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Abstract Accurate prediction of adverse cardiac events for
the emergency department (ED) chest pain patients is essen-
tial in risk stratification due to the current ambiguity in
diagnosing acute coronary syndrome. While most current
practices rely on human decision by measuring clinical
vital signs, computerized solutions are gaining popularity.
We have previously proposed an ensemble-based scoring
system (ESS). In this paper, we aim to extend the ESS
system using extreme learning machine (ELM), a fast learn-
ing algorithm for neural networks. We recruited patients
from the ED of Singapore General Hospital, and extracted
features such as heart rate variability, 12-lead ECG param-
eters, and vital signs. We also proposed a novel algorithm
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called ESS-ELM to predict adverse cardiac events. Different
from the original ESS algorithm, ESS-ELM uses the under-
sampling technique only in model training. Our proposed
method was compared to the original ESS algorithm and
several clinical scores in predicting patient outcome. With
a cohort of 797 recruited patients, we demonstrated that
ESS-ELM outperformed the original ESS algorithm and
three established clinical scores, namely HEART, TIMI, and
GRACE, in terms of receiver operating characteristic analy-
sis. Furthermore, we have investigated the impact of hidden
node number and ensemble size on the predictive perfor-
mance. ELM has demonstrated the flexibility in its inte-
gration with the ESS algorithm. Experiments showed the
value of ESS-ELM in prediction of adverse cardiac events.
Future works may include the use of new ELM-based learn-
ing methods and further validation with a new cohort of
patients.

Keywords Extreme learning machine · Ensemble
learning · Adverse cardiac events · Emergency department

Introduction

Risk stratification is an important element of emergency
department (ED) care as it impacts patient acuity, resource
allocation, and clinical decision-making. Chest pain patients
present unique challenges for risk stratification because of
the current ambiguity in diagnosing acute coronary syn-
drome (ACS). A high volume of ED visits each year are
due to chest pain [1], but only approximately 9% are due
to ACS [2]. Missing the diagnosis of ACS may have catas-
trophic clinical consequences, but over-treating chest pain
patients may also lead to ED and hospital inefficiency and
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adverse clinical outcomes. Therefore, accurately risk strat-
ifying chest pain patients is important for ensuring optimal
patient care.

Physicians typically use subjective history and objective
data such as vital signs, electrocardiogram (ECG) changes,
and troponin in the context of their clinical experience to
risk stratify patients. Physiologic measures such as heart
rate variability (HRV) have also been employed to risk strat-
ify chest pain patients based on the hypothesis that HRV
can measure cardiac stress through dynamic analysis of the
autonomic nervous system [3], [4]. With all this available
information, it is becoming important to explore clinically
meaningful and validated methods to combine and assess
patient data beyond clinical gestalt. Risk scores, such as
the HEART score, combine key aspects of patient infor-
mation (for example age, ECG changes, medical history,
and troponin readings) through simple, but effective scor-
ing methods [5]. The HEART score is an evidence-based
method that has been proposed [5] and validated to risk
stratify chest pain patients [6, 7]. Other clinical scores that
have been validated on ED chest pain patients include TIMI
score [8] and GRACE score [9]. Additionally, studies have
employed logistic regression to identify prognostic factors
for adverse cardiac outcomes in chest pain patients [3, 4].
However, these techniques are stationary and unadaptable to
different patient populations and clinical settings.

In contrast, machine learning (ML) provides a more
dynamic process to combine data for the risk stratification
of chest pain patients. Liu et al. showed that an ML-based
scoring system employing the variables of HRV, vital signs,
and ECG changes can accurately predict major adverse car-
diac events in chest pain patients [10–12]. In the ensemble-
based scoring system (ESS) [10], support vector machine
(SVM) was adopted as the individual classifier, and a hybrid
sampling (under-sampling + over-sampling) technique was
proposed to handle data imbalance and output combination
in the decision ensemble. The over-sampling component
uses a method named SMOTE [13] to generate artificial data
samples. However, this process increases the computational
burden. In this paper, we adopt a fast neural network training
method, extreme learning machine (ELM) [14] as the indi-
vidual classifier, and aim to improve predictive performance
of the ESS framework while reducing the computational
complexity.

