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Abstract As a novel learning algorithm for a single hidden-
layer feedforward neural network, the extreme learning ma-
chine has attracted much research attention for its fast training
speed and good generalization performances. Instead of itera-
tively tuning the parameters, the extreme machine can be seen
as a linear optimization problem by randomly generating the
input weights and hidden biases. However, the random deter-
mination of the input weights and hidden biases may bring
non-optimal parameters, which have a negative impact on the
final results or needmore hidden nodes for the neural network.
To overcome the above drawbacks caused by the non-optimal
input weights and hidden biases, we propose a new hybrid
learning algorithm named dolphin swarm algorithm extreme
learning machine adopting the dolphin swarm algorithm to
optimize the input weights and hidden biases efficiently.
Each set of input weights and hidden biases is encoded into
one vector, namely the dolphin. The dolphins are evaluated by
root mean squared error and updated by the four pivotal
phases of the dolphin swarm algorithm. Eventually, we will
obtain an optimal set of input weights and hidden biases. To
evaluate the effectiveness of our method, we compare the
proposed algorithm with the standard extreme learning ma-
chine and three state-of-the-art methods, which are the particle
swarm optimization extreme learning machine, evolutionary
extreme learning machine, and self-adaptive evolutionary ex-
treme learning machine, under 13 benchmark datasets obtain-
ed from the University of California Irvine Machine Learning
Repository. The experimental results demonstrate that the pro-
posed method can achieve superior generalization perfor-
mances than all the compared algorithms.
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Introduction

Inspired by cognitive science, the extreme learning machine
(ELM) was proposed to overcome challenging issues (such as
slow convergence and local minima problem) faced by the con-
ventional gradient-based approaches in a single hidden-layer
feedforward neural network (SLFN) [1]. Since its inception, the
ELM has attracted increasing attention from researchers all over
the world. One of the salient features of the ELM is that the input
weights and hidden biases are generated randomly instead of
being tuned iteratively. The output weights are computed based
on the prefixed inputweights and hidden biases using theMoore-
Penrose (MP) generalized inverse only once [2, 3]. Another
characteristic of the ELM is that almost any nonlinear piecewise
continuous random hidden nodes can be used in it [4, 5].
Compared with the conventional gradient-based approaches,
the ELM has a significantly lower computational time and pre-
sents better generalization performances. Due to its efficiency
and universal approximation capabilities, the ELM has been
demonstrated on various problems in different fields, such as
classification [6–8], recognition [9–12], imbalanced leaning
[13, 14], steganalysis [15], and so on. However, there exist some
sets of non-optimal input weights and hidden biases which may
influence the performance in minimizing the cost function. Due
to the randomness, the input weights and hidden biases generated
by the ELMmay be non-optimal. Since the output weights high-
ly depend on the input weights and hidden biases, the non-
optimal input weights and hidden biases may have a negative
impact on the final results.Moreover, the ELMmay requiremore
hidden neurons than the conventional gradient-based algorithms
in many cases [16–18].

To address the above ELM’s drawbacks and find a proper set
of input weights and hidden biases, Huang et al. proposed a
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hybrid form of the differential evolutionary algorithm and ELM
method called the evolutionary ELM (E-ELM) [19]. Besides the
E-ELM, some other bio-inspiredmethods and global search tech-
niques are also adopted in the ELM during the past several years.
Cao et al. proposed an improved learning algorithm named the
self-adaptive evolutionary ELM (SaE-ELM) and evaluated the
performances on regression and classification problems [20]. Xu
and Shu introduced a hybrid particle swarm optimization (PSO)
and ELM algorithm for a prediction problem [21]. Saraswathi
et al. presented a PSO-driven ELM, combined with the integer-
coded genetic algorithm (ICGA), to solve gene selection and
cancer classification [22]. Silva et al. combined the ELM with
group search optimization (GSO) and valuated the influence of
four different forms of handling members that fly out of the
search space bounds [23]. More contemporary soft computing
techniques, such as ant colony optimization [24–26], artificial
bee colony algorithm [27–29], firefly algorithm [30, 31],
binary-coded PSO [32], and multi-subswarm PSO [33], are also
promising to be applied in the ELM.

