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Abstract The power Bonferroni mean (PBM) operator
can take the advantages of power operator and
Bonferroni mean operator, which can overcome the in-
fluence of the unreasonable attribute values and can also
consider the interaction between two attributes.
However, it cannot be used to process the interval-
valued intuitionistic fuzzy numbers (IVIFNs). It is im-
portantly meaningful to extend the PBM operator to
IVIFNs. We extend PBM operator to process IVIFNs
and propose some new PBM operators for IVIFNs and
apply them to solve the multi-attribute group decision-
making (MAGDM) problems. Firstly, the definition,
properties, score function, and operational rules of
IVIFNs are introduced briefly. Then, the power
Bonferroni mean (IVIFPBM) operator, the weighted
PBM (IVIFWPBM) operator, the power geometric BM
(IVIFPGBM) operator, and the weighted power geomet-
ric BM (IVIFWPGBM) operator for IVIFNs are pro-
posed. Furthermore, some deserved properties of them
are explored, and several special cases are analyzed.
The decision-making methods are developed to deal
with the MAGDM problems with the information of
the IVIFNs based on the proposed operators, and by
an illustrative example, the proposed methods are veri-
fied, and their advantages are explained by comparing
with the other methods. The proposed methods can ef-
fectively solve the MAGDM problems with the IVIFNs,

and they can consider the interaction between two attri-
butes and overcome the influence of the unreasonable
attribute values.
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Introduction

Fuzzy set (FS) theory, firstly proposed by Zadeh [1], has been
a hot research topic. Further, in order to express some types of
fuzzy information, Atanassov [2, 3] presented the
intuitionistic fuzzy set (IFS) by adding a non-membership
function based on FS. Furthermore, Atanassov [4] and
Atanassov and Gargov [5] extended the IFS to interval-
valued IFS (IVIFS) in which the membership and non-
membership degrees are described by interval numbers.
Then, some operational laws and relations of IVIFS were de-
fined. Liu [6] and Zhang [7] presented some information en-
tropy for IVIFS. Based on the prospect theory, Wang [8] pro-
posed a new score function to overcome the weakness of not
comparing two interval-valued intuitionistic fuzzy numbers
(IVIFNs). Many researchers also developed some similarity
measurements of IVIFS [9–11] to compare two IVIFNs. In
addition, Tan and Zhang [12] developed an extended
TOPSIS method on the basis of IVIFNs to solve the MADM
problems. Hashemi et al. [13] proposed the extended
ELECTRE III method for IVIFNs. Wang and Xu [14] provid-
ed a fractional programming method to solve the IVIF-
MADM problems.

The aggregation operators are a powerful method for the
MAGDM problems [15–23]. Particularly, the information ag-
gregation operators on the basis of IVIFS have attracted more
and more attentions [19, 24–32]. Yager [33] firstly proposed

* Peide Liu
peide.liu@gmail.com

1 School of Management Science and Engineering, Shandong
University of Finance and Economics, Jinan, Shandong 250014,
China

Cogn Comput (2017) 9:494–512
DOI 10.1007/s12559-017-9453-9

http://orcid.org/0000-0001-5048-8145
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-017-9453-9&domain=pdf


the power average (PA) operator, which could eliminate the
influence of unreasonable data from the biased decision
makers. Further, Xu and Yager [34] developed power geomet-
ric operator. Bonferroni [35] introduced Bonferroni mean
(BM) operator, which could capture the interrelationships of
two arguments. Zhu [36] proposed the geometric Bonferroni
mean by combining BM and geometric mean operators. He
[37, 38] introduced the interaction of BM operator for
intuitionistic fuzzy information. To consider the advantages
of PA and BM operators together, He et al. [39–41] proposed
some power Bonferroni mean (PBM) operators by combining
the PA operator and BM operator.

The PBM operator can take the advantages of PA and BM
operators. However, up to now, there is no research on how to
use PBM operator to aggregate the IVIFNs, so the goal and
motivation of this study are to extend the PBM operator to
IVIFNs and to propose some MAGDM methods for IVIFNs.

For that, the structure of this paper is shown as follows.
In the BPreliminaries^ section, we introduce the definition
of the IVIFNs, the PBM, and PGBM operators in brief. In
the BSome interval-valued intuitionistic fuzzy PBM
operators^ section, we combine the IVIFNs with PBM
aggregation operators and develop some new operators
to aggregate the IVIFNs. In the BThe MAGDM approach
based on IVIFWPBM and IVIFWPGBM operators^ sec-
tion, on the basis of these operators, an effective method
is developed for MAGDM problems with the IVIFNs.
The BAn application example^ section presented an appli-
cation example to verify the feasibility of the novel de-
veloped method. In the BConclusion^ section, some con-
cluding remarks are given.

Preliminaries

Interval-Valued Intuitionistic Fuzzy Set

Definition 1 [2]. Let Z = {z1, z2, ⋯ , zn} be a fixed set, then an
IFS named A in Z is expressed as

A ¼ < z; uA zð Þ; vA zð Þ > jz∈Zf g ð1Þ

where 0 ≤ uA(z) ≤ 1, 0 ≤ vA(z) ≤ 1 and 0 ≤ uA(z) + vA(z) ≤ 1.
uA(z) and vA(z) represent membership and non-membership
degrees of the element z to A, respectively.

In addition, suppose π(z) = 1 − uA(z) − vA(z), then π(z) is
named the hesitancy degree of z to A [2, 3]. It is apparent that
0 ≤ π(z) ≤ 1 for ∀z ∈ Z.

To element z ∈ Z from IFS A, the pair (uA(z), vA(z)) repre-
sents an intuitionistic fuzzy value (IFV). For convenience, it
can be denoted as ~a ¼ u~a; v~að Þ, satisfying that 0≤u~a≤1, 0≤v~a
≤1 and 0≤u~a þ v~a≤1.

Definition 2 [3, 4]. Let Z = {z1, z2, ⋯ , zn} be a fixed set,
and then an IVIFS AL is expressed as

AL ¼ < z; uAL zð Þ; vAL zð Þ > z∈Zjf g ð2Þ

where the interval numbers uAL(z) ⊆ [0, 1] and vAL(z) ⊆ [0, 1]
satisfies 0 ≤ sup (uAL(z)) + sup (vAL(z)) ≤ 1. uAL(z) and vAL(z)
represent the membership and non-membership degrees of the
e l emen t z t o AL r e spe c t i v e l y. Fo r s imp l i c i t y,
al = ([μa, μb], [vc, vd]) is called an IVIFN.

Definition 3 [42]. Suppose al1 = ([μa1, μb1], [vc1, vd1]) and
al2 = ([μa2, μb2], [vc2, vd2]) are two IVIFNs, then the
Euclidean distance between them is defined as follows:

d al1; al2ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
μa1−μa2ð Þ2 þ μb1−μb2ð Þ2 þ vc1−vc2ð Þ2 þ vd1−vd2ð Þ2

� �r

ð3Þ

Definition 4 [43]. Suppose al1 = ([μa1, μb1], [vc1, vd1]) and
al2 = ([μa2, μb2], [vc2, vd2]) are two IVIFNs, then the opera-
tional laws can be expressed as follows:

al1⊗al2 ¼ μa1μa2;μb1μb2½ �; vc1 þ vc2−vc1vc2; vd1 þ vd2−vd1vd2½ �ð Þ; ð4Þ
al1⊕al2 ¼ μa1 þ μa2−μa1μa2;μb1 þ μb2−μb1μb2½ �; vc1vc2; vd1vd2½ �ð Þ; ð5Þ

n⋅al1 ¼ 1− 1−μa1ð Þn; 1− 1−μb1ð Þn½ �; vcn1; vd
n
1

� �� �
n > 0; ð6Þ

aln1 ¼ μan1;μb
n
1

� �
; 1− 1−vc1ð Þn; 1− 1−vd1ð Þn½ �� �

n > 0: ð7Þ

Example 1. Suppose al1 = ([0.1, 0.3], [0.4, 0.5]) and al2-
= ([0.2, 0.4], [0.3, 0.5]) are two IVIFNs, and n = 2, then on
the basis of Definition 4, we can get

al1⊕al2 ¼ 0:1þ 0:2−0:1� 0:2; 0:3þ 0:4−0:3� 0:4½ �ð
; 0:4� 0:3; 0:5� 0:5½ �Þ ¼ 0:28; 0:58½ �ð ; 0:12; 0:25½ �Þ; al1⊗
al2 ¼ 0:1� 0:2; 0:3� 0:4½ �ð ;

0:4þ 0:3‐0:4� 0:3; 0:5þ 0:5‐0:5� 0:5½ �Þ ¼ 0:02; 0:12½ �ð ;

0:58; 0:75½ �Þ; n⋅al1 ¼ 2al1 ¼ 1− 1−0:1ð Þ½ð 2; 1− 1‐0:3ð Þ 2� ;