In recent years, ELM has attracted numerous atten-
tions and many ELM variants and extensions have been
developed. For example, there are pruned ELM algorithms
[15, 16], evolutionary ELM [17], sparse Bayesian ELM
[18], and ensemble based ELM [19, 20]. ELM has also
been extended to handle imbalanced data [21–23]. Further-
more, there are studies combining fuzzy logic with ELM for
performance improvement [24, 25]. Other than algorithmic
extensions, ELM methods have been widely implemented

in applications such as medical decision making [26–28],
image processing [29, 30], bioinformatics [31, 32], and
industrial applications [33, 34].

Given the simplicity and flexibility in extension that
ELM has, we aim to investigate the feasibility of combin-
ing ESS and ELM in a sophisticated process to facilitate
predictive modeling and decision making. The reminder of
this paper is organized as follows. The “Clinical Setting and
Predictive Variables” section presents the study design, data
collection, and selected predictive variables for model build-
ing. The “Prediction of Adverse Cardiac Events” section
describes a novel ensemble-based framework with extreme
learning machine for the prediction of major adverse car-
diac events. The “Results” section presents the performance
evaluation and “Conclusion” section draws the conclusions.

Clinical Setting and Predictive Variables

Study Design

Adult patients with chest pain suggestive of cardiac eti-
ology were prospectively and conveniently recruited from
September 2010 to July 2015 at the Emergency Department
(ED) of Singapore General Hospital (SGH). We excluded
patients who had an obvious non-cardiac etiology of chest
pain (e.g., trauma, pneumothorax) as assessed by the pri-
mary ED physician. We also excluded patients if their
one-lead ECG showed non-sinus rhythm (e.g., arrhythmia,
ectopic beats >5%) or artifacts precluding adequate HRV
analysis. Singapore Health Services (SingHealth) Central-
ized Institutional Review Board approved the study and
patient consent was waived.

For each patient, demographic information and medical
history were retrospectively acquired from hospital’s elec-
tronic health records (EHR). The first vital signs acquired
in the ED or in triage were also obtained from the EHR.
The first 12-lead ECG acquired in the ED was read by
the primary ED physician as well as a second, independent
reviewer for signs of ischemia (e.g., ST segment changes)
and other significant abnormalities (e.g., bundle branch
block, left ventricular hypertrophy, QTc prolongation, etc.).
The first troponin lab taken in the ED was recorded. At
SGH, troponin-T is used with an abnormal value defined as
>99th percentile of assay (0.03 ng/mL).

Five- to six-minute one-lead ECG signals were recorded
with X-Series Monitor (ZOLL Medical Corporation,
Chelmsford, MA). ECG signals were then loaded into
Kubios version 2.2 (Kuopio, Finland) for HRV analysis.
Within the program, software automatically identified QRS
complexes. ECG signals were also manually screened to
ensure QRS detection accuracy. If necessary, QRS detection
could be manually adjusted. The R-R interval time-series



Cogn Comput (2017) 9:545–554 547

was then created for each ECG and screened for irregular
rhythm, ectopic beats, or artifacts. Time domain, frequency
domain, and non-linear HRV variables were computed
using internal software of the Kubios program described by
Niskanen et al. [35].

In this study, we define the primary outcome as a com-
posite outcome of adverse cardiac events within 72-h of
presentation to the ED, including revascularization, cardiac
arrest, cardiogenic shock, lethal arrhythmia, and mortality.
We obtained the outcomes from patient EHR review.

Heart Rate Variability

We used three types of HRV parameters, including time
domain, frequency domain, and non-linear variables. Time
domain variables are computed using traditional statistical
and geometric methods. Average R-R interval (aRR), stan-
dard deviation of the R-R time series (sdRR), and the square
root of the mean squared differences between R-R inter-
vals (RMSDD) are derived from statistical computations
and are meant to depict the overall variability of the R-R
time series. RMSDD is most sensitive to vagal influences,
but may also be easily skewed by ectopic beats or irregular
rhythms. Other time domain measures such as the number
of times that the absolute difference between two successive
R-R intervals exceeds 50 ms (NN50) and NN50 divided by
the total number of R-R intervals (pNN50) can convey beat-
to-beat variation as well as the variability of the total R-R
time series. The triangular baseline width of a triangle fit
into the R-R interval histogram using least squares (TINN)
is a geometric based variable again used to convey overall
variability.