Recently, inspired by the biological characteristics and living
habits shown in the dolphins’ predatory process, Wu et al. pre-
sented a novel evolutionary algorithm named dolphin swarm
algorithm (DSA) to solve optimization problems [34]. By simu-
lating the dolphins’ predatory process, DSA can make use of the
behavior rules of dolphins and the interactions between dolphins
to produce changes and achieve certain goals at the group level.
With the help of effective strategies, the DSA has shown many
promising features, such as fast periodic convergence, local-min-
ima-free, no specific demand on the cost function, and so on [34].
In comparison with the classical evolutionary algorithms, the
DSA has better global search ability, better stability, and higher
convergence speed, which have been proven through some
benchmark functions with different properties [35]. Therefore,
compared with the conventional evolutionary algorithms, the
DSA is a preferable method to address the ELM’s drawbacks
caused by the non-optimal input weights and hidden biases.

In this paper, we introduce a new hybrid method named dol-
phin swarm extreme learning machine (DS-ELM) for SLFN. In
the proposed algorithm, several sets of input weights and hidden
biases are used. Each set is encoded into one vector, namely the
dolphin. These dolphins are evaluated by root mean squared
error (RMSE) [19–23] and updated by the four pivotal phases
of DSA. After the four pivotal phases, the set of input weights
and hidden biases represented by the best dolphin is selected.
Then, the output weights are derived by the chosen set. To eval-
uate the effectiveness of our method, we compare the proposed
algorithm with the standard ELM and three state-of-the-art
methods (PSO-ELM, E-ELM, and SaE-ELM) under 13 bench-
mark datasets (the newest or the most popular datasets) obtained
from theUniversity of California Irvine (UCI)Machine Learning
Repository [36]. The experimental results show that DS-ELM
can achieve superior generalization performances than all the
compared algorithms.

The remaining structures of this paper are as follows. The
BPreliminaries^ presents the standard ELM and DSA
methods. After that, the DS-ELM is proposed in BDolphin
Swarm Extreme Learning Machine (DS-ELM).^
BExperiments^ is made up of certain experiments. The DS-
ELMwill be compared with the standard ELM, PSO-ELM, E-
ELM, and SaE-ELM under six regression benchmark datasets
and seven classification benchmark datasets obtained from the
UCI Machine Learning Repository [36]. A summary of this
paper will be given in the last section.

Preliminaries

Extreme Learning Machine (ELM)

The ELMwas originally proposed for SLFN byHuang et al. [1].
Then, it was extended to the generalized SLFNwhere the hidden
layer need not be neuron like [5]. The main concept of the ELM
is that the input weights and hidden biases are generated random-
ly instead of being tuned iteratively. Moreover, the output
weights are computed by the MP generalized inverse only once
[2, 3]. Therefore, the ELM has a significantly lower computa-
tional time compared with the conventional gradient-based ap-
proaches. Besides, ELM theories have shown that almost any
nonlinear piecewise continuous random hidden nodes can be
used in the ELM [4, 5], and the resultant networks have universal
approximation capabilities [37–39].

The output function of the ELM for generalized SLFNs
with L hidden nodes is

f L xð Þ ¼ ∑
L

i¼1
βigi xð Þ ¼ ∑

L

i¼1
βiG ai; bi; xð Þ; x∈Rd ;βi∈Rm ð1Þ

where ai and bi are the input weight and hidden bias of the ith
hidden node respectively; βi denotes the linked weight between
the ith hidden node and the output neurons; and gi(x) denotes the
output function G(ai, bi, x) of the ith hidden node. The output
functions G(a, b, x) are a nonlinear piecewise continuous func-
tion satisfyingELMuniversal approximation capability theorems
[4, 5]. For additive nodes with activation function g(x), gi(x) is
defined as

gi xð Þ ¼ G ai; bi; xð Þ ¼ g ai⋅xþ bið Þ; ai∈Rd; bi∈R ð2Þ

For radial basis function (RBF) nodes with activation func-
tion g(x), gi(x) is defined as

gi xð Þ ¼ G ai; bi; xð Þ ¼ g bi x−aik kð Þ; ai∈Rd; bi∈Rþ ð3Þ

Suppose we are training the generalized SLFN with L hidden
neurons to learn N arbitrary samples (xi, ti). Since the input
weights and hidden biases are generated randomly, the non-
linear system can be converted to a linear model:
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Hβ ¼ T ð4Þ