0:42; 0:52
� �Þ ¼ 0:19; 0:51½ �ð ; 0:16; 0:25½ �Þ; aln1 ¼ al21
¼ 0:12; 0:32

� ��
; 1− 1‐0:4ð Þ½ 2; 1− 1‐0:5ð Þ 2�Þ ¼ 0:01; 0:09½ �ð

; 0:64; 0:75½ �Þ:T h e o r e m 1 [ 4 3 ] . S u p p o s e
al1 = ([μa1, μb1], [vc1, vd1]) and al2 = ([μa2, μb2], [vc2, vd2])
are two IVIFNs, then

1ð Þ al1⊕al2 ¼ al2⊕al1 ð8Þ

2ð Þ al1⊗al2 ¼ al2⊗al1 ð9Þ

3ð Þη al1⊕al2ð Þ ¼ η⋅al1⊕η⋅al2; η≥0 ð10Þ

4ð Þ η⋅al1⊕η2⋅al1 ¼ η1 þ η2ð Þal1; η1; η2≥0 ð11Þ

5ð Þ alη11 ⊗alη21 ¼ al1ð Þη1þη2 ; η1; η2≥0 ð12Þ
6ð Þ alη1⊗alη2 ¼ al1⊗al2ð Þη ð13Þ
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Definition 5 [44]. Supposing ali = ([μai, μbi], [vci, vdi]) is
an IVIFN, we can define the score function sf of ali as follows:

sf alið Þ ¼ μai þ μbi−vci−vdi
2

ð14Þ

Definition 6 [44]. Supposing ali = ([μai, μbi], [vci, vdi]) is
an IVIFN, we can define the accuracy function af of the
IVIFN ali as follows:

af alið Þ ¼ μai þ μbi þ vci þ vdi
2

ð15Þ

Definition 7 [44]. If al1 = ([μa1, μb1], [vc1, vd1]) and
al2 = ([μa2, μb2], [vc2, vd2]) are two IVIFNs, we can get

(1) If sf(al1) > sf(al2), then al1 > al2;
(2) If sf(al1) = sf(al2), then.
If af(al1) > af(al2), then al1 > al2;
If af(al1) = af(al2), then al1 = al2.
Example 2. Supposing al1 = ([0.4, 0.5], [0.2, 0.3]) and al2-

= ([0.2, 0.5], [0.1, 0.3]) are two IVIFNs, then based on the
Definition 7, we can get the following results:

s al1ð Þ ¼ 0:4þ 0:5−0:2−0:3
2

¼ 0:2; s al2ð Þ

¼ 0:2þ 0:5−0:1−0:3
2

¼ 0:15:

Because sf(al1) > sf(al2), we can get al1 > al2.
If al1 = ([0.4, 0.5], [0.2, 0.3]) and al2 = ([0.2, 0.5], [0.1,

0.2]), then we can get

sf al1ð Þ ¼ 0:4þ 0:5−0:2−0:3
2

¼ 0:2; sf al2ð Þ ¼ 0:2þ 0:5−0:1−0:2
2

¼ 0:2;

af al1ð Þ ¼ 0:4þ 0:5þ 0:2þ 0:3

2
¼ 0:7; af al2ð Þ ¼ 0:2þ 0:5þ 0:1þ 0:2

2
¼ 0:5:

Because sf(al1) = sf(al2) and af(al1) > af(al2), we can get
al1 > al2.

The Power Bonferroni Mean Operator and Power
Geometric Bonferroni Mean Operator

Definition 8 [41]. Let rak(k = 1, 2, ⋯ , n) be a set of positive
real numbers and x , y ≥ 0 the aggregation function

PBMx;y ra1; ra2; ⋅⋅⋅; ranð Þ

¼ 1

n2−n
∑
n

g ¼ 1; h ¼ 1
g≠h

n T rag
� �þ 1

� �
∑
n

t¼1
T ratð Þ þ 1ð Þ

rag

0
BB@

1
CCA

x

⊗
n T rahð Þ þ 1ð Þ
∑
n

t¼1
T ratð Þ þ 1ð Þ

rah

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
xþy

ð16Þ

is called power Bonferroni mean (PBM) operator.

Definition 9 [41]. Let rak(k = 1, 2, ⋯ , n) be a set of posi-
tive real numbers and x , y > 0 the aggregation function

PGBMx;y ra1; ra2; :::; ranð Þ

¼ 1

xþ y
∏
n

g ¼ 1; h ¼ 1
g≠h

xrag

n T ragð Þþ1ð Þ
∑
n

t¼1
T ratð Þþ1ð Þ þ yrah

n T rahð Þþ1ð Þ
∑
n

t¼1
T ratð Þþ1ð Þ

0
@

1
A

0
BBBB@

1
CCCCA

1
n2−n

ð17Þ
is called power geometric Bonferroni mean (PGBM) operator.

In definitions 8 and 9, T rag
� � ¼ ∑

n

h¼1
h≠g

Sup rag; rah
� �

, and

Sup(rag, rah) is the support degree for rag from rah satisfying
the properties as

1. Sup(rag, rah) = 1 − d(rag, rah), so Sup(rag, rah) ∈ [0, 1];
2. Sup(rag, rah) = Sup(rah, rag);
3. If |rag − rah| < |ral − rar|, then Sup(rag, rah) > Sup(ral,

rar).

where d is Euclidean distance from Definition 3. T(rag) can
represent the support of rag by all the other numbers, and the
closer two values are, the bigger the support degree is.

Some Interval-Valued Intuitionistic Fuzzy PBM
Operators

On the basis of IVIFNs, the PBM and PGBMoperators, we shall
propose the weighted PBM (IVIFWPBM) operator of the
IVIFNs and the weighted PGBM (IVIFWPGBM) operator of
the IVIFNs.

The Interval-Valued Intuitionistic Fuzzy Power
Bonferroni Mean Operator

Definition 10 [41]. Suppose alj = ([μaj, μbj], [vcj, vdj]) is a set
of the IVIFNs (j = 1, 2, ⋯ , n), then the IVIFPBM operator is
defined as

IVIFPBMx;y al1; al2; ⋅⋅⋅; alnð Þ

¼ 1

n2−n
∑
n

g ¼ 1; h ¼ 1
g≠h

n T alg
� �þ 1

� �
∑
n

t¼1
T altð Þ þ 1ð Þ

alg

0
BB@

1
CCA

x

⊗
n T alhð Þ þ 1ð Þ
∑
n

t¼1
T altð Þ þ 1ð Þ

alh

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
xþy

ð18Þ

where T alg
� � ¼ ∑

n

h¼1;h≠g
Sup alg; alh

� �
, x , y > 0.
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Theorem 2. Based on the IVIFNs alj = ([μaj,μbj], [vcj, vdj])
(j = 1, 2, 3, ⋯ , n), the aggregated result from Definition 10 is
expressed by

IVIFPBMx;y al1; al2; ⋅⋅⋅; alnð Þ ¼ 1− ∏
¼

g
1; h ¼ 1 g≠hn 1− 1− 1−μag

� � n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
@

1
A

x

� 1− 1−μahð Þ
n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
@

1
A

y0
B@

1
CA

0
B@

1
CA

1
n2−n

0
BB@

1
CCA

1
xþy

;

2
6664

0
BBB@

1− ∏
¼

g
1; h ¼ 1 g≠hn 1− 1− 1−μbg

� � n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
@

1
A

x

� 1− 1−μbhð Þ
n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
@

1
A

y0
B@

1
CA

0
B@

1
CA

1
n2−n

0
BB@

1
CCA

1
xþy

3
7775;

1− 1− ∏
¼

g
1; h ¼ 1 g≠hn 1− 1−vcg

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
@

1
A

x

1−vch

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
@

1
A

y0
B@

1
CA

0
B@

1
CA

1
n2−n

0
BB@

1
CCA

1
xþy

;

2
6664

1− 1− ∏
¼

g
1; h ¼ 1 g≠hn 1− 1−vdg

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
@

1
A

x

1−vdh

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
@

1
A

y0
B@

1
CA

0
B@

1
CA

1
n2−n

0
BB@

1
CCA

1
xþy

3
7775

1
CCCA

ð19Þ

Proof.