Frequency domain variables are computed by transform-
ing the R-R time series into the frequency domain using
power spectral analyses such as fast Fourier transform
(FFT). HRV arises from different systems, such as res-
piration, baroreceptors, circadian rhythms, and the central
nervous system providing feedback to the sinoatrial node
through neural circuits. Such negative feedback systems
tend to oscillate producing HRV in healthy adults [36].
The autonomic nervous system provides the majority of
this input and therefore HRV frequency parameters give
dynamic insight into the balance between parasympathetic
and sympathetic tone. At the sinoatrial node, parasympa-
thetic nervous system inputs do not require a secondary
messenger and therefore have a higher frequency oscil-
lation. Therefore, high-frequency (HF) components (0.15
to 0.40 Hz) represent parasympathetic input, while low-
frequency (LF) components (0.04 to 0.15 Hz) represent
sympathetic inputs as well as a component of parasympa-
thetic input. Very low frequency (VLF) components (0 to
0.04 Hz) may not be appropriate for analysis of short R-R
interval time series [37]. Low-frequency and high-frequency

components are also normalized over total power minus
very low frequency power. The ratio of normalized LF to
normalized HF can furthermore depict autonomic balance.

Non-linear variables used to analyze HRV include
Poincare plot, sample and approximate entropy, and
detrended fluctuation analysis (DFA). The Poincare plot is
created by plotting an interval against the subsequent inter-
val for a series of R-R intervals. Multiple methods have
been described to characterize HRV using this plot [13].
The technique used in our analysis fits an ellipse to the
plot shape with the axis positioned along the line of iden-
tity (LOI). The standard deviation of points perpendicular
to the LOI measure short-term variability (SD1), while the
standard deviation of points parallel to the LOI measure
long-term variability (SD2). However, these two variables
may be more representative of linear characteristics of the
R-R interval rather than non-linear [38].

The short length and noise of the R-R time interval series
used in our study present challenges for measuring entropy.
Two methods have been previously described to estimate
the degree of regularity in the R-R time series including
approximate entropy (ApEn) and sample entropy (SampEn).
Approximate entropy has been described previously [39]
and searches for similar epochs within the time-series. How-
ever, this measure has been shown to have bias with respect
to length of the R-R interval time series as well as difficulty
with relative consistency. Therefore, a new measure called
sample entropy was created and shown to be more consis-
tent and less dependent on the length of the R-R interval
time series [40].

Detrended fluctuation analysis measures the long-range
correlation in noisy signals making it ideal for evaluating
R-R interval time series. It has been studied in different
contexts among cardiovascular physiology and pathology
[41–43]. The method, described previously by Penzel et al.
[44], finds correlations over different time scales. In our
study, correlations were divided into short term (range 4–
16 beats) and long term (range 16–64 beats) quantified by
the slope of log-log plot and represented by the variables α1
and α2 respectively. Due to the length of R-R time series,
α1 may be the more appropriate measurement for our data.

12-Lead ECG and Vital Signs

In this study, we measured 12-lead ECG using Philips
PageWriter TC Series device. Some ECG parameters were
automatically computed and shown in the device, and the
rest parameters were manually calculated by a trained med-
ical practitioner using a continuous hardcopy paper printout
of the electrical signals. Within an ECG cardiac cycle, there
are P wave, T wave, U wave, and QRS complex. We used
the following 12 parameters as candidate variables in pre-
dictive modeling: ST segment changes (ST elevation and ST
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depression), T wave inversion, Q wave, QRS axis, QT inter-
val correction (QTc), left bundle branch block (BBB), right
BBB, intraventricular conduction delay (IVCD), left atrial
abnormality (LAA), left ventricular hypertrophy (VH), and
right VH. A brief description of these parameters is given as
follows.