where

H ¼
G a1; b1; x1ð Þ ⋯ G aL; bL; x1ð Þ

⋮ ⋱ ⋮
G a1; b1; xNð Þ ⋯ G aL; bL; xNð Þ

2
4

3
5
N�L

ð5Þ

β ¼
βT
1

⋮
βT
L

2
4

3
5
L�m

and T ¼
tT1
⋮
tTN

2
4

3
5
N�m

ð6Þ

H is the hidden-layer output matrix; β = [β1, β2,…βK]
T is the

output weights; T = [t1, t2,…tN]
T is desired outputs. The input

weights and hidden biases are generated randomly. Thus, the
matrix H can be computed by the input samples. Training the
generalized SLFN is converted into finding the least-square
(LS) solution to the given linear model. The minimum norm
LS solution to the linear model Eq. (4) is

β ¼ H†T ð7Þ

where H† is the MP generalized inverse of the matrix
H. By utilizing such MP generalized inverse method,
the ELM is able to obtain good generalization perfor-
mances [2, 3].

In summary, the ELM algorithm is presented in algorithm 1.

Dolphin Swarm Algorithm (DSA)

The DSA was introduced by Wu et al. as an efficient global
searchmethod to solve varied optimization problems [34]. It is
mainly implemented by simulating the biological characteris-
tics and living habits shown in the dolphin’s actual predatory
process, such as echolocation, information exchanges, coop-
eration, and division of labor. By simulating the dolphin’s
actual predatory process, the DSA can make use of the behav-
ior rules of dolphins and the interactions between dolphins to
produce changes at the group level and achieve certain goals.
With the help of effective strategies, the DSA has shownmany
promising features, such as fast periodic convergence, local
minima free, no specific demand on the cost function,
and so on [34]. Compared with the conventional evolu-
tionary algorithms, the DSA has better global search

ability, better stability, and higher convergence speed,
which have been proven through some benchmark func-
tions with different properties [35].

The dolphin’s actual predatory process consists of three
stages. In the first stage, each dolphin independently takes ad-
vantage of sounds to search for nearby prey and to evaluate the
surrounding environment by echoes. In the second stage, dol-
phins exchange their information. Those dolphins that find large
prey call other dolphins for help. And those dolphins that have
received informationmove toward the prey and surround it along
with other dolphins. In the last stage, the prey is surrounded by
the dolphins and then what the dolphins need to do is to take
turns to enjoy the food, whichmeans that the predatory process is
accomplished [34].

In the DSA, a swarm of N dolphins is kept. In the D dimen-
sional search space of optimization problems, the dolphins are
defined as Doli = [x1, x2,…xD]

T , (i= 1, 2, … , N), where
xj(j = 1, 2, ⋯ ,D) is the component of each dimension to be
optimized. For each Doli, there are two corresponding variables
Li(i = 1, 2, ⋯ ,N) and Ki(i = 1, 2, ⋯ ,N), where Li represents
the optimal solution Doli finds in a single time and Ki represents
the optimal solution of what Doli finds by itself or gets from
others. The fitness function represented by fitness(X) is the basis
for judgingwhether the position is better. There are three kinds of
distances used in total. One is the distance between Doli and Dolj
named DDi , j, one is the distance between Doli and Ki, named
DKi, and the other one is the distance between Li and Ki named

DKLi. Moreover, exchanging processes are maintained by an
N ×N order matrix named transmission time matrix TS, where
the term TSi , j represents the remaining time of the sound spread-
ing from Dolj to Doli.

Generally, DSA can be divided into six phases. In each phase,
dolphins have distinct work to do. Besides the initialization phase
and termination phase, four pivotal phases of DSA including
search phase, call phase, reception phase, and predation phase
need to be expounded for a better understanding.