Let τk ¼ n T alkð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

k ¼ 1; 2;⋯; nð Þ, we can get

IVIFPBMx;y al1; al2; ⋅⋅⋅; alnð Þ ¼ 1

n2−n
∑
n

g ¼ 1; h ¼ 1
g≠h

τg⋅alg
� �x⊗ τh⋅alhð Þy� �

0
BBBB@

1
CCCCA

1
xþy

:

Calculate τg ⋅ alg and τh ⋅ alh, and we can get

τg⋅alg ¼ 1− 1−μag
� �τg ; 1− 1−μbg

� �τg� �
; vcτgg ; vdτgg
h i� �

;

τh⋅ alh ¼ 1− 1−μahð Þτh ; 1− 1−μbhð Þτh½ �; vcτhh ; vd
τh
h

� �� �
:

1. Calculate (τg ⋅ alg)x and (τh ⋅ alh)y, and we can get

τg⋅alg
� �x ¼ 1− 1−μag

� �τg� �x
; 1− 1−μbg

� �τg� �x� �
; 1− 1−vcτgg

� �x
; 1− 1−vdτgg

� �xh i� �
;

τh⋅alhð Þy ¼ 1− 1−μahð Þτhð Þy; 1− 1−μbhð Þτhð Þy½ �; 1− 1−vcτhh
� �y

; 1− 1−vdτhh
� �y� �� �

:

2. Calculate (τg ⋅ alg)x⊗ (τh ⋅ alh)y, and we can get
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τg⋅alg
� �

x⊗ τh⋅alhð Þ y ¼ 1− 1−μag
� �τg� �x�� �

1− 1−μahð Þτhð Þ y; 1− 1−μbg
� �τg� �

x � 1− 1−μbhð Þτhð Þ y�;
1− 1−vcτgg

� ��
x � 1−vcτhh

� �
y; 1− 1−vdτgg

� �
x � 1−vdτhh

� �
y�Þ

Calculate ∑ g ¼ 1; h ¼ 1 g≠hn τg ⋅alg
� ��

x⊗ τh⋅alhð Þ yÞ,
and we get

∑
n

g ¼ 1; h ¼ 1
g≠h

τg⋅alg
� �x⊗ τh⋅alhð Þy� � ¼ 1− ∏

n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μag
� �τg� �x � 1− 1−μahð Þτhð Þy� �

; 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μbg
� �τg� �x � 1− 1−μbhð Þτhð Þy� �

2
66664

3
77775

0
BBBB@ ;

∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−vcτgg
� �x

� 1−vcτhh
� �y� �

; ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−vdτgg
� �x

� 1−vdτhh
� �y� �

2
66664

3
77775

1
CCCCA:

3. Calcu la te 1
n n−1ð Þ ∑ g ¼ 1; h ¼ 1 g≠hn τg⋅alg

� ��
x⊗

τh⋅alhð Þ yÞ, and we get

1

n n−1ð Þ ∑
n

g ¼ 1; h ¼ 1
g≠h

τg⋅alh
� �x⊗ τh⋅alhð Þy� � ¼ 1− ∏

n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μag
� �τg� �x � 1− 1−μahð Þτhð Þy� � 1

n2−n ; 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μbg
� �τg� �x � 1− 1−μbhð Þτhð Þy� � 1

n2−n

2
66664

3
77775

0
BBBB@ ;

∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−vcτgg
� �x

� 1−vcτhh
� �y� � 1

n2−n
; ∏

n

g ¼ 1; h ¼ 1
g≠h

1− 1−vdτgg
� �x

� 1−vdτhh
� �y� � 1

n2−n

2
66664

3
77775

1
CCCCA:

4. Calculate 1
n n−1ð Þ ∑ g ¼ 1; h ¼ 1

�
g≠hn τg⋅alg

� ��
x⊗

τh⋅alhð Þ yÞÞ 1
xþy, and we get

1

n n−1ð Þ ∑
n

g ¼ 1; h ¼ 1
g≠h

τg ⋅alg
� �x⊗ τh⋅alhð Þy� �

0
BBBB@

1
CCCCA

1
xþy

¼ 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μag
� �τg� �x � 1− 1−μahð Þτhð Þy� � 1

n2−n

0
BBBB@

1
CCCCA

1
xþy

;

2
666664

0
BBBBB@

1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μbg
� �τg� �x � 1− 1−μbhð Þτhð Þy� � 1

n2−n

0
BBBB@

1
CCCCA

1
xþy

3
777775
;

1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−vcτgg
� �x

� 1−vcτhh
� �y� � 1

n2−n

0
BBBB@

1
CCCCA

1
xþy

; 1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−vdτgg
� �x

� 1−vdτhh
� �y� � 1

n2−n

0
BBBB@

1
CCCCA

1
xþy

2
666664

3
777775

1
CCCCCA
:

5. Replace τ k ¼ n T alkð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

, and we get
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1

n n−1ð Þ ∑
n

g ¼ 1; h ¼ 1
g≠h

n T alg
� �þ 1

� �
∑
n

t¼1
T altð Þ þ 1ð Þ

alg

0
BB@

1
CCA

x

⊗
n T alhð Þ þ 1ð Þ
∑
n

t¼1
T altð Þ þ 1ð Þ

alh

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
xþy

¼

1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μag
� �

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1− 1−μahð Þ

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
n2−n

0
BBBBB@

1
CCCCCA

1
xþy

;

2
6666664

0
BBBBBB@

1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μbg
� �

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1− 1−μbhð Þ

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
n2−n

0
BBBBB@

1
CCCCCA

1
xþy

3
7777775
;

1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−vcg

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

x

1−vch

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
n2−n

0
BBBBB@

1
CCCCCA

1
xþy

;

2
6666664

1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−vdg

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

x

1−vdh

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
n2−n

0
BBBBB@

1
CCCCCA

1
xþy

3
7777775

1
CCCCCCA
:

ð20Þ

The proof ends.
Now, we will give an example to demonstrate the aggrega-

tion process.
Example 3. Suppose that there are two IVIFNs al1 = ([0.1,

0.3], [0.4, 0.5]) and al2 = ([0.2, 0.4], [0.3, 0.5]), and let x = 1 ,
y = 2, then we can derive the following results:

Calculate τ k ¼ n T alkð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

, we can get τ1 ¼ 2 T al1ð Þþ1ð Þ
∑
2

t¼1
T altð Þþ1ð Þ

¼

1 and τ2 ¼ 2 T al2ð Þþ1ð Þ
∑
2

t¼1
T altð Þþ1ð Þ

¼ 1. So, IVIFPBM1;2 al1; al2ð Þ ¼

1− 1− 1− 1−0:1ð Þ1
� �1

⊗ 1− 1−0:2ð Þ1
� �2

	 

⊗ 1− 1−ððð

		�	

1−0:2Þ1Þ1⊗ 1− 1−0:1ð Þ1
� �2

ÞÞ12Þ13; 1− 1− 1−ðððð 1−0:3ð Þ1Þ1⊗

1− 1−0:4ð Þ1
� �2

Þ⊗ 1− 1− 1−0:4ð Þ1
� �1

⊗ 1− 1−0:3ð Þ1
� �2

	 

Þ12

Þ13�; 1− 1− 1− 1−0:41
� �1

1−0:31
� �2� �

⊗ 1− 1−0:31
� �1���h

1−0:41
� �2ÞÞ12Þ13; 1− 1− 1− 1−0:51

� �1���
1−0:51
� �2Þ⊗

1− 1−0:51
� �1

1−0:51
� �2� �

Þ12Þ13�Þ ¼ 0:1442; 0:6490½ �ð
; 0:3510; 0:5½ �Þ:

By the operations of IVIFNs, several properties of the
IVIFPBM operator shall be proved.

Theorem 3 (idempotency). Suppose alk = al = ([ua, ub],-
[vc, vd])(k = 1, 2, ... , n), then

IVIFPBM al1; al2; :::; alnð Þ ¼ al:

Proof.
Since alk = al(k = 1, 2, ... , n), then according to Definition

10,
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IVIFPBMx;y al1; al2;…; alnð Þ ¼ 1

n2−n
∑
n

g ¼ 1; h ¼ 1
g≠h

n T alg
� �þ 1

� �
∑
n

t¼1
T altð Þ þ 1ð Þ

alg

0
BB@

1
CCA

x

⊗
n T alhð Þ þ 1ð Þ
∑
n

t¼1
T altð Þ þ 1ð Þ

alh

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
xþy

¼

1

n2−n
∑
n

g ¼ 1; h ¼ 1
g≠h

n T alð Þ þ 1ð Þ
∑
n

t¼1
T alð Þ þ 1ð Þ

al

0
BB@

1
CCA

x

⊗
n T alð Þ þ 1ð Þ
∑
n

t¼1
T alð Þ þ 1ð Þ

al

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
xþy

¼ 1

n2−n
∑
n

g ¼ 1; h ¼ 1
g≠h

al xþyð Þ

0
BBBB@

1
CCCCA

1
xþy

¼ al:

Theorem 4 (commutativity). Suppose al
0
k is any permuta-

tion of alk(k = 1, 2, ... , n), then

IVIFPBM al
0
1; al

0
2; :::; al

0
n

� �
¼ IVIFPBM al1; al2; :::; alnð Þ:

Proof.
Based on Definition 10, we get

IVIFPBMx;y al
0
1; al

0
2;…; al

0
n

� �
¼ 1

n2−n
∑
n

g ¼ 1; h ¼ 1
g≠h

n T al
0
g

� �
þ 1

� �

∑
n

t¼1
T al

0
t

� �þ 1
� � al0i

0
BB@

1
CCA

x

⊗
n T al

0
h

� �
þ 1

� �

∑
n

t¼1
T al

0
t

� �þ 1
� � al0j

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
xþy

; ðandÞ

IVIFPBMx;y al1; al2;…; alnð Þ ¼ 1

n2−n
∑
n

g ¼ 1; h ¼ 1
g≠h

n T alg
� �þ 1

� �
∑
n

t¼1
T altð Þ þ 1ð Þ

alg

0
BB@

1
CCA

x

⊗
n T alhð Þ þ 1ð Þ
∑
n

t¼1
T altð Þ þ 1ð Þ

alh

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
xþy

Because

∑
n

g ¼ 1; h ¼ 1
g≠h

n T al
0
g

� �
þ 1

� �

∑
n

t¼1
T al

0
t

� �þ 1
� � al0g

0
BB@

1
CCA

x

⊗
n T al

0
h

� �
þ 1

� �

∑
n

t¼1
T al

0
t

� �þ 1
� � al0h

0
BB@

1
CCA

y0
BB@

1
CCA

¼ ∑
n

g ¼ 1; h ¼ 1
g≠h

n T alg
� �þ 1

� �
∑
n

t¼1
T altð Þ þ 1ð Þ

alg

0
BB@

1
CCA

x

⊗
n T alhð Þ þ 1ð Þ
∑
n

t¼1
T altð Þ þ 1ð Þ

alh

0
BB@

1
CCA

y0
BB@

1
CCA;
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T h u s , IVIFPBM al
0
1; al

0
2; :::; al

0
n

� �
¼ IVIFPBM

al1; al2; :::; alnð Þ.
In the IVIFPBM operator, it is noted that we only consider

the power weight vector and the interrelationship among input
arguments and do not take the importance of the input argu-

ments into account. In what follows, the IVIFWPBM operator
shall be proposed to overcome the shortcoming.

Definition 11. Suppose alj = ([μaj, μbj], [vcj, vdj]) is a set of
the IVIFNs (j = 1, 2, ⋯ , n), then the IVIFWPBM operator is
defined as

IVIFWPBMx;y al1; al2; ⋅⋅⋅; alnð Þ ¼ 1

n2−n
∑
n

g ¼ 1; h ¼ 1
g≠h

nωg T alg
� �þ 1

� �
alg

∑
n

t¼1
ωt T altð Þ þ 1ð Þ

0
BB@

1
CCA

x

nωh T alhð Þ þ 1ð Þalh
∑
n

t¼1
ωt T altð Þ þ 1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
xþy

ð21Þ

w h e r e T alg
� � ¼ ∑

n

h¼1;h≠g
Sup alg; alh

� �
, x , y > 0 .

ω = (ω1, ω2, ⋯ , ωn)
T is the weight vector of the IVIFNs,

0 ≤ ωk ≤ 1 (k = 1, 2, ... , n) and ∑
n

k¼1
ωk ¼ 1.

Theorem 5. Suppose alj = ([μaj, μbj], [vcj, vdj]) is a set of
the IVIFNs (j = 1, 2⋯, n) and x , y > 0, then the aggregated
result from Definition 11 is expressed by

IVIFWPBMx;y al1; al2; ⋅⋅⋅; alnð Þ ¼

1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μag
� �

nωg T algð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1− 1−μahð Þ

nωh T alhð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
n2−n

0
BBBBB@

1
CCCCCA

1
xþy

;

2
6666664

0
BBBBBB@

1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−μbg
� �

nωg T algð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1− 1−μbhð Þ

nωh T alhð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
n2−n

0
BBBBB@

1
CCCCCA

1
xþy

3
7777775
;

1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−vcg

nωg T algð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

x

1−vch

nωh T alhð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
n2−n

0
BBBBB@

1
CCCCCA

1
xþy

;

2
6666664

1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−vdg

nωg T algð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

x

1−vdh

nωh T alhð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

0
BBBB@

1
CCCCA

1
n2−n

0
BBBBB@

1
CCCCCA

1
xþy

3
7777775

1
CCCCCCA
:

ð22Þ
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The Interval-Valued Intuitionistic Fuzzy Power
Geometric Bonferroni Mean Operator

Definition 12 [41]. Suppose alj = ([μaj, μbj], [vcj, vdj]) is a set
of the IVIFNs (j = 1, 2⋯, n), then the IVIFPGBM operator is
defined as

IVIFPGBMx;y al1; al2; ⋅⋅⋅; alnð Þ ¼ 1

xþ y
∏
n

g ¼ 1; h ¼ 1
g≠h

xalg

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ þ yalh

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
@

1
A

0
BBBB@

1
CCCCA

1
n n−1ð Þ

ð23Þ

where T alg
� � ¼ ∑

n

h¼1;h≠g
Sup alg; alh

� �
, x , y > 0.

Theorem 8. Suppose alj = ([μaj, μbj], [vcj, vdj]) is a set of
IVIFNs (j = 1, 2⋯, n), then the aggregated result according to
Definition 12 is expressed by

IVIFPGBMx;y al1; al2; ⋅⋅⋅; alnð Þ ¼

1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−μag

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1−μah

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

1
n2−n

0
BBBB@

1
CCCCA

1
xþy

;

0
BBBBB@

2
666664

0
BBBBB@

1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−μbg

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1−μbh

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

1
n2−n

0
BBBB@

1
CCCCA

1
xþy

3
777775
;

1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−vcg
� �

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1− 1−vchð Þ

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

1
n2−n

0
BBBB@

1
CCCCA

1
xþy

;

2
666664

1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−vdg
� �

n T algð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1− 1−vdhð Þ

n T alhð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

1
n2−n

0
BBBB@

1
CCCCA

1
xþy

;

3
777775

1
CCCCCA
:

ð24Þ
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Similar to Theorem 2, the proof of Theorem 8 is omitted.
Now, we will give an example to demonstrate the aggrega-

tion process.
Example 4. Suppose that al1 = ([0.1, 0.3], [0.4, 0.5]) and

al2 = ([0.2, 0.4], [0.3, 0.5]) are two IVIFNs, and let x = 1 , y =
2, then we can derive the following results.

Calculate τ k ¼ n T alkð Þþ1ð Þ
∑
n

t¼1
T altð Þþ1ð Þ

, we can get

τ1 ¼ 2 T al1ð Þþ1ð Þ
∑
2

t¼1
T altð Þþ1ð Þ

¼ 1, τ2 ¼ 2 T al2ð Þþ1ð Þ
∑
2

t¼1
T altð Þþ1ð Þ

¼ 1. So,

IVIFPGBM1;2 al1; al2ð Þ ¼ 1− 1− 1− 1−0:11
� ������

1

� 1−0:21
� �

2Þ12 � 1− 1−0:21
� ��

1 � 1−0:11
� �

2Þ12Þ13;
1− 1− 1− 1−0:31

� ����
1 � 1−0:41

� �
2Þ12 � 1− 1−0:41

� ��
1 �

1−0:31
� �

2Þ12Þ13� ; 1− 1− 1− 1−0:4ð Þððð½ 1Þ 1 � 1− 1−0:3ð Þð 1Þ 2

Þ12 � 1− 1− 1−0:3ð Þðð 1Þ 1 � 1− 1−0:4ð Þð 1Þ 2Þ12Þ13;
1− 1− 1− 1−0:4ð Þððð½ 1Þ 1 � 1− 1−0:3ð Þð 1Þ 2Þ12 �
1− 1− 1−0:3ð Þðð 1Þ 1 � 1− 1−0:4ð Þð 1Þ 2Þ12Þ13�Þ ¼
0:1502; 0:3510½ �ð ; 0:3477; 0:5½ �Þ:
By the operations of IVIFNs, several properties of the

IVIFPGBM operator shall be proved.
Theorem 9 (idempotency). Suppose alk = al = ([ua, ub],-

[vc, vd])(k = 1, 2, ... , n), then

IVIFPGBM al1; al2; :::; alnð Þ ¼ al:

Similar to Theorem 3, the proof of Theorem 9 is omitted.

Theorem 10 (commutativity). Let al
0
k be any permutation

of alk(k = 1, 2, ... , n), then

IVIFPGBM al1; al2; :::; alnð Þ

¼ IVIFPGBM al
0
1; al

0
2; :::; al

0
n

� �
:

Similar to Theorem 4, the proof of Theorem 10 is omitted.
Similar to the IVIFWPBM operator, the IVIFWPGBM op-

erator shall be given to overcome the shortcoming of the
IVIFPGBM operator.

Definition 13. Suppose alj = ([μaj, μbj], [vcj, vdj]) is a set of
the IVIFNs (j = 1, 2⋯, n), IVIFWPGBM: Ωn→Ω, then

IVIFWPGBMx;y al1; al2; ⋅⋅⋅; alnð Þ

¼ 1

xþ y
∏
n

g ¼ 1; h ¼ 1
g≠h

xalg

nωg T algð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ þ yalh

nωh T alhð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
@

1
A

0
BBBB@

1
CCCCA

1
n2−n

ð25Þ

where Ω is the set of all IVIFNs, and

T alg
� � ¼ ∑

n

h¼1;h≠g
Sup alg; alh

� �
, x , y > 0 . ω = (ω 1 , ω 2 ,

⋯ , ωn)
T is the weight vector of the IVIFNs, 0 ≤ ωk ≤ 1 (k =

1, 2, ... , n) and ∑
n

k¼1
ωk ¼ 1.

Theorem 11. Let alj = ([μaj, μbj], [vcj, vdj]) be a set of the
IVIFNs (j = 1, 2⋯, n), x , y > 0, the result aggregated based on
Definition 13 is expressed by

IVIFWPGBMx;y al1; al2; ⋅⋅⋅; alnð Þ ¼

1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−μag

nωg T algð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1−μah

nωh T alhð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

1
n2−n

0
BBBB@

1
CCCCA

1
xþy

;

0
BBBBB@

2
666664

0
BBBBB@

1− 1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1−μbg

nωg T algð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1−μbh

nωh T alhð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

1
n2−n

0
BBBB@

1
CCCCA

1
xþy

3
777775
;

1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−vcg
� �

nωg T algð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1− 1−vchð Þ

nωh T alhð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

1
n2−n

0
BBBB@

1
CCCCA

1
xþy

;

2
666664

1− ∏
n

g ¼ 1; h ¼ 1
g≠h

1− 1− 1−vdg
� �

nωg T algð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

x

� 1− 1−vdhð Þ

nωh T alhð Þþ1ð Þ
∑
n

t¼1
ωt T altð Þþ1ð Þ

0
BB@

1
CCA

y0
BB@

1
CCA

1
n2−n

0
BBBB@

1
CCCCA

1
xþy

;

3
777775

1
CCCCCA
:

ð26Þ
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The MAGDM Approach Based on Interval-Valued
Intuitionistic Fuzzy Power Bonferroni Mean
and Interval-Valued Intuitionistic Fuzzy Power
Geometric Bonferroni Mean Operators

For a MAGDM problemwith IVIFNs, in which the attributes’
and experts’weights are known, let Z = {z1, z2, ⋯ , zm} be the
set of all alternatives, A = {a1, a2, ⋯ , an} be the set of attri-
butes, and E = {e1, e2, ⋯ , et} be the set of all experts.

Assume that ~akgh ¼ akgh; b
k
gh

h i�
; ckgh; d

k
gh

h i
Þ is the attribute

evaluation value given by the expert ek for the alternative zg
about the attribute ah. ω = (ω1, ω2, ⋯ , ωn) is the weight vector

of {a1, a2, ⋯ , an} satisfying with ωh∈ 0; 1½ �; ∑
n

h¼1
ωh ¼ 1.

γ = (γ1, γ2, ⋯ , γt) is the weight vector of {e1, e2, ⋯ , et}, and

γk∈ 0; 1½ �; ∑
t

k¼1
γk ¼ 1 k ¼ 1; 2;⋯; tð Þ, then the goal of this

MAGDM problem is to rank the alternatives.

The Decision-Making Steps Based on Interval-Valued
Intuitionistic Fuzzy Weighted Power Bonferroni Mean
and Interval-Valued Intuitionistic Fuzzy Weighted Power
Geometric Bonferroni Mean Operators

Step 1. Normalize the decision matrix.

Generally, if there are the different types in attributes, we
need to convert them to the same type. For convenience, we
need to convert the cost type to the benefit type by the follow-
ing method:

~r
k

gh ¼ u
k

gh; u
k

gh

� �
; f

k

gh
; f

k

gh

� �	 


¼
akgh; b

k
gh

h i
; ckgh; d

k
gh

h i� �
for benefit attributeah

ckgh; d
k
gh

h i
; akgh; b

k
gh

h i� �
for cost attributeah

8<
:

ð27Þ

So, the decision matrices ~A ¼ ~akgh
h i

m�n
can be converted

to matrices ~R ¼ ~rkgh
h i

m�n
.

Step 2. Calculate the supports Sup ~rkgh;~r
k
gl

� �
g ¼ 1; 2;⋯;m; k ¼ 1; 2ð ⋯; t;

h; l ¼ 1; 2;⋯; nÞ by

Sup ~r
k

gh;~r
k

gl

	 

¼ 1−d ~r

k

gh;~r
k

gl

	 

ð28Þ

where d ~rkgh;~r
k
gl

� �
is the Euclidean distance between two

IVIFNs ~rkgh and ~r
k
gl, which is from Definition 3.

Step 3. Calculate T ~rkgh
� �

by

T ~r
k

gh

	 

¼ ∑

n

l ¼ 1
l≠h

Sup ~r
k

gh;~r
k

gl

	 

g ¼ 1; 2;⋯;m; k ¼ 1; 2⋯; t; h ¼ 1; 2;⋯; nð Þ

ð29Þ

S t e p 4 . C a l c u l a t e τ kgh ¼
nωh 1þT ~rkghð Þð Þ
∑
n

t¼1
ωt 1þT ~rkgtð Þð Þ g ¼ 1; 2;⋯;m; kð

¼ 1; 2⋯; t; h ¼ 1; 2;⋯; nÞ .

Step 5. Utilize the IVIFWPBM or IVIFWPGBM operator.

~r
k

g ¼ u
k

g; u
k

g

� �
;
h
f
k

g
; f

k

g

i	 

¼ IVIFWPBM ~r

k

g1;~r
k

g2;⋯;~r
k

gn

	 


or IVIFWPGBM ~r
k

g1;~r
k

g2;⋯;~r
k

gn

	 

ð30Þ

t o d e t e r m i n e t h e o v e r a l l I V I F N s

~rkg g ¼ 1; 2;⋯;m; k ¼ 1; 2⋯; tð Þ.

S t e p 6 . C a l c u l a t e t h e s u p p o r t s Sup ~rkg;~rlg
� �

g ¼ 1; 2;⋯;m; k; l ¼ 1; 2;⋯; tð Þ by

Sup ~r
k

g;~r
l

g

	 

¼ 1−d ~r

k

g;~r
l

g

	 

; ð31Þ

where d ~rkg;~rlg
� �

is the Euclidean distance between two

IVIFNs ~rkg and~rlg, which is from Definition 3.

Step 7. CalculateT ~rkg
� �

by

T ~r
k

g

	 

¼ ∑

t

l ¼ 1
l≠g

Sup ~r
k

g;~r
l

g

	 

g ¼ 1; 2;⋯;m; k ¼ 1; 2;⋯; tð Þ ð32Þ

S t e p
8. Calculateτ kg ¼

tγk 1þT ~rkgð Þð Þ
∑
t

k¼1
γk 1þT ~rkgð Þð Þ g ¼ 1; 2;⋯;m; k ¼ 1; 2⋯; tð Þ.

Step 9: Use IVIFWPBM or IVIFWPGBM operators to get
the collective IVIFNs ~rg g ¼ 1; 2; :::;mð Þ.
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For zg=1 to m        ; read original data

For zh=1 to n
For zk=1 to t

A[zg][zh][zk]= zk
zg zha ; read the data of decision matrices A to array A[m][n][t].

For zh=1 to n           ; Normalize the data

If Czh is cost type, then R[zg][zh][zk]= Neg(A[zg][zh][zk]); 
else R[zg][zh][zk]= A[zg][zh][zk].

For zg=1 to m        ; calculate supports

For zh=1 to n
For zl=1 to n
For zk=1 to t

Do {(1) calculate D[zg][zh][zl][zk];
(2) calculate SUP[zg][zh][zl][zk];

}
For zg=1 to m        ; calculate synthetic weights 

For zh=1 to n
For zk=1 to t

Do {(1) calculate T[zg][zh][zk];
(2) calculate [zg][zh][zk];

}
For zg=1 to m        ; calculate overall preference values

For zk=1 to t
Do {calculate R1[zg][zk];

}
For zg=1 to m        ; calculate supports

For zl=1 to t
For zk=1 to t

Do {(1) calculate D1[zg] [zl][zk];
(2) calculate SUP1[zg][zl][zk];

}
For zg=1 to m        ; calculate synthetic weights

For zk=1 to t
Do {(1) calculate T1[zg][zk];

(2) calculate 1 [zg][zk];
}

For zg=1 to m        ; calculate collective overall preference values

Do {(1) calculate R2[zg];
(2)calculate score function values S[zg];

}
For zg=1 to m        ; rank alternatives. 

Do {rank S[zg];
}
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~rg ¼ ug; ug
h i

;
h
f
g
; f g

i� �
¼ IVIFWPBM ~r

1

g;~r
2

g;⋯;~r
t

g

	 


or IVIFWPGBM ~r
1

g;~r
2

g;⋯;~r
t

g

	 

ð33Þ

Step 10: Calculate the score function sf ~rg
� �

and accuracy

function af ~rg
� �

of the collective IVIFNs~rg g ¼ 1; 2; :::;mð Þ.
Step 11: Rank all the alternatives {z1, z2, ⋯ , zm} by com-

parison method of IVIFNs, and opt for the most eligible
alternative(s).

Step 12: End.
In order to easily perform the steps, we can give some

pseudo codes as follows:

An application example

This example is adapted from Liu [19]. Suppose that four
alternatives (z1, z2, z3, z4) representing the air quality of 2006,
2007, 2008, and 2009 are evaluated (the air quality of
Guangzhou). Three attributes are taken into consideration,
including the SO2 (a1), the NO2 (a2), and the PM10 (a3).

The weight vector about criteria is provided by (0.40, 0.20,
0.40)T. The possible alternatives zg(g = 1, 2, 3, 4) are assessed
by three air-quality monitoring stations regarded as experts
(e1, e2, e3). The weight vector about experts is provided
by(0.314, 0.355, 0.331)T. The assessment values are repre-
sented by the IVIFNs, which are listed in Tables 1, 2, and 3.

Rank the Alternatives by the Proposed Method Based
on the Interval-Valued Intuitionistic Fuzzy Power
Bonferroni Mean Operator

Step 1: Transform the decision matrix ~A
k ¼ ~akgh

� �
m�n into

the normalized matrix ~R
k ¼ ~rkgh

� �
m�n.

Because all the attributes are the same type, they do not
need to be normalized.

Step 2: Calculate the supportsSup ~rkgh;~r
k
gl

� �
.

By formula (28), calculate the supports Sup ~rkgh;~r
k
gl

� �
(for

s i m p l i c i t y , w e d e n o t e Sup ~rkgh;~r
k
gl

� �
w i t h

Skgh;gl h; l ¼ 1; 2; 3; g ¼ 1; 2; 3; 4; k ¼ 1; 2; 3:ð Þ ). We can get

S111;12 ¼ S112;11 ¼ 0:8502; S112;13 ¼ S113;12 ¼ 0:8374; S111;13 ¼ S113;11 ¼ 0:8964
S121;22 ¼ S122;21 ¼ 0:8874; S122;23 ¼ S123;22 ¼ 0:8503; S121;23 ¼ S123;21 ¼ 0:9149
S131;32 ¼ S132;31 ¼ 0:8701; S132;33 ¼ S133;32 ¼ 0:8742; S131;33 ¼ S133;31 ¼ 0:9388
S141;42 ¼ S142;41 ¼ 0:9423; S142;43 ¼ S143;42 ¼ 0:8569; S141;43 ¼ S143;41 ¼ 0:8873
S211;12 ¼ S212;11 ¼ 0:9178; S212;13 ¼ S213;12 ¼ 0:8188; S211;13 ¼ S213;11 ¼ 0:7655
S221;22 ¼ S222;21 ¼ 0:8280; S222;23 ¼ S223;22 ¼ 0:7916; S221;23 ¼ S223;21 ¼ 0:8402
S231;32 ¼ S232;31 ¼ 0:8504; S232;33 ¼ S233;32 ¼ 0:9150; S231;33 ¼ S233;31 ¼ 0:9209
S241;42 ¼ S242;41 ¼ 0:9390; S242;43 ¼ S243;42 ¼ 0:8184; S241;43 ¼ S243;41 ¼ 0:8642
S311;12 ¼ S312;11 ¼ 0:9573; S312;13 ¼ S313;12 ¼ 0:9348; S311;13 ¼ S313;11 ¼ 0:9441
S321;22 ¼ S322;21 ¼ 0:8818; S322;23 ¼ S323;22 ¼ 0:7967; S321;23 ¼ S323;21 ¼ 0:8725
S331;32 ¼ S332;31 ¼ 0:8972; S332;33 ¼ S333;32 ¼ 0:9333; S331;33 ¼ S333;31 ¼ 0:8948
S341;42 ¼ S342;41 ¼ 0:8364; S342;43 ¼ S343;42 ¼ 0:8249; S341;43 ¼ S343;41 ¼ 0:8042

S t e p 3 :

CalculateT ~rkgh
� �

h ¼ 1; 2; 3; g ¼ 1; 2; 3; 4; k ¼ 1; 2; 3ð Þ by

formula (29) (for simplicity, we denote T ~rkgh
� �

withTgh
k).

Table 1 Air quality data from
station e1 a1 a2 a3

z1 ([0.220, 0.310], [0.230, 0.540]) ([0.130, 0.530], [0.200, 0.360]) ([0.120, 0.370], [0.400, 0.560])

z2 ([0.280, 0.410], [0.330, 0.490]) ([0.330, 0.530], [0.200, 0.360]) ([0.120, 0.370], [0.300, 0.460])

z3 ([0.320, 0.410], [0.230, 0.440]) ([0.430, 0.530], [0.160, 0.250]) ([0.230, 0.450], [0.210, 0.370])

z4 ([0.390, 0.470], [0.180, 0.360]) ([0.390, 0.530], [0.270, 0.320]) ([0.280, 0.340], [0.110, 0.230])
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T 1
11 ¼ 1:7466; T1

12 ¼ 1:6876; T1
13 ¼ 1:7339; T1

21 ¼ 1:8023; T 1
22 ¼ 1:7377; T1

23 ¼ 1:7651
T 1

31 ¼ 1:8089; T1
32 ¼ 1:7443; T1

33 ¼ 1:8130; T1
41 ¼ 1:8296; T 1

42 ¼ 1:7992; T1
43 ¼ 1:7442

T 2
11 ¼ 1:6833; T2

12 ¼ 1:7366; T2
13 ¼ 1:5842; T2

21 ¼ 1:6683; T 2
22 ¼ 1:6196; T2

23 ¼ 1:6318
T 2

31 ¼ 1:7714; T2
32 ¼ 1:7654; T2

33 ¼ 1:8359; T2
41 ¼ 1:8031; T 2

42 ¼ 1:7574; T2
43 ¼ 1:6826

T 3
11 ¼ 1:9014; T3

12 ¼ 1:8921; T3
13 ¼ 1:8789; T3

21 ¼ 1:7543; T 3
22 ¼ 1:6785; T3

23 ¼ 1:6692
T 3

31 ¼ 1:7919; T3
32 ¼ 1:8305; T3

33 ¼ 1:8281; T3
41 ¼ 1:6406; T 3

42 ¼ 1:6613; T3
43 ¼ 1:6292

Step 4: Calculateτkgh(g = 1, 2, 3, 4; h = 1, 2, 3; k = 1, 2, 3.),
we get

τ111 ¼ 1:2074; τ112 ¼ 0:5907; τ113 ¼ 1:2018; τ121 ¼ 1:2120; τ122 ¼ 0:5920; τ123 ¼ 1:1959
τ131 ¼ 1:2048; τ132 ¼ 0:5886; τ133 ¼ 1:2066; τ141 ¼ 1:2173; τ142 ¼ 0:6021; τ143 ¼ 1:1806
τ211 ¼ 1:2131; τ212 ¼ 0:6186; τ213 ¼ 1:1683; τ221 ¼ 1:2110; τ222 ¼ 0:5945; τ223 ¼ 1:1945
τ231 ¼ 1:1894; τ232 ¼ 0:5934; τ233 ¼ 1:2171; τ241 ¼ 1:2251; τ242 ¼ 0:6025; τ243 ¼ 1:1724
τ311 ¼ 1:2045; τ312 ¼ 0:6003; τ313 ¼ 1:1952; τ321 ¼ 1:2218; τ322 ¼ 0:5941; τ323 ¼ 1:1841
τ331 ¼ 1:1906; τ332 ¼ 0:6035; τ333 ¼ 1:2060; τ141 ¼ 1:2002; τ142 ¼ 0:6048; τ143 ¼ 1:1950

Step 5: Utilize the IVIFWPBM operator to determine the

overall IVIFNs ~rkg, which is listed in Table 4 (suppose x , y =
1).

Step 6: Calculate the supports Sup ~rkg;~r
l
g

� �
based on for-

mula (31) (for simplicity, we denote Sup ~rkg;~r
l
g

� �
with

Sk;lg g ¼ 1; 2; 3; 4; k; l ¼ 1; 2; 3ð Þ ). We can get

S11;2 ¼ S12;1 ¼ 0:9192; S12;3 ¼ S13;2 ¼ 0:9489; S11;3 ¼ S13;1 ¼ 0:9027
S21;2 ¼ S22;1 ¼ 0:9165; S22;3 ¼ S23;2 ¼ 0:9281; S21;3 ¼ S23;1 ¼ 0:9128
S31;2 ¼ S32;1 ¼ 0:9190; S32;3 ¼ S33;2 ¼ 0:9222; S31;3 ¼ S33;1 ¼ 0:8527
S41;2 ¼ S42;1 ¼ 0:9809; S42;3 ¼ S43;2 ¼ 0:9168; S41;3 ¼ S43;1 ¼ 0:9022

Step 7: Calculate T ~rkg
� �

g ¼ 1; 2; 3; 4; k ¼ 1; 2; 3:ð Þ
based on formula (32) (for simplicity, we denote T ~rkg

� �
withTg

k).

T 1
1 ¼ 1:8219; T2

1 ¼ 1:8681; T3
1 ¼ 1:8516; T1

2 ¼ 1:8293; T2
2 ¼ 1:8446; T3

2 ¼ 1:8409
T 1

3 ¼ 1:7717; T2
3 ¼ 1:8413; T3

3 ¼ 1:7750; T1
4 ¼ 1:8831; T2

4 ¼ 1:8977; T3
4 ¼ 1:8190

Table 3 Air quality data from
station e3 a1 a2 a3

z1 ([0.250, 0.270], [0.230, 0.400]) ([0.170, 0.270], [0.260, 0.400]) ([0.210, 0.300], [0.170, 0.320])

z2 ([0.250, 0.290], [0.330, 0.390]) ([0.180, 0.460], [0.430, 0.500]) ([0.060, 0.210], [0.280, 0.300])

z3 ([0.220, 0.270], [0.270, 0.310]) ([0.130, 0.370], [0.160, 0.200]) ([0.110, 0.240], [0.140, 0.190])

z4 ([0.300, 0.480], [0.090, 0.450]) ([0.080, 0.530], [0.200, 0.240]) ([0.320, 0.610], [0.010, 0.090])

Table 2 Air quality data from
station e2 a1 a2 a3

z1 ([0.040, 0.210], [0.350,0.460]) ([0.100, 0.340], [0.270, 0.450]) ([0.320, 0.370], [0.130, 0.200])

z2 ([0.320, 0.390], [0.270,0.390]) ([0.030, 0.570], [0.300, 0.360]) ([0.160, 0.250], [0.140, 0.190])

z3 ([0.260, 0.370], [0.210,0.400]) ([0.230, 0.430], [0.060, 0.150]) ([0.210, 0.350], [0.110, 0.290])

z4 ([0.300, 0.430], [0.190,0.350]) ([0.280, 0.430], [0.310, 0.340]) ([0.390, 0.460], [0.010, 0.170])
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Step 8: Calculateτkg(g = 1, 2, 3, 4; k = 1, 2, 3.), we get

τ11 ¼ 0:9333; τ21 ¼ 1:0725; τ31 ¼ 0:9942; τ12

¼ 0:9389; τ22 ¼ 1:0673; τ32 ¼ 0:9938

τ13 ¼ 0:9333; τ23 ¼ 1:0817; τ33 ¼ 0:9850; τ14

¼ 0:9473; τ24 ¼ 1:0764; τ34 ¼ 0:9764

Step 9: Utilize the IVIFWPBM operator to determine the
collective IVIFNs~rg which is listed in Table 5 (suppose x , y =
1).

Step 10: Calculate the score functionsf ~rg
� �

, we get

sf ~r1
� �

¼ −0:1143; sf ~r2
� �

¼ −0:0809; sf ~r3
� �

¼ 0:0433; sf ~r4
� �

¼ 0:1410

Step 11: Rank all the alternatives.
According to sf ~rg

� �
, we rank the alternatives {z1, z2, z3, z4}

shown as follows:

z4 ≻ z3 ≻ z2 ≻ z1.

Rank the Alternatives by the Proposed Method Based
on the Interval-Valued Intuitionistic Fuzzy Weighted
Power Geometric Bonferroni Mean Operator

Step 1 to Step 4 is the same as those in the BRank the alterna-
tives by the proposed method based on the IVIFWPBM
operator^ section.

Step 5: Utilize the IVIFWPGBM operator to determine the

overall IVIFNs ~rkg, which is listed in Table 6 (supposex , y =
1).

Step 6: Calculate the supports Sup ~rkg;~r
l
g

� �
based on for-

mula (31) (for simplicity, we denote Sup ~rkg;~r
l
g

� �
with Sk;lg

k; l ¼ 1; 2; 3; g ¼ 1; 2; 3; 4:ð Þ ). We can get

S11;2 ¼ S12;1 ¼ 0:9232; S12;3 ¼ S13;2 ¼ 0:9526; S11;3 ¼ S13;1 ¼ 0:9106
S21;2 ¼ S22;1 ¼ 0:9280; S22;3 ¼ S23;2 ¼ 0:9312; S21;3 ¼ S23;1 ¼ 0:9211
S31;2 ¼ S32;1 ¼ 0:9209; S32;3 ¼ S33;2 ¼ 0:9263; S31;3 ¼ S33;1 ¼ 0:8698
S41;2 ¼ S42;1 ¼ 0:9831; S42;3 ¼ S43;2 ¼ 0:9275; S41;3 ¼ S43;1 ¼ 0:9143

Step 7: Calculate T ~rkg
� �

g ¼ 1; 2; 3; 4; k ¼ 1; 2; 3ð Þ based
on formula (32) (for simplicity, we denote T ~rkg

� �
withTg

k).

T 1
1 ¼ 1:8338; T2

1 ¼ 1:8758; T3
1 ¼ 1:8632; T1

2 ¼ 1:8490; T2
2 ¼ 1:8592; T3

2 ¼ 1:8523
T 1

3 ¼ 1:7907; T2
3 ¼ 1:8472; T3

3 ¼ 1:7961; T1
4 ¼ 1:8975; T2

4 ¼ 1:9106; T3
4 ¼ 1:8418; ;

Step 8: Calculateτkg(g = 1, 2, 3, 4; k = 1, 2, 3.), we get

Table 4 the overall IVIFNs ~rkg from three monitoring stations (e1, e2, e3)

e1 e2 e3

z1 ([0.1514, 0.3818], [0.2967, 0.5070]) ([0.1205, 0.2917], [0.2712, 0.3893]) ([0.2078, 0.2736], [0.2392, 0.3897])

z2 ([0.2208, 0.4182], [0.2942, 0.4551]) ([0.1650, 0.3762], [0.2567, 0.3348]) ([0.1437, 0.2961], [0.3379, 0.4087])

z3 ([0.3064, 0.4460], [0.2186, 0.3723]) ([0.2270, 0.3694], [0.1364, 0.2942]) ([0.1471, 0.2785], [0.2094, 0.2527])

z4 ([0.3394, 0.4276], [0.2033, 0.3224]) ([0.3168, 0.4290], [0.1842, 0.3064]) ([0.2369, 0.5244], [0.1114, 0.2903])

Table 5 The collective IVIFNs
~rg for four alternatives z1 z2 z3 z4

([0.1609, 0.3134], ([0.1746, 0.3617], ([0.2221, 0.3615], ([0.2961, 0.4590],

[0.2697, 0.4296]) [0.2972, 0.4007]) [0.1900, 0.3071]) [0.1661, 0.3070])
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τ11 ¼ 0:9339; τ21 ¼ 1:0715; τ31 ¼ 0:9947; τ12 ¼ 0:9405; τ22 ¼ 1:0670; τ32 ¼ 0:9925
τ13 ¼ 0:9347; τ23 ¼ 1:0781; τ33 ¼ 0:9872; τ14 ¼ 0:9465; τ24 ¼ 1:0749; τ34 ¼ 0:9786

Step 9: Utilize the IVIFWPGBM operator to determine the
IVIFNs ~rg g ¼ 1; 2; 3; 4ð Þ, which is listed in Table 7
(supposex , y = 1).

Step 10: Calculate the score functionsf ~rg
� �

, we get

sf ~r1
� �

¼ −0:1087; sf ~r2
� �

¼ −0:0756; sf ~r3
� �

¼ 0:0514; sf ~r4
� �

¼ 0:1448

Step 11: Rank the alternatives.
According to sf ~rg

� �
, we rank the alternatives {z1, z2, z3, z4}

shown as follows:
z4 ≻ z3 ≻ z2 ≻ z1.

The Influence of the Parameters x , y
on the Decision-Making Result

To observe the influence of parameters x , y on decision
making, we set the different values x , y in Step 5 and Step
9, then to rank {z1, z2, z3, z4}. The results are listed in
Tables 8 and 9.

As we can see from Tables 8 and 9, the aggregation results
based on IVIFWPBM operator or IVIFWPGBM operator are
different, but the orderings are the same. Furthermore, order-
ings produced by the different parameters x , y are the same.

So, the proposed method is practical and effective. In general,
we set the parameter x = y = 1.

Table 6 The overall IVIFNs ~rk g
from three monitoring stations
(e1, e2, e3) by IVIFWPGBM
operator

e1 e2 e3

z1 ([0.1760, 0.4132],
[0.2687, 0.4811])

([0.1729, 0.3260],
[0.2311, 0.3449])

([0.2277, 0.2986],
[0.2095, 0.3606])

z2 ([0.2632, 0.4475],
[0.2751, 0.4294])

([0.1605, 0.4115],
[0.2195, 0.2932])

([0.1873, 0.3307],
[0.3021, 0.3768])

z3 ([0.3414, 0.4751],
[0.1983, 0.3501])

([0.2535, 0.3985],
[0.1240, 0.2791])

([0.1721, 0.3088],
[0.1827, 0.2267])

z4 ([0.3702, 0.4590],
[0.1702, 0.2910])

([0.3422, 0.4554],
[0.1307, 0.2680])

([0.2363, 0.5547],
[0.0738, 0.2238])

Table 7 The collective IVIFNs~rg
for four alternatives by
IVIFWPGBM operator

z1 z2 z3 z4

([0.1609, 0.3165], ([0.1770, 0.3642], ([0.2267, 0.3656], ([0.2982, 0.4613],

[0.2682, 0.4265]) [0.2949, 0.3975]) [0.1853, 0.3040]) [0.1641, 0.3059])

Table 8 Ordering of the alternatives based on IVIFWPBM by using the different x , y

x , y Score functions sf ~rg
� �

Ranking

x = 1 , y = 1
sf ~r1ð Þ ¼ −0:1143; sf ~r2ð Þ ¼ −0:0809 sf ~r3ð Þ ¼ 0:0433; sf ~r4ð Þ ¼ 0:1410

z4 ≻ z3 ≻ z2 ≻ z1

x = 1 , y = 0
sf ~r1ð Þ ¼ −0:0687; sf ~r2ð Þ ¼ −0:0353 sf ~r3ð Þ ¼ 0:0583; sf ~r4ð Þ ¼ 0:2327

z4 ≻ z3 ≻ z2 ≻ z1

x = 2 , y = 0
sf ~r1ð Þ ¼ −0:0313; sf ~r2ð Þ ¼ 0:0020 sf ~r3ð Þ ¼ 0:0874; sf ~r4ð Þ ¼ 0:2537

z4 ≻ z3 ≻ z2 ≻ z1

x = 10 , y = 0
sf ~r1ð Þ ¼ 0:1125; sf ~r2ð Þ ¼ 0:1363 sf ~r3ð Þ ¼ 0:1636; sf ~r4ð Þ ¼ 0:3633

z4 ≻ z3 ≻ z2 ≻ z1

x = 2 , y = 1
sf ~r1ð Þ ¼ −0:0964; sf ~r2ð Þ ¼ −0:0611 sf ~r3ð Þ ¼ 0:0537; sf ~r4ð Þ ¼ 0:1620

z4 ≻ z3 ≻ z2 ≻ z1

x = 10 , y = 1
sf ~r1ð Þ ¼ 0:0576; sf ~r2ð Þ ¼ 0:0891 sf ~r3ð Þ ¼ 0:1420; sf ~r4ð Þ ¼ 0:3111

z4 ≻ z3 ≻ z2 ≻ z1
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Comparison with Other Methods

To further demonstrate the validity of the proposedmethods in
this paper, we solve the same illustrative example [19] by
using the three existing MAGDM methods, which are the
IVIFWA operator-based approach proposed by Xu [27], the
IVIFWPA operator-based approach proposed by He [45], and
the IVIFWBM operator-based approach proposed by Xu [46].
The final orders of the alternatives obtained by the above three
methods are listed in Table 10.

From Table 10, the methods proposed in [27, 45, 46]
have the same ranking results with the proposed method.
This can verify the proposed method. In the following, we

give some characteristic comparisons of our proposed
method and the aforementioned three methods, which
are listed in Table 11.

Conclusion

In this paper, we propose several PBM aggregation op-
erators for IVIFNs, such as IVIFPBM operator,
IVIFWPBM operator, IVIFPGBM operator, and
IVIFWPGBM operator, and then we discussed several
properties and special cases of the proposed operators.
Obviously, these operators can take the advantages of
power operator and Bonferroni mean operator, i.e., they
can overcome the influence of the unreasonable attribute
values and can also consider the interaction between two
attributes. In addition, we utilized these operators to
solve the MAGDM problem with IVIFNs, and an exam-
ple is provided to illustrate the validity and advantages
of the proposed methods by comparing with three
existing methods.

In further researches, we will develop some real applica-
tions of these proposed operators in other areas, such as sup-
plier selection evaluation, product scheme selection evalua-
tion, fuzzy cluster analysis, and so on. In addition, we can also

Table 9 Ordering of the alternatives based on IVIFWPGBM by using the different x , y

x , y Score functions sf ~rg
� �

Ranking

x = 1 , y = 1
sf ~r1ð Þ ¼ −0:1087; sf ~r2ð Þ ¼ −0:0756 sf ~r3ð Þ ¼ 0:0514; sf ~r4ð Þ ¼ 0:1448

z4 ≻ z3 ≻ z2 ≻ z1

x = 1 , y = 0
sf ~r1ð Þ ¼ −0:0687; sf ~r2ð Þ ¼ −0:0353 sf ~r3ð Þ ¼ 0:0583; sf ~r4ð Þ ¼ 0:2204

z4 ≻ z3 ≻ z2 ≻ z1

x = 2 , y = 0
sf ~r1ð Þ ¼ −0:0489; sf ~r2ð Þ ¼ −0:0163 sf ~r3ð Þ ¼ 0:0618; sf ~r4ð Þ ¼ 0:2322

z4 ≻ z3 ≻ z2 ≻ z1

x = 10 , y = 0
sf ~r1ð Þ ¼ −0:0028; sf ~r2ð Þ ¼ 0:0287 sf ~r3ð Þ ¼ 0:0723; sf ~r4ð Þ ¼ 0:2784

z4 ≻ z3 ≻ z2 ≻ z1

x = 2 , y = 1
sf ~r1ð Þ ¼ −0:0955; sf ~r2ð Þ ¼ −0:0603 sf ~r3ð Þ ¼ 0:0536; sf ~r4ð Þ ¼ 0:1616

z4 ≻ z3 ≻ z2 ≻ z1

x = 10 , y = 1
sf ~r1ð Þ ¼ −0:0168; sf ~r2ð Þ ¼ 0:0156 sf ~r3ð Þ ¼ 0:0685; sf ~r4ð Þ ¼ 0:2574

z4 ≻ z3 ≻ z2 ≻ z1

Table 10 Comparisons of ranking results for different methods

Aggregation operator Score functions Ranking

Xu’s method [27] based on IVIFWA
sf ~r1ð Þ ¼ −0:0574; sf ~r2ð Þ ¼ −0:0246 sf ~r3ð Þ ¼ 0:0746; sf ~r4ð Þ ¼ 0:2338

z4 ≻ z3 ≻ z2 ≻ z1

He’s method [45] based on IVIFWPA
sf ~r1ð Þ ¼ −0:0172; sf ~r2ð Þ ¼ 0:0142 sf ~r3ð Þ ¼ 0:1026; sf ~r4ð Þ ¼ 0:2840

z4 ≻ z3 ≻ z2 ≻ z1

Xu’s method [46] based on IVIFWBM
sf ~r1ð Þ ¼ 0:9078; sf ~r2ð Þ ¼ 0:9123 sf ~r3ð Þ ¼ 0:9246; sf ~r4ð Þ ¼ 0:9393

z4 ≻ z3 ≻ z2 ≻ z1

Proposed method based on IVIFWPBM
sf ~r1ð Þ ¼ −0:1143; sf ~r2ð Þ ¼ −0:0809 sf ~r3ð Þ ¼ 0:0433; sf ~r4ð Þ ¼ 0:1410

z4 ≻ z3 ≻ z2 ≻ z1

Table 11 Characteristic comparisons of different operators

Methods Aggregation
operators

Whether captures
interrelationship
of two arguments

Whether allows
input
arguments
support each
other

Xu [27] IVIFWA No No

He [45] IVIFWPA No Yes

Xu [46] IVIFWBM Yes No

Proposed method IVIFWPBM Yes Yes
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extend the PBM operators to some new fuzzy information,
such as Pythagorean fuzzy set, linguistic interval hesitant
fuzzy set, neutrosophic set, and so on.
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