The ST segment represents the connection between QRS
complex and T wave. Typically, ST segment is isoelectric
and matched with the baseline. An ST elevation may be
defined when the ST segment is abnormally high above the
isolectric baseline. The ST elevation is obtained by measur-
ing the vertical elevation between the ECG trace of the ST
segment and the baseline, and may correspond to damage or
pathological change to the cardiac muscle. A QRS axis can
be determined from the QRS complex, where the QRS axis
is the net vector of ventricular depolarization. T wave occurs
after the QRS complex and represents the repolarization (or
recovery) of the ventricles. T wave inversion may be a sign
of coronary ischemia or central nervous system disorder,
etc. The QT interval is measured from the initial negative
deflection of Q wave, to the end of T wave. A prolonged QT
interval may indicate ventricular tachyarrhythmias and sud-
den death. The QT interval varies with heart rate, and for
clinical relevance requires a correction for this, giving the
QT interval correction (QTc).

Presence of a left bundle branch block (LBBB) is a
cardiac conduction abnormality. In a LBBB, left ventricle
contraction is later than the right ventricle due to the delay
of activation of the left ventricle. In a RBBB, the right ven-
tricle is not directly activated by impulses traveling through
the right bundle branch. IVCD could be determined from a
QRS duration widening, where by a process of elimination,
the QRS duration widening is caused by an IVCD if the
manifestation is not caused by a LBBB or a RBBB. IVCD
may correspond to a myocardial infarction, a cardiomy-
opathy with ventricular fibrosis, or a chamber enlargement.
Atrial abnormalities or atrial enlargements, atrial dilatations
or atrial hypertrophy may also be detected in an ECG.

In addition to HRV and 12-lead ECG parameters, we
chose eight clinical vital signs in predictive modeling. We
used Propaq CS (Welch Allyn, Skaneateles Falls, NY, USA)
Vital Signs Monitor to measure heart rate, systolic, and dias-
tolic blood pressure. While the patients were presented at
the ED, we recorded respiratory rate, GCS, and tempera-
ture. Additional vital signs included pain score and oxygen
saturation (SpO2). Furthermore, we collected patients’ med-
ical history and relevant information.

Prediction of Adverse Cardiac Events

The original ensemble-based scoring system (ESS) [10] was
proposed to risk stratify chest pain patients in the emergency

department, where support vector machine (SVM) was
implemented as the individual classifier. There are rooms
for further improvement: First, a combined use of both
under-sampling and over-sampling techniques increases
computational load; second, as reported in the literature,
ELM-based algorithms outperform SVM in various appli-
cations [45].

In this section, we present a brief introduction to the basic
ELM algorithm, and then show the detailed descriptions of
the proposed ESS-ELM algorithm. ESS-ELM is more than
a simple replacement of SVM with ELM, but an integra-
tion of unique ELM features into the ESS architecture. We
will elaborate the proposed algorithm in “Ensemble-Based
Scoring System with ELM (ESS-ELM)” section.

Extreme Learning Machine

ELM [46] was proposed as a learning algorithm for single-
layer feed-forward network (SLFN) where the weights and
biases for hidden nodes were randomly selected and the out-
put weights are determined with least square solution. In a
training set L with N samples,

L = {(xj , tj )|xj ∈ Rp, tj ∈ Rq, j = 1, 2, ..., N} (1)

xj is the input feature vector with p components and tj is
a q-dimensional target vector. Assume g(x) is the activa-
tion function for hidden nodes and wi is the weight vector
that connects input neurons and the ith hidden node, we can
define an SLFN with Ñ hidden nodes as follows,

f
Ñ

(xj ) =
Ñ∑

i=1

βig(wi ·xj +bi) = tj , j = 1, 2, ..., N (2)

Equations 2 can be further written as

Hβ̂ = T (3)

where H(w1, ...,wÑ
, b1, ..., bÑ

, x1, ..., xN) is the output
matrix, and hji = g(wi · xj + bi) is the output of ith
hidden neuron with respect to xj . Furthermore, the output
weight matrix is β̂ = [β1, ..., βÑ

]T and the target matrix is
T = [t1, ..., tN ]T. As proposed in Huang et al. [46], param-
eters wi and bi are randomly assigned so that the output
weights can be estimated as β = H†T. In ELM algorithm,
Moore-Penrose generalized inverse [47] is implemented to
convert H into H†.

Ensemble-Based Scoring System with ELM (ESS-ELM)

As described in [10], ESS was developed for risk strat-
ification of ED chest pain patients, which was specifi-
cally designed to handle imbalanced data where samples
(i.e., patients) with normal outcome are much more than
those samples with abnormal outcome (in our study, a
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Fig. 1 The architecture of the
proposed ESS-ELM algorithm

composite adverse cardiac events within 72-h). Since con-
ventional machine learning algorithms cannot handle imbal-
anced data well [48], ESS algorithm [10] was created
by adopting a hybrid sampling technique (under-sampling
+ over-sampling). The main mechanism behind the ESS
algorithm is using ensemble learning to combine indi-
vidual classifiers for reliable decision making. In this
paper, we will integrate ELM into the ESS framework
while removing the over-sampling component to reduce
algorithmic complexity.

The structure of the proposed ESS-ELM algorithm is
depicted in Fig. 1. In this ensemble architecture, each
ensemble classifier is defined as ϕt and there are a total of
T individual classifiers. A weight is assigned to each classi-
fier ϕt to indicate its significance in the decision ensemble.

As described in the original ESS algorithm, the weight wt

is determined from over-sampled data that are generated
using the SMOTE technique [13]. In this new ESS-ELM
algorithm, we propose to derive the weights directly from
the ELM learning process, which will avoid using over-
sampling during model training. Due to the nature of data
imbalance in our dataset (146 out of 797 patients met
the outcome), we adopted the under-sampling structure in
creating the decision ensemble.

Given a training dataset L = [x1, x2, ..., xK ] where
x is a feature vector (HRV parameters, 12-lead ECG
parameters, and vital signs) representing a patient, we start
the analysis with normalizing [49] the original values into
the interval of [-1, 1]. We assume that in the training
set there are one minority set P (patients with positive

Fig. 2 Descriptions of the proposed ESS-ELM algorithm
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Table 1 Vital signs, heart rate
variability (HRV) variables,
electrocardiogram (ECG)
variables, and troponin variable
of patients in the study
population

Patients without outcomes Patients with outcomes p value

(n = 651) (n = 146)

HRV predictors, mean (SD)

- aRR (s) 831.4 (171.9) 826.3 (161.9) 0.743

- sdRR (s) 32.3 (23.1) 32.8 (21.6) 0.805

- RMSSD (s) 22.2 (21.9) 19.5 (14.8) 0.163

- NN50 (count) 18.5 (36.7) 13.6 (25.4) 0.057

- pNN50 (%) 5.7 (11.8) 4.3 (8.7) 0.111

- TINN 117.6 (77.9) 118.0 (78.0) 0.950

- LF power (ms2) 332.0 (791.9) 365.1 (697.5) 0.641

- HF power (ms2) 256.1 (953.2) 157.8 (293.0) 0.218

- LF power norm (n.u.) 60.8 (20.3) 66.3 (19.9) 0.003

- HF power norm (n.u.) 39.0 (20.1) 33.5 (19.7) 0.003

- LF/HF 2.6 (2.8) 3.3 (3.3) 0.017

Nonlinear HRV predictors, mean (SD)

- Poincare plot SD1 (ms) 15.7 (15.5) 13.8 (10.5) 0.163

- Poincare plot SD2 (ms) 42.3 (29.6) 43.8 (29.6) 0.586

- Approximate entropy 1.08 (0.15) 1.05 (0.15) 0.005

- Sample Entropy 1.38 (0.35) 1.28 (0.36) 0.002

- DFA, α1 1.08 (0.34) 1.18 (0.33) 0.001

- DFA, α2 1.03 (0.22) 1.07 (0.21) 0.094

12-lead ECG predictors, n (%)

- ST elevation 30 (4.6) 36 (24.7) 0.001

- ST depression 52 (8.0) 40 (27.4) 0.001

- T wave inversion 164 (25.2) 45 (30.8) 0.162

- Q wave 57 (8.8) 29 (19.9) 0.001

Vital sign predictors, mean (SD)

- Pulse rate (bpm) 78.4 (17.4) 78.6 (15.6) 0.918

- Respiratory rate (bpm) 17.8 (2.8) 17.6 (1.5) 0.357

- Systolic BP (mmHg) 142.4 (28.6) 143.2 (29.1) 0.761

- Diastolic BP (mmHg) 76.7 (14.6) 79.2 (14.5) 0.058

- Pain score (0–10) 2.4 (2.6) 3.3 (3.2) 0.002

outcome) and one majority set N (patients with negative
outcome). We apply the under-sampling technique to ran-
domly select a subset Nt from N . The number of samples
in subset Nt is the same as that in dataset P . In such a way,
we are able to create T balanced dataset St (P + Nt ) for
building a decision ensemble.

In the training dataset L, we have K samples (xk, yk)

where yk is C0 or C1, with C1 indicating patient xk met
the outcome, i.e., a composite outcome of serious adverse
cardiac events within 72 h. Assume that we have a testing
sample x, we aim to predict its label y using an ensemble
of single classifiers ϕ(x, L) with training set L. As depicted
in Fig. 1, we will build total T independent classifiers and
combine them to make a final decision. Also, as previously
mentioned, the weights are derived from ELM learning
process and they should represent the significance of cor-
responding individual ELM classifiers. Referring to several

ELM literature [19, 46], ‖β‖, the norm of output matrix
weights, is closely associated with ELM generalization per-
formance. That is, smaller ‖β‖ leads to better generalization
ability. This property is an indicator on how important an
ELM classifier is, so we consider ‖β‖ as one key component
in creating the decision ensemble. To achieve a trade-off
between training accuracy and generalization performance,
we define the weight wt for the t-th ELM classifier as
Acct /‖βt‖2 where Acct is the training accuracy. The pre-
dicted outcome yt of classifier ϕt (x, L) is either 0 or 1. A
risk score for testing sample x is derived using the following
equation,

Score(x) =
∑T

t=1 ϕt (x,L)·wt∑T
t=1 wt

× 100

=
∑T

t=1 ϕt (x,L)·Acct /‖βt‖2∑T
t=1 Acct /‖βt‖2 × 100

(4)
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Fig. 3 ROC curves by ESS-ELM algorithm, ESS-SVM algorithm,
HEART score, TIMI score, and GRACE score

Compared with the original ESS algorithm, we use ELM-
derived parameters (i.e., Acct and |βt‖2) instead of the
over-sampled data for weight calculation. By using this
weight, the computationally expensive over-sampling com-
ponent in the original ESS is replaced with an efficient
ELM algorithm. Moreover, we assign a randomly selected
number of hidden nodes to each individual classifier so
that the diversity within the decision ensemble is increased.
In ensemble learning, it is known that a diversified decision
ensemble has better generalization ability [50]. The detailed
description of the ESS-ELM algorithm is presented in
Fig. 2.

Results

As observed in our dataset, the average age of all patients
was 60 years old and majority of the cohort were male
(68%) and Chinese (62%). Table 1 shows predictive vari-
ables including HRV, ECG, and vital signs. We found out
that in linear HRV predictors, only time domain param-
eters (normalized LF power, normalized HF power, and
LF/HF) were statistically significant (p < 0.05). More-
over, approximate entropy, sample entropy, and DFA α1
of the non-linear HRV variables were also significant. In
12-lead ECG predictors, the proportions of patients with ST-
elevation, ST-depression, and Q-waves were much higher
in the group of patients who met the outcome. Among
vital sign predictors, we only observed that pain score was
statistically significant.

Figure 3 illustrates the ROC curves generated by ESS-
ELM algorithm, ESS-SVM algorithm, HEART score, TIMI
score, and GRACE score. In performance evaluation, we
use the leave-one-out cross-validation (LOOCV) frame-
work. Figure 3a shows the comparisons between ESS-ELM
and the clinical scores and Fig. 3b shows the comparisons
between ESS-SVM and the clinical scores. Obviously, both

Table 2 Comparison of the
predictive results. The range of
number of hidden nodes for
ELM algorithms was [10,100]
and ensemble size was 100 for
both ESS-ELM and ESS-SVM
algorithms

Method AUC Cutoff Sensitivity Specificity PPV NPV

(95% CI) (95% CI) (95% CI) (95% CI) (95% CI)

ESS-ELM 0.778 34.9 75.3 70.4 36.3 92.7

(0.732–0.825) (68.4–82.3) (66.8–73.9) (30.9–41.7) (90.4–95.0)

ESS-SVM 0.759 19 74.7 69.6 35.5 92.4

(0.711–0.807) (67.6–81.7) (66.1–73.1) (30.2–40.9) (90.1–94.8)

HEART 0.758 5 76.0 63.9 32.1 92.2

(0.710–0.806) (69.1–83.0) (60.2–67.6) (27.2–37.0) (89.8–94.7)

TIMI 0.618 2 59.6 54.1 22.5 85.6

(0.566–0.671) (51.6–67.5) (50.2–57.9) (18.4–26.7) (82.3–89.0)

GRACE 0.593 108 56.2 56.8 22.6 85.3

(0.540–0.646) (48.1–64.2) (53.0–60.6) (18.3–26.9) (81.9–88.6)
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ESS-ELM and ESS-SVM algorithms significantly outper-
form TIMI and GRACE scores. As shown in Table 2,
ESS-SVM and HEART achieve similar AUC values while
ESS-SVM gives better specificity and PPV. ESS-ELM is the
top performer among all scores. Both ESS-based algorithms
use 100 as the ensemble size and ESS-ELM adopts [10,100]
as the range of number of hidden nodes for its individual
ELM classifiers. The results presented in Table 2 are derived
from optimal cutoff score for each method; optimal cutoff
point on the ROC curve is defined as the point nearest to the
upper-left corner.

We note several factors that determine algorithm com-
plexity and predictive performance, for example, the num-
ber of hidden nodes and the ensemble size. As seen from the
algorithm architecture (Fig. 1), the complexity of ESS-ELM
has a linear correlation with the ensemble size. Compared
with the original ESS algorithm [10], ESS-ELM reduces
computations by removing the over-sampling component.
Figure 4a demonstrates the impacts on AUC using differ-
ent number of hidden nodes. As mentioned in the previous
section, we use different number of hidden nodes for each
individual ELM classifiers, so the number indicated in the
figure is the range of number of hidden nodes, i.e., [10,25],
[10,50], [10,100], [10,150], and [10,200]. The best predic-
tion performance was obtained when the range of number
of hidden nodes was [10,100]. Figure 4b depicts different

(a)

(b)

Fig. 4 The effects of the number of hidden nodes and ensemble size
on area under the curve (AUC) values

ensemble sizes and their corresponding AUC values while
keeping the range of hidden nodes as [10,100]. We observe
that the highest AUC value was achieved when ensemble
size was 100. In general, larger ensemble size corresponded
to better prediction performance. In all of our experiments
on the ESS-ELM algorithm, we chose ensemble size as 100
and the hidden node range as [10,100] to produce the best
trade-off between predictive performance and complexity.

Conclusion

In this paper, we presented an ensemble-based risk scoring
and conducted an observational study of 797 ED chest pain
patients. We proposed a novel ELM-based ensemble scoring
method named as ESS-ELM, and demonstrated that the new
algorithm outperformed the original ESS-SVM algorithm
and three established clinical scores, namely HEART, TIMI,
and GRACE. Moreover, we have investigated the effects of
parameter changes in terms of ROC analysis. AUC values,
sensitivity, specificity, PPV, and NPV, were used as the per-
formance indicators. ELM has shown the flexibility on its
integration with the ESS framework.
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