Search Phase

In the search phase, each dolphin searches its nearby area by
making sounds Vi = [v1, v2, ⋯ , vD]

T , (i = 1, 2, ⋯ ,M) toward
M random directions, where vj(j = 1, 2, ⋯ ,D) is the compo-
nent of each dimension. Besides, the sounds satisfy
‖Vi‖ = speed , (1 = 1, 2, ⋯ ,M), where speed is a constant.
Within the maximum search time T, the sound Vj that Doli
makes at time t will search a new solution Xijt:
X ijt ¼ Doli þ V j � t ð8Þ

For the new solutionXijt that Doli gets, calculate its fitness Eijt:

Ei jt ¼ f itness X i jt
� � ð9Þ
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If

Eiab ¼ min
j¼1;…;M ;t¼1;…;T

Ei jt ¼ min
j¼1;…;M ;t¼1;…;T

f itness X i jt
� � ð10Þ

then Li is determined as

Li ¼ X iab ð11Þ
If

f itness Lið Þ < f itness Kið Þ ð12Þ
then replace Ki by Li. Otherwise Ki does not change.

Call Phase

In the call phase, each dolphin will make sounds to inform
other dolphins of its result in the search phase. And the trans-
mission time matrix TS needs to be updated as follows:

For Ki, Kj, and TSi , j, if

f itness Kið Þ > f itness K j
� � ð13Þ

and

TSi; j >
DDi; j

speed
ð14Þ

then update TSi , j as

TSi; j ¼ DDi; j

speed
ð15Þ

Reception Phase

When DSA enters the reception phase, all the terms TSi , j
subtract one to indicate that the sounds spread a unit of time,
then check all the terms TSi , j, if

TSi; j ¼ 0 ð16Þ

then it means that the sound spreading from Dolj to Doli can
be received. Compare Ki with Kj. If it satisfies Eq. (13), then
replace Ki by Kj. Otherwise Ki does not change. Then set
TSi , j as

TSi; j ¼ range

speed

� �
ð17Þ

where range is the length of the search space.

Predation Phase

In the predation phase, each dolphin needs to get a new posi-
tion according to its known information and it can be
discussed in two cases.

& For DKi, if

DKi≤T � speed ð18Þ

we can get Doli’s new position newDoli:

newDoli ¼ Ki þ w� Doli−Kið Þ � 1−
2

e

� �
ð19Þ

where e is a constant which is greater than 2 and w is an
arbitrary unit vector.

& For DKi, if

DKi > T � speed ð20Þ
we can get Doli’s new position newDoli:

newDoli ¼ Ki þ w� 1−
DKi � 1

f itness Kið Þ þ DKi−DKLið Þ � 1

f itness Kið Þ
e� DKi � 1

f itness Kið Þ

0
BB@

1
CCA� DKi

ð21Þ

After all the Doli get their new position newDoli, compare
newDoli with Ki in fitness. If

fitness newDolið Þ < fitness Kið Þ ð22Þ

then replace Ki by newDoli. Otherwise Ki does not change.
If the end condition is satisfied, DSA enters the termination

phase. Otherwise, DSA enters the search phase again.
Although there are many parameters used in DSA, only a

few of them are user-specified, including the number of dol-
phins N, the number of soundsM, the speed of sounds speed,
maximum search time T, and the constant e used in the preda-
tion phase.

In summary, the DSA is presented in algorithm 2.

Dolphin Swarm Extreme Learning Machine
(DS-ELM)

The standard ELM generates the input weights and hid-
den biases randomly. However, there exist some sets of
non-optimal input weights and hidden biases which may
inevitably influence the performance in minimizing the
cost function and have a negative impact on the final
results. There are two feasible ways to avoid these non-
optimal input weights and hidden biases. One is to sim-
ply increase the number of hidden nodes which may
weaken the performances of the ELM. The other one
is to find a proper set of input weights and hidden
biases which can achieve a favorable performance with
less hidden nodes and more compact networks. In this
section, we present our new hybrid approach DS-ELM
to improve the performance of the ELM in the latter
way by taking advantages of the DSA’s great global
search ability.
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In the DS-ELM, a swarm of N dolphins is kept. Each dol-
phin represents one set of input weights and hidden biases,
namely Doli = [w11, w12, … , w1K, w21, w22, … , wM1,
wM2, … ,wMK, b1, b2, … , bK]

T , (i = 1, 2, … ,N). All the in-
put weights and hidden biases are randomly initialized within
the range of [−1, 1]. For each dolphin, the corresponding
output weights β are computed by Eq. (7).

Then, we utilize the RMSE as the fitness function [19–23]:

fitness Dolið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑M

j¼1 ∑K
j¼1βg wi⋅x j þ bj

� �
−t j

			 			2
2

M

vuut
ð23Þ

where T = [t1, t2, … , tM]
T is the desired output.

