,2,...,NS, j = 1,2,...,NT, g(∙) is a
activation function, L is the number of randomly generated
hidden nodes, W ∈ℜD × L and b ∈ℜ1 × L are randomly gener-
ated weights.

In the learned subspace β, we expect that not only
the distribution between source domain and target do-
main should be consistent, and the discrimination can
also be improved for recognition. Inspired by linear dis-
criminant analysis (LDA), we aim at minimizing the

intra-class scatter matrix SSW and simultaneously maxi-

mizing the inter-class scatter matrix SSB of the source
data, such that the separability can be promised in the
learned linear subspace. Therefore, for source domain, it
is rational to maximize the following term

max
β

Tr βTSSBβ
� �

Tr βTSSWβ
� � ð5Þ

where the inter-class scatter matrix and intra-class scatter ma-

trix can be computed as SSB ¼ ∑
C

c¼1
μc
S−μS

� �
μc
S−μS

� �
T and SSW

¼ ∑
C

c¼1
∑

k¼1;hkS∈Gc

nc

hkS−μc
S

� �
hkS−μc

S

� �
T , where μS represents the

center of source data, μc
S represents the center of class

c of source data in the raw space, C represents the
number of categories, Gc represents a collection belong-
ing to class c, and nc represents the number of class c.

For learning such a subspace β that maximizes the formu-
lation (5), we should also ensure that the projection does not
distort the data from target domain, such that much more
available information can be kept in the new subspace repre-
sentation. Therefore, it is rational to maximize the following
term:

max
β

Tr βTHT
� �

βTHT
� �T� 	

¼ max
β

Tr βTHTHT
Tβ

� � ð6Þ
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Naturally, after projected by β, the feature distributions

between the mapped source domain HS ¼ h1S ;…; hNS
S

� �
∈

ℜL�NS and target domain HT ¼ h1T ;…; hNT
T

� �
∈ℜL�NT can

become similar. Therefore, it is rational to have an idea
that the mean distribution discrepancy (MDD) between HS

and HT can be minimized. That is, the distance between
the centers of the two domains should be minimized.
Therefore, the MDD minimization is formulated as

min
1

NS
∑
i¼1

NS

βThiS−
1

NT
∑
j¼1

NT

βTh j
T













2

F

ð7Þ

With the merits of ELM, we expect that the norm of β is
minimized,

min
β

βk k2F ð8Þ

After a detailed description of the four specific parts
in the proposed CdELM model, by incorporating the
Eq. (5) to Eq. (8) together, a complete CdELM model
is formulated as follows

min
β

Tr βTSSWβ
� �þ λ0 βk k2F þ λ1

1
NS

∑
i¼1

NS

βThiS− 1
NT

∑
j¼1

NT

βTh j
T













2

F

Tr βTSSBβ
� �þ λ2Tr βTHTHT

Tβ
� � ð9Þ

where λ0, λ1, and λ2 denote the trade-off parameters.

Let μS ¼ 1
NS

∑
i¼1

NS

hiS and μT ¼ 1
NT

∑
j¼1

NT

h j
T be the centers of

source domain and target domain in ELM space; then the

minimization problem in Eq.(9) can be finally written as

min
β

Tr βTSSWβ
� �þ λ0 βk k2F þ λ1 βT 1

NS
∑
i¼1

NS

hiS

 !
−βT 1

NT
∑
j¼1

NT

h j
T

 !











2

F

Tr βTSSBβ
� �þ λ2Tr βTHTHT

Tβ
� �

¼ min
β

Tr βTSSWβ
� �þ λ0 βk k2F þ λ1 βTμS−β

TμT



 

2
F

Tr βTSSBβ
� �þ λ2Tr βTHTHT

Tβ
� �

¼ min
β

Tr βTSSWβ
� �þ λ0Tr βTβ

� �þ λ1Tr βTμS−β
TμT

� �
βTμS−β

TμT

� �T� 	
Tr βTSSBβ þ λ2β

THTHT
Tβ

� �

¼ min
β

Tr βTSSWβ þ λ0β
Tβ þ λ1 βTμS−β

TμT

� �
βTμS−β

TμT

� �T� 	
Tr βTSSBβ þ λ2β

THTHT
Tβ

� �

¼ min
β

Tr βT SSW þ λ0I þ λ1 μS−μTð Þ μS−μTð ÞT
� 	

β
� 	

Tr
�
βT SSB þ λ2HTHT

T

� �
β

ð10Þ

where I is an identity matrix of size L.

Model Optimization

In the minimization problem Eq. (10), there are many
possible solutions of β (i.e. non-unique solutions). To
guarantee the unique property of solution, we impose
an equality constraint on the optimization problem, and
then Eq. (10) can be written as

min
β

Tr βT SSW þ λ0I þ λ1 μS−μTð Þ μS−μTð ÞT
� 	

β
� 	

s:t:Tr βT SSB þ λ2HTHT
T

� �
β

� � ¼ η

ð11Þ

Table 1 Data description of the
E-nose data E-nose

System
Formaldehyde Benzene Toluene Carbon

monoxide
Nitrogen
dioxide

Ammonia Total

Master 126 72 66 58 38 60 420

Slave 1 108 108 106 98 107 81 608

Slave 2 108 108 94 95 108 84 576
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Fig. 2 The PCA scatter points of the master, slave 1, and slave 2 data, respectively
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where η is a positive constant.
To solve Eq. (11), the Lagrange multiplier function is writ-

ten as

ℒ β; ρð Þ ¼ βT SSW þ λ0I þ λ1 μS−μTð Þ μS−μTð ÞT
� 	

β−ρ βT SSB þ λ2HTHT
T

� �
β−η

� �
ð12Þ

where ρ denotes the Lagrange multiplier coefficient.
By setting the partial derivation ofℒ(β, ρ) with respect to

β to be 0, we have

∂ℒ β; ρð Þ
∂β

¼ 0→ SSB þ λ2HTHT
T

� �−1
SSW þ λ0I þ λ1 μS−μTð Þ μS−μTð ÞT
� 	

β ¼ ρβ

ð13Þ

From Eq. (13), we can observe that β can be obtained by
solving the following eigenvalue decomposition problem,

Aβ ¼ ρβ ð14Þ

w h e r e A ¼ SSB þ λ2HTHT
T

� �−1
SSW þ λ0I þ λ1 μS−μTð Þ μS−μTð Þ�

T Þ and ρ denotes the
eigenvalues.

From (14), it is clear that β denotes the eigenvectors. Due to
that the model (11) is a minimization problem; therefore, the
optimal subspace denotes the eigenvectors with respect to the
first d smallest eigenvalues [ρ1,..., ρd], represented by

β* ¼ β1;β2;…;βd½ � ð15Þ

For easy implementation, the proposed algorithm is sum-
marized in Algorithm 1.
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Fig. 3 The scatter points by
using CdELM from master →
slave 1 (black dot) and master →
slave 2 (red dot)

Table 2 Recognition accuracy (%) with sensor calibration under setting 1

Cross-domain
tasks

SVM ELM
(sigmoid)

ELM
(rbf)

KernelELM PCA LDA LPP NPE NCA MDS LFDA SGF CdELM
(sigmoid)

CdELM
(rbf)

Master → slave 1 51.97 55 54.59 53.63 55.05 55.56 53.95 53.62 41.28 51.15 61.84 55.10 64.90 66.39

Master → slave 2 60.59 59.83 61.16 61.93 60.88 61.09 57.81 54.69 33.85 58.51 61.63 57.49 68.11 68.45

The bold entries indicate the best results
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Experiments

Data Description

We validate the proposed method on our own datasets. This
dataset includes three subsets: master data (collected 5 years
ago), slave 1 data (collected now), and slave 2 data (collected
now). In data acquisition, the master and two slavery E-nose
systems were developed in [33]. Each system consists of four
TGS series sensors and an extra temperature and humidity
module. Therefore, the dimension of each sample is 6. This
dataset includes six kinds of gaseous contaminants (i.e. six
classes), such as formaldehyde, benzene, toluene, carbon

monoxide, nitrogen dioxide, and ammonia. The detailed de-
scription of the dataset is shown in Table 1. For visually ob-
serving the heterogeneous E-nose data, the PCA scatter points
on the master data, slave 1 data and slave 2 data, are shown in
Fig. 2, in which we can see that the points from different
classes are overlapped.

Experimental Settings

Themaster data collected 5 years ago is used as source domain
data (no drift). The slave 1 and slave 2 data collected now are
used as target domain data (with drift). Then, we conduct the
experiments with two settings as follows.

Setting 1. During CdELM training and classifier learning,
the labels of the target domain data are unavail-
able, and only the source labels are used. The
classification accuracy on slave 1 data (or slave
2 data) is reported.

Setting 2. The only difference between Setting 1 and Setting
2 is that, in classifier training, partial labeled data
of target domain can be used. Specifically, for each
class in the target domain, k labeled samples can be
used for classifier learning, where the values k = 1,
3, 5, 7, and 9 are discussed in this paper.

Compared Methods

To show the effectiveness of the proposed method, we have
chosen 12 machine learning methods. First, three baseline

Table 3 Recognition accuracy (%) with sensor calibration under
setting 2 (task 1)

Methods nt Average

1 3 5 7 9

SVM 59.14 63.22 62.80 70.49 70.76 65.28

ELM(sigmoid) 59.05 65.10 69.52 71.20 72.18 67.41

ELM(rbf) 62.46 65.83 67.61 69.36 69.87 67.03

PCA 63.92 67.32 70.02 73.36 73.83 69.69

LDA 63.84 67.83 70.33 71.48 73.45 69.39

LPP 65.46 69.83 71.45 72.08 71.48 70.06

NPE 64.78 64.07 63.49 71.55 71.84 67.15

NCA 52.49 50.85 53.81 50.00 63.00 54.03

MDS 61.13 64.75 65.57 70.32 72.92 66.94

LFDA 62.13 67.12 71.63 76.86 74.91 70.53

SGF 66.61 66.95 67.13 70.14 72.74 68.71

CdELM(sigmoid) 67.88 71.53 73.50 75.34 76.36 72.92

CdELM(rbf) 68.34 73.32 74.42 75.07 77.35 73.70

The bold entries indicate the best results

Table 4 Recognition accuracy (%) with sensor calibration under
setting 2 (task 2)

Methods nt Average

1 3 5 7 9

SVM 69.65 72.76 73.63 74.16 74.90 73.02

ELM(sigmoid) 64.18 67.35 67.91 68.09 69.29 67.36

ELM(rbf) 65.35 68.41 68.63 68.71 69.60 68.14

PCA 65.84 69.27 70.18 72.23 72.15 69.93

LDA 65.23 68.76 69.85 71.74 73.07 69.73

LPP 69.82 74.19 73.63 72.85 76.82 73.46

NPE 71.05 71.15 71.43 72.28 74.14 72.01

NCA 56.32 47.49 52.01 55.62 58.03 53.90

MDS 72.11 73.48 73.81 75.28 75.29 74.00

LFDA 65.26 70.61 73.08 75.47 77.01 72.29

SGF 68.07 71.51 73.08 73.03 73.56 71.85

CdELM(sigmoid) 74.47 75.35 75.78 77.56 78.09 76.25

CdELM(rbf) 74.13 76.06 77.69 78.95 79.18 77.21

The bold entries indicate the best results
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methods such as support vector machine (SVM), principal com-
ponent analysis (PCA), and linear discriminant analysis (LDA)
are compared. Second, five semi-supervised learning methods
based manifold learning, including locality preservation projec-
tion (LPP) [32], multidimensional scaling (MDS) [34],

neighborhood component analysis (NCA) [35], neighborhood
preserving embedding (NPE) [36], and local fisher discriminant
analysis (LFDA) [37] are explored and compared. Finally, the
popular subspace transfer learning method, sampling geodesic
flow (SGF) [38], is also explored and compared.
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-6 -5 -4 -3 -2 -1 0
30

40

50

60

70

log
10

(
0
)

)
%(

y
c

ar
u

c
c

A

log
10

(
1
)=-6

-6 -4 -2 0 2 4 6
30

40

50

60

70

log
10

(
0
)

A
c
c
u

ra
c
y

(%
)

log
10

(
1
)=-4

-6 -4 -2 0 2 4 6
30

40

50

60

70

log
10

(
0
)

A
c
c
u

ra
c
y

(%
)

log
10

(
1
)=-2

-6 -4 -2 0 2 4 6
30

40

50

60

70

log
10

(
0
)

A
c
c
u

ra
c
y

(%
)

log
10

(
1
)=0

-6 -4 -2 0 2 4 6
30

40

50

60

70

log
10

(
0
)

A
c
c
u

ra
c
y

(%
)

log
10

(
1
)=2

-6 -4 -2 0 2 4 6
30

40

50

60

70

log
10

(
0
)

A
c
c
u

ra
c
y

(%
)

log
10

(
1
)=4

-6 -4 -2 0 2 4 6
30

40

50

60

70

log
10

(
0
)

A
c
c
u

ra
c
y

(%
)

log
10

(
1
)=6

Slave1

Slave2

Fig. 5 The performance curves with respect to λ0 under different values of λ1
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Results

In this section, the experimental results on each setting are
reported to validate the performance of the proposed
CdELMmethod. Under each setting, two tasks includingmas-
ter → slave 1 and master → slave 2 are conducted.

Under setting 1, we first observe the qualitative result by
implementing the proposed CdELM method on master →
slave 1 and master → slave 2, respectively. The result is
shown in Fig. 3, in which the separability among data points
from different classes (represented as different symbols) is
much improved in the learned common subspace compared
to Fig. 2. Further, the odor classification accuracy of the target
domain data has been presented in Table 2. From the results,
we can observe that the proposed CdELM achieves the
highest accuracies on two tasks. While the activation function
in hidden layer is Gaussian (RBF function), the best perfor-
mance of the CdELM is achieved. This demonstrates that the
proposed CdELM has a good performance for cross-domain
pattern recognition scenarios.

Under the setting 2, k-labeled data for each class in the
target domain is leveraged for classifier learning. The recog-
nition accuracy of the first task (i.e. master → slave 1) is
reported in Table 3 and the second task (i.e. master → slave
2) is reported in Table 4. Notably, all the compared methods
follow the same setting conditions. From Tables 3 and 4, we
can observe that the proposed CdELM still outperforms other
methods. Therefore, we confirm that the proposed method is
effective in handling heterogeneous measurement data.

Parameter Sensitivity Analysis

In the proposed CdELMmodel, there are three parameters: λ0,
λ1, and d. We focus on observing the performance variations
in tuning λ0 and λ1 according to 10t, where
t ¼ −6;−4;−2; 0; 2; 4; 6f g. To show the performance with

respect to each parameter, one is tuned by freezing the other
one. The parameter λ1 tuning results by fixing λ0 are shown in
Fig. 4, and the parameter λ0 tuning results by fixing λ1 are
shown in Fig. 5, fromwhich the best parameters λ0 and λ1 can
be witnessed. Further, we tune the subspace dimensionality d
from the parameter set d = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and the
result is shown in Fig. 6 by fixing other model parameters.

Conclusion

In this paper, we present a cross-domain common subspace
learning approach for heterogeneous data classification prob-
lem, which is called cross-domain extreme learning machine
(CdELM). The method is motivated by subspace learning,
domain adaptation, and cognitive-based extreme learning ma-
chine, such that the advantage of ELM, such as good gener-
alization, is inherited. Since traditional ELM supposes that the
training data and testing data should be with similar distribu-
tion, once the assumption is violated in multi-domain scenar-
ios, the ELM may not be adapted. The aim of this paper is to
bring some new perspective for ELM in multi-domain sub-
space learning scenarios. Extensive experiments demonstrate
that the proposed method outperforms other compared
methods.
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