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Abstract Photonic reservoir computing has evolved into a
viable contender for the next generation of analog comput-
ing platforms as industry looks beyond standard transistor-
based computing architectures. Integrated photonic reser-
voir computing, particularly on the silicon-on-insulator
platform, presents a CMOS-compatible, wide bandwidth,
parallel platform for implementation of optical reservoirs.
A number of demonstrations of the applicability of this
platform for processing optical telecommunication signals
have been made in the recent past. In this work, we take
it a stage further by performing an architectural search for
designs that yield the best performance while maintaining
power efficiency. We present numerical simulations for an
optical circuit model of a 16-node integrated photonic reser-
voir with the input signal injected in combinations of 2, 4,
and 8 nodes, or into all 16 nodes. The reservoir is com-
posed of a network of passive photonic integrated circuit
components with the required nonlinearity introduced at the
readout point with a photodetector. The resulting error per-
formance on the temporal XOR task for these multiple input
cases is compared with that of the typical case of input
to a single node. We additionally introduce for the first
time in our simulations a realistic model of a photodetector.
Based on this, we carry out a full power-level exploration
for each of the above input strategies. Multiple-input reser-
voirs achieve better performance and power efficiency than
single-input reservoirs. For the same input power level,
multiple-input reservoirs yield lower error rates. The best
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multiple-input reservoir designs can achieve the error rates
of single-input ones with at least two orders of magni-
tude less total input power. These results can be generally
attributed to the increase in richness of the reservoir dynam-
ics and the fact that signals stay longer within the reservoir.
If we account for all loss and noise contributions, the mini-
mum input power for error-free performance for the optimal
design is found to be in the ≈1 mW range.
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Introduction

The persistent increase in demand for systems that can
process the massive amounts of data available today has
strained the currently employed transistor-based von Neu-
mann architectures. Simultaneously, the growing demand
for high-throughput, high-fidelity telecommunication sys-
tems has generated significant implementation hurdles for
the associated signal processing systems.

To address the compounding challenges for these compu-
tation and communication systems, a major design revolu-
tion is underway for the next generations of these systems in
the IT research world. The frantic search for potential solu-
tions has initiated a revisit to analog computation platforms
but with the aim of combining them with the state-of-the-
art in large-scale integration technology. These platforms
exploit the inherent dynamics of certain physical systems
for processing and/or computing. Of these, prominently
under consideration are biologically inspired techniques
and particularly brain-inspired computing approaches that
employ artificial structures that mimic the brain’s neural
computational semantics.
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Reservoir computing (RC) is a brain-inspired comput-
ing approach that initially emerged as a way around the
intricacies associated with correctly training recurrent neu-
ral networks [1–3]. Classical software RC involves setting
up a large randomly initialized nonlinear dynamical system
(the reservoir)—usually an artificial neural network—that
is tuned into a specific dynamical regime to allow for the
following three conditions: separability of the inputs, gener-
ation of similar outputs for similar inputs, and some form of
finite memory of the previous inputs. Under these circum-
stances, the states of the reservoir can be linearly combined,
following task-imposed optimization criteria, to extract the
desired outputs for the specified inputs.

Beyond the initial software implementations, RC has
evolved into a way to enable computing with physical non-
linear dynamical systems. Examples of the concept applied
to mechanical systems, memristive systems, atomic switch
networks, boolean logic elements, and photonic systems can
be found in [4–8]. Photonic RC particularly presents a num-
ber of benefits compared to, e.g., electronics, as it offers a
large bandwidth and is inherently massively parallel.

To date, experimental demonstrations of photonic reser-
voirs routinely achieve state-of-the-art performance on vari-
ous information processing tasks. Implementations based on
a single nonlinear node with a delayed feedback architec-
ture have proven that photonic RC is competitive for analog
information processing [9–17]. Moreover, integrated pho-
tonic reservoirs can push computation speeds even higher
for digital information processing. The performance of inte-
grated photonic reservoirs has been studied numerically for
networks of ring resonators [18–22], networks of SOAs
[7], and experimentally with networks of delay lines and
splitters in [23]. Integrated photonic reservoirs are par-
ticularly compelling, especially when implemented in the
CMOS platform as they can take advantage of its associated
benefits for technology reuse and mass production.

A recent development in the design of RC systems is
the realization that for certain tasks that are not strongly
nonlinear, it is possible to achieve state-of-the-art perfor-
mance using a completely passive linear network, i.e., one
without amplification or nonlinear elements. The required
nonlinearity is introduced at the readout point, typically
with a photodetector [23]. The work discussed in this paper
is also based on this architecture. Aside from the inte-
grated implementation introduced in [23], the passive archi-
tecture has been adapted to the single node with delayed
feedback architecture in form of a coherently driven passive
cavity [9].

With regard to general task suitability, photonic RC is
particularly beneficial when the signals to be processed are
already in the optical domain. This is for example true for
tasks oriented towards fiber-optic-based telecommunication
systems as is the case for bit-sequence processing tasks such

as logical temporal XOR, AND, OR; header recognition;
and equalization. For these scenarios, the reservoir manip-
ulates the light signals directly without the need for any
extra electrical-optical and/or optical-electrical conversions.
This setup could lead to processing speedups and overall
reduction in system complexity. Furthermore, without the
extra EO conversions, as is the case with passive reservoirs,
there is a potential power consumption advantage since the
computation itself does not require external energy.

Aside from performance characterizations, full adoption
of an RC scheme for a particular application requires a study
of the power efficiency benefits of such a deployment. The
most complete energy efficiency calculation for an optical
reservoir can be found in [10] for a fully nonlinear reser-
voir based on a laser with feedback. The authors reported
a power consumption of 10 mJ per bit for the speech pro-
cessing task. In [9], a minimum input power of 0.57 mW at
the input is reported for the coherently driven passive cav-
ity reservoir with a fiber loop. Our analysis shows that the
total input power requirements of the optimal multiple-input
reservoir is also the ≈1 mW regime. However, a full deter-
mination of the power requirements is strictly tied to the
implementation substrate, and there is no straightforward
way to make a one-to-one comparison between the different
realizations.

While the majority of our recent work on passive inte-
grated photonic RC focused on single-input reservoirs, our
previous paper on passive integrated photonics [23] already
introduced the idea that it may be beneficial to inject mul-
tiple copies of the input signal into the reservoir. However,
only a very specific case of presenting the input to all
nodes with different random phases is discussed. The work
presented here is a detailed investigation of the impact of
the choice of the number and configuration of the input
nodes on the robustness of the reservoir. Equally important,
we introduce in our numerical simulations a photodetector
model at each readout node that takes into account band-
width limitations, as well as optical and electrical noise
properties encountered in real-world detectors. With this
model in place, we are able to examine for the first time
the impact of the input power level on the performance and
make conclusions about the energy efficiency of various
reservoir designs.

Methods

Passive Integrated Photonic Reservoir Computing

The integrated photonic reservoirs typically studied in the
past are limited to planar architectures in a bid to minimize
crossings that manifest as a source of signal cross-talk and
extra losses. This constrains the design space from which
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reservoir configurations can be chosen. The swirl reservoir
architecture, as is used in this work, was introduced in [18]
as a way to satisfy planarity constraints while allowing for a
reasonable mixing of the input signals. A 16-node photonic
swirl reservoir is shown in Fig. 1.

Passive integrated photonic reservoir computing is a spe-
cial form of photonic reservoir computing that consists of a
linear network of passive photonic integrated circuit (PIC)
components with the required nonlinearity typically pro-
vided by the readout system (an optical nonlinearity is also
an alternative). In current passive photonic RC implemen-
tations, the photodetector, required to convert the complex-
valued reservoir states to real-valued intensities, suitably
serves this purpose [23].

Reservoir Model

The reservoir state update equation is given as:

x[k + 1] = W resx[k] + win(u[k + 1] + ubias) (1)

where u is the input to the reservoir and ubias is a fixed
scalar bias applied to the inputs of the reservoir. For an
N-node reservoir, W res is an N × N matrix representing
the interconnections between reservoir components taking
into account splitting ratios and losses, with phases drawn
from a random uniform distribution on [−π, π ], U(−π, π).
win is an N-dimensional column vector whose elements are
nonzero for each active input node. The input weights are
similarly chosen from U(−π, π).

All our previous work on integrated photonic reservoir
computing has assumed perfect reconstruction of the states
at the readout nodes. The absolute square value of the

Fig. 1 A 16-node swirl reservoir schematic. From here on, nodes will
be referenced following the labels displayed here. In this particular
implementation, the nodes are the locations at which states are appro-
priately combined and split. They also serve as input and detection
points

reservoir states (electric field values) was used as the input
for the machine learning model. In this work, we introduce
a detector model that takes into account the responsivity,
as well as various noise contributions and the response-
time limitation encountered in real photodetectors. The total
noise σ 2

n of the photodetector has shot noise and thermal
noise contributions as follows:

σ 2
n = 2qB(〈I 〉 + 〈Id〉) + 4kBT B/RL (2)

where B is the bandwidth of the detector, 〈I 〉 is the pho-
tocurrent, Id is the dark current, q is the elementary particle
charge charge, kB is Boltzmann’s constant, RL is the load
impedance, and T is the temperature (in K).

The first part of Eq. 2 represents shot noise terms due to
the input signal and the dark current, while the last part is the
thermal noise contribution due to the detector load resistor.
The bandwidth limitation of the detector is approximated
by a low-pass filter with 3 dB cutoff corresponding to the
detector bandwidth.

The output from the reservoir is then given as

yout = Woutxpd (3)

where W out are the linear output (readout) weights to be
determined through training with ridge regression, and xpd

are the reservoir states after the photodetector.
Introducing this model for the detector dictates that we

pay extra attention to the receiver power levels and in gen-
eral the overall power budget of our systems, to prefer
designs that not only yield acceptable performance but are
also energy efficient.

Single-Input RC

The most obvious way to get the signal into the planar inte-
grated photonic reservoir is to inject it at a single node,
for example with a fiber grating coupler, and allow it to
propagate throughout the network. This reservoir design
paradigm is attractive due its straightforward implemen-
tation and the fact that it does not require the use of
crossings. The states for the machine learning phase are
obtained by reading out each input-output node combina-
tion. The single-input passive reservoir has been shown to
reach state-of-the-art performance for speech signal pro-
cessing and bit-sequence processing tasks [7, 23]. With the
same strategy, we have more recently demonstrated signal
equalization for metro links [24].

Multiple-Input RC

While the reservoir architecture in the “Single-Input RC”
section is amenable to the bit-level tasks outlined above, it
suffers from major drawbacks due to the inherent limita-
tions of an integrated photonics platform. Particularly, the
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losses increase with the size of the architecture. This work
therefore seeks to look at how such an architecture could
be extended to simultaneously achieve power efficiency and
performance benefits. To this end, we study architectures
that seek to support these ideals. We compare the perfor-
mance of an architecture with the same size as in [23], with
the same total input power injected into the reservoir but
distributed over different nodes. The experimental section
will show that even when the same power is injected into
the reservoir, the increased variation between the reservoir
states contributes considerably to the computing power of
the architecture.

Simulation Results and Analysis

The reservoir states are obtained as per Eq. 1 by propagating
the inputs through a photonic reservoir model implemented
in Caphe photonic circuit simulator [25]. The photodetector
used in the simulations is modeled based on the Alpha-
las UPD-15-IR2-FC photodector [26] that is available in
our lab. The specific parameters used are a bandwidth of
25 GHz, a responsivity of 0.5 A/W (a pessimistic value as
the datasheet value is 0.75 A/W), a dark current of 0.1 nA,
and a noise equivalent power (NEP) of 1 × 10−15 W/

√
Hz.

This NEP corresponds to an average signal power of 1.6 nW
at an SNR of 10. It should be mentioned that the ultimate
minimum power at the reservoir input will be set by the
requirements of the downstream processing electronics.

In this work, each considered combination of reservoir
initialization and input configuration was tasked to solve the
delayed XOR task. The current output bit for this task is the
XOR of the current input bit with one ndelay bits in the past.
Here, we express it as

y[n] = x[n] ⊕ x[n − ndelay], (4)

where x[n] is the bit-level representation of the input data
stream and y[n] is the bit-level representation of the out-
put. Before injection into the reservoir, the inputs (x[n]) are
converted from logical levels to discrete sampled data by
upsampling and pulse shaping steps.

This task was considered as it is the most difficult of all
delayed binary tasks involving only two bits. This is the case
because, in machine learning terms, XOR is not linearly
separable (see for example [27]).

For all considered input cases, the 4 × 4 (16 node)
reservoir architecture was used to generate the states. This
number of nodes was chosen as it is a design that is both
cost-effective to produce with multi-project wafer runs, but
also has a good performance on a number of tasks. In all
cases, the length of the interconnections between the reser-
voir translates to a propagation time of 62.5 ps, matching
the current generation of available chips.

Once the states were obtained and transformed with the
detector model, the readout was trained with a combination
of the Oger machine learning toolbox [28] and the scikit-
learn library [29].

Simulation Methods

We feed 10,000 randomly chosen bits into the reservoir and
use the resulting states for training with fivefold cross val-
idation to optimize the design parameters and yet another
10,000 for testing. We use regularized ridge regression to
train the linear readout. Testing is done on the best case
resulting from the cross-validation. All reported error rates
relate to the test data. With 10,000 bits for testing, error rates
are reported at a confidence level of about 90% [30].

Data Rate Studies

For the cases of single-input and multiple-input reservoirs,
we studied the error rate of the reservoir across multiple data
rates. To match the limitations of currently available mea-
surement equipment in our lab, we restrict the maximal data
rate to 32 Gbps. The data stream is a NRK OOK modulated
signal, which for simulation purposes is over-sampled 24
times to achieve sufficient simulation accuracy.

For a fair comparison between the different cases, the
same aggregate input power across all input nodes was used:
100 mW. Where the input was fed into more than one node,
the power was equally divided between the nodes. Results
are reported as averages across 30 different random initial-
izations of the input weights and reservoir waveguide phases
(each using different randomly generated bit streams.

For plotting and interpreting the results, we make use of
the reservoir interdelay parameter rid , which is defined as

rid = τbit

τid

, (5)

where τbit is the bit duration for the given data rate and τid

is the interconnection delay time, corresponding to the the
time it takes signals to propagate between reservoir nodes.
The reservoir inter-delay parameter can be directly inter-
preted as the number of times the bit duration fits into the
reservoir interconnection delay and can be used to identify
under which regime the current computation is being carried
out.

For the single-input simulations, we chose a represen-
tative sample of the available nodes as dictated by the
symmetry of the swirl architecture relative to the central
loop. The error rates for different reservoir inter-delays are
given in Fig. 2 for input to nodes 0, 1, 2, 4, and 5. The results
show the typical single sharp minimum that translates into
the reservoir only being able to process signals at a single
data rate. We can also conclude that proximity of the node
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Fig. 2 Error rate vs. reservoir interdelay for various nodes for the
input to single node case. The minimum acceptable error rate is 10−3

to the central loop (nodes 5, 6, 9, and 10) is important for
realizing low error rates on the task. Nodes 0 and 1, which
are furthest away from the central loop, have the worst error
performance while 4, 2, and 5, which inject either directly
into the central loop or are only one hop away, yield the best
performance.

For the multiple-input reservoir case, we consider input
configurations involving simultaneous injection of the input
bit stream into 2 nodes, 4 nodes, 8 nodes, or all 16 nodes of
the reservoir. The input node combinations with best error
rates in each of the groupings are plotted together in Fig. 3.
From the plot, we observe that in general, the multiple-input
reservoirs perform better than their single-input counter-
parts. As more reservoir nodes are driven, we discern the
emergence of an increasingly wider basin in which the error
is at or below the measurable minimum (10−3 in this case).
The all-input case provides the widest basin. A wide basin
implies more flexible architectures that can operate at mul-
tiple data rates. To change the data rate of operation, one
simply has to re-train the reservoir readout for that data rate.

We further checked the influence of moving to multiple
input reservoir configurations on the computational power

Fig. 3 Error rate vs. reservoir inter-delay for the different injection
strategies. Minimum acceptable error rate is 10−3

Fig. 4 Error rate vs. reservoir inter-delay for the input to all node
cases. ndelay specifies the separation, in number of bits, of the two bits
used for the XOR computation

of the reservoir, more specifically its memory. Here, we
present Fig. 4 which depicts the error rates corresponding to
the single-input vs. the all-input case for various values of
ndelay . In the plots, a larger ndelay corresponds to a task that
requires more memory. For example, for the temporal XOR
task, this simply means the current output bit is the XOR of
the current input bit with a bit much further back in time.

For the single input case, no error rates below 0.1 can
be obtained for ndelay > 1. Even though for multiple-
input reservoirs the performance similarly deteriorates with
increasing ndelay , it is clear that they can be operated for
longer values of ndelay . This is because the useful signal
(with a level significantly above the noise floor) remains
present in the reservoir for a longer time.

Power Level Analysis

A key design guideline for signal processing systems for
fiber-optic telecommunication systems is to keep the energy
consumption as low as possible. In all our previous works,
simulations assumed idealized detection of the reservoir
states at each detection point for the readout nodes. In this

Fig. 5 Error rate vs. total input power for different injection scenar-
ios. The minimum measurable error, given the number of bits used for
testing, is 10−3
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Fig. 6 Average power distribution over the reservoir nodes for input
to node 4

work, on top of the search for the lowest error rate and robust
reservoir designs, we now also look at how power efficiency
maps to the different choices.

The data rates for the power sweeps were chosen at the
minima of the error rate vs. reservoir inter-delay sweep
curves (like the ones in Fig. 3). The simulations were
repeated ten times for each reservoir design with different
initializations.

Figure 5 shows averaged error rates plotted against total
input power.

We observe that as we increase the number of the input
nodes, the minimum power requirements for error-free per-
formance also go down. The most significant jump in power
efficiency is an approximately two orders of magnitude
decrease for the best 4-input node combination as com-
pared to the 1 or 2 node input combinations. This can be
attributed to the fact that the [5, 6, 9, 10] combination is
the central loop in the swirl architecture which allows for
significant signal distribution for a small number of inputs.
We also observe that increasing the number of input nodes
beyond 4 does not significantly impact the power efficiency.
Since each input that needs to be driven incurs an additional
hardware cost, we can conclude that driving the central four
nodes is the most cost- and power-efficient solution.

Fig. 7 Average power distribution over the reservoir nodes for input
to the central loop

Fig. 8 Average power distribution over the reservoir nodes for input
to all nodes

Looking in more detail at what happens inside the reser-
voir, Figs. 6, 7, and 8 show the average power intensity
in all reservoir nodes for the cases of single-node input,
input to the central loop, and input to all nodes, respec-
tively. For the single-node input case, the power decreases
significantly within a few hops from the driving node. As an
example, node 8, which is just below node 4, has more than
10 dB less power than node 4. When all nodes are driven,
the power is most evenly distributed across all the nodes.
This scenario also corresponds to the best power efficiency
(three orders of magnitude higher than the best single input
case) obtained in our simulations. With the power injected
in the central loop nodes only, the power efficiency lies
between the two extreme cases. In this instance, there is
still a significant subset of the reservoir nodes with simi-
lar power levels and only the furthest nodes exhibit a power
drop of more than 5 dB compared to the input nodes.

Discussion for Optimal Design

Simulation results from “Data Rate Studies” and “Power
Level Analysis” sections above indicate that injection of
power into the central nodes of the reservoir, [5, 6, 9, 10],

Fig. 9 Error rate vs. total input power for input to the central swirl
loop (nodes [5, 6, 9, 10]). The solid line indicates the mean value over
all repetitions while the shaded areas indicate the error bounds within
1 standard deviation of the mean
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Fig. 10 Error rate vs. reservoir inter-delay for input to the central swirl
loop (nodes [5, 6, 9, 10]). The solid line indicates the mean value over
all repetitions while the shaded areas indicate the error bounds within
1 standard deviation of the mean

provides the best combination of performance and energy
efficiency.

Figures 9 and 10 illustrate the bounds of the errors for
the results within 1 standard deviation of average over the
repetitions for error rate studies and power level studies,
respectively. Unsurprisingly, the transition regions between
the zones of best performance and those with the highest
error rates have the highest uncertainty. The width of these
regions can be shrunk by, for example, considering a larger
number of bits in the test dataset. Concerning the minimum
input power for this design, and since the voltage required
for the subsequent machine learning electronics is on the
order of a few millivolts, the equivalent power at the input
of the reservoir is on the order of a few milliwatts.

Summary

The multiple-input case performs better in terms of error
rate and power efficiency. For the error rate performance
results, it can be argued that having power injected at
multiple locations increases the number of possible mix-
ing combinations of the signals. This mixing is important
for computation as there is a richer signal from which the
machine learning algorithm can extract useful features.

Another equally important aspect is that with the multiple
input case, a much lower power budget suffices to reach the
same performance. This is because the power is more evenly
spread out throughout the reservoir which is crucial to the
correct recovery of the reservoir states as it ensures that the
signal is sufficiently higher than the noise at for all readout
nodes.

Conclusions

We have presented an architectural exploration for planar,
passive integrated photonic reservoir computing systems.
Error rates obtained from circuit simulations of reservoir
designs with various input configurations establish that

multiple-input reservoirs perform better than single-input
reservoirs for a larger number of data rates. The varied mix-
ing between the multiple copies of the input signals with dif-
ferent phases translates into increased computational power
of the reservoir.

Additionally, reservoirs with multiple inputs allow a
more even power distribution landscape. This creates a
larger usable richness in the reservoir since more sig-
nals with roughly similar amplitudes are mixed. Moreover,
multiple-input designs present a better power efficiency and
so present better odds for correct extraction of all reservoir
states, since there are more nodes that have power that is
higher than the noise floor. An added benefit is that with
more input points, the signal tends to stick around longer in
the reservoir which increases the reservoir memory.

However, driving more nodes comes at an additional
hardware cost, because the optical signals need to be dis-
tributed to all nodes. Since most of the improvement in
robustness and power efficiency is obtained by driving the
four central nodes instead of just one, we consider this to
be the most promising and cost-effective solution for small
reservoirs. In its current state, this optimal design requires a
few milliwatts of input power. We are currently investigating
ways of bringing this value down, for example, by reducing
the internal losses in the reservoir or by using more com-
pact architectures in which losses do not scale directly with
reservoir sizes.

In future work, we will explore how to use such a 16-
node reservoir as a tile to create larger reservoirs. This way,
the lessons learned from this work’s architectural explo-
ration exercises will drive the design of the next generation
of reservoir computing chips to tackle faster, more complex
optical telecommunication signal processing applications.
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