With N dolphins and the fitness function, we are able to
adopt the DSA to our DS-ELM. After the search phase, the
call phase, the reception phase, and the predation phase de-
scribed in BDolphin SwarmAlgorithm (DSA),^ an optimal set
of input weights and hidden biases will be obtained
eventually.

In summary, the DS-ELM is presented in algorithm 3.

Experiments

In this section, the DS-ELM is compared with the standard
ELM and three state-of-the-art methods, including the PSO-
ELM, E-ELM, and SaE-ELM. The experiments are composed
of two parts. In the first part, these five algorithms are tested
under six regression benchmark datasets. And seven classifi-
cation benchmark datasets are employed in the second part.
Specifically, these 13 benchmark datasets are obtained from the UCI Machine Learning Repository [36]. All these simula-

tions are conducted in Matlab 9.1 environment (the latest ver-
sion in 2016) with an Intel Core i7, 2 GHz CPU and 8 GB
RAM.

In our experiment, each dataset is divided into two parts,
namely the training set and the testing set. We adopt a tenfold
cross-validation method in the training set and use the valida-
tion set to determine the suitable parameters of the five algo-
rithms. The number of hidden nodes is gradually increased in
a preset region [5, 10, 15…200], and the one with the lowest
validation error is selected. Moreover, the number of individ-
uals (dolphins in the DS-ELM, particles in the PSO-ELM, and
population in the E-ELM and SaE-ELM) is 5, and the times of
invoking the ELM is equally set as 1000 for the DS-ELM,

Table 1 Parameters used in the DS-ELM, PSO-ELM, and E-ELM

DS-ELM PSO-ELM E-ELM

Speed = 0.1;
T = 3;
M = 2;
E = 3

V = 0.1;
C1 = 2;
C2 = 2
W = 0.8

F = 1
CR = 0.8

Table 2 Specifications of the six regression benchmark datasets

Dataset Data Attributes

Training Testing

Servo 84 83 4

Cancer 99 99 32

Housing 253 253 13

Airfoil 752 751 3

Wine 2449 2449 11

Air 4679 4679 15

Table 3 Results of the five algorithms under the six regression
benchmark datasets

Dataset Algorithm Testing accuracy Training
time (s)

Hidden
nodes

Means StDev

Servo DS-ELM 8.679e−2 2.106e−2 16.154 20

PSO-ELM 1.010e−1 2.760e−2 16.185 20

E-ELM 1.013e−1 3.787e−2 16.416 20

SaE-ELM 9.383e−2 2.705e−2 16.526 20

ELM 1.246e−1 3.576e−2 0.004 40

Cancer DS-ELM 2.557e−1 1.948e−2 15.917 20

PSO-ELM 2.734e−1 2.542e−2 16.050 20

E-ELM 2.746e−1 2.677e−2 16.147 20

SaE-ELM 2.665e−1 2.350e−2 16.482 20

ELM 2.845e−1 4.070e−2 0.006 35

Housing DS-ELM 8.528e−2 1.116e−2 17.119 20

PSO-ELM 9.577e−2 2.057e−2 17.183 20

E-ELM 9.664e−2 1.680e−2 17.399 20

SaE-ELM 8.974e−2 2.001e−2 17.707 20

ELM 1.053e−1 2.483e−2 0.008 45

Airfoil DS-ELM 9.527e−2 4.070e−3 20.996 25

PSO-ELM 1.005e−1 5.241e−3 21.136 25

E-ELM 1.034e−1 5.203e−3 21.294 25

SaE-ELM 9.975e−2 5.223e−3 21.524 25

ELM 1.068e−1 6.723e−3 0.006 50

Wine DS-ELM 1.188e−1 4.308e−3 69.755 75

PSO-ELM 1.216e−1 5.023e−3 69.905 75

E-ELM 1.237e−1 6.414e−3 70.344 75

SaE-ELM 1.229e−1 9.514e−3 70.815 75

ELM 1.286e−1 1.055e−2 0.190 155

Air DS-ELM 2.326e−2 2.422e−4 78.062 50

PSO-ELM 2.944e−2 2.465e−4 78.819 50

E-ELM 2.623e−2 3.989e−4 78.695 50

SaE-ELM 2.530e−2 3.803e−4 79.098 50

ELM 3.273e−2 4.133e−4 0.324 100
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PSO-ELM, E-ELM, and SaE-ELM. Other parameters, sug-
gested by [20, 21, 34], are shown in Table 1.

Regression

In this subsection, the five algorithms are compared under six
regression benchmark datasets from the UCI Machine
Learning Repository [36], which are Servo, Breast Cancer
Wisconsin (Cancer), Housing, Airfoil Self-Noise (Airfoil),
Wine Quality (Wine), and Air Quality (Air). The Air dataset
is one of the newest regression datasets in the UCI Machine
Learning Repository [36]. And the other five datasets are the
most popular datasets. The specifications of the six datasets
are shown in Table 2.

All the attributes have been normalized to the range of
[−1, 1], and the desire outputs have been normalized to
the range of [0, 1]. To get a better comparison and re-
duce the influence of accidental factors, all the experi-
mental results are obtained by taking the average of 20
independent experiments. For each experiment, the train-
ing set and the testing set are randomly selected from the
whole dataset, and the two sets have no overlap with
each other to avoid overfitting. Moreover, the two sets
are kept the same for each trial of the five algorithms.
The results are shown in Table 3, and the best results are
shown in italic font.

In terms of the training time, it is quite easy to see
that the ELM is the fastest one since all the other five
algorithms invoke it multiple times. Besides, there is not
much difference in training time among the DS-ELM,
PSO-ELM, E-ELM, and SaE-ELM, because invoking
the ELM is time consuming and the times of invoking
the ELM of these four algorithms are the same. But it
can still be seen that the DS-ELM is slightly faster than
the PSO-ELM, E-ELM, and SaE-ELM.

As for the testing accuracy, the DS-ELM, PSO-ELM, E-
ELM, and SaE-ELM obtain better results with less hidden
nodes than the ELM which means that the DS-ELM, PSO-
ELM, E-ELM, and SaE-ELM can achieve better generaliza-
tion performances with more compact networks. Compared
with the PSO-ELM, E-ELM, and SaE-ELM, the DS-ELM
has smaller means and standard deviations. Wilcoxon’s
signed-rank tests with 95% confidence interval show that the
DS-ELM is significantly different from the ELM, PSO-ELM,
E-ELM, and SaE-ELM which indicates that the DS-ELM is
superior to the other four methods under these six regression
benchmark datasets.

Classification

In this subsection, the performances of the five algorithms are
evaluated under seven classification benchmark datasets from
the UCI Machine Learning Repository [36]. The seven

datasets are Iris, Heart, Pima Indians Diabetes (Diabetes),
Image Segmentation (Image), Landsat Satellite (Satellite),
Occupancy Detection (Occupancy), and Shuttle respectively.
The Occupancy dataset is one of the newest classification
datasets in the UCI Machine Learning Repository [36]. And
the other six datasets are the most popular datasets. The spec-
ifications of the seven datasets are listed in Table 4.

All the attributes have been normalized to the range of [−1,
1]. The same as the experiments in BRegression,^ all the ex-
perimental results are obtained by taking the average of 20
independent experiments. For each experiment, the whole
dataset is divided into two parts with no overlap, namely the
training set and testing set. And the two sets are kept coinci-
dent for each trial of the five algorithms. The results are shown
in Table 5, and the best results are emphasized with italic font.

Speaking of the training time, the same conclusion can be
made that the ELM runs fastest and the other four methods put
in nearly the same amount of time to train the networks which
is theoretically reasonable as analyzed in BRegression.^

When it comes to the testing accuracy, it can be easily seen
that the DS-ELM achieves the highest mean testing accuracy
and the lowest standard deviation in all the classification
datasets. In addition, Wilcoxon’s signed-rank tests with 95%
confidence interval show that the DS-ELM is significantly
different from the ELM, PSO-ELM, E-ELM, and SaE-ELM,
which indicates that the DS-ELM outperforms the other four
approaches under these seven classification benchmark datasets.

Conclusion

In this paper, we firstly introduced the standard ELM and
DSA. Then, we proposed a brand new hybrid approach
named dolphin swarm extreme learning machine for the
SLFN. In our new algorithm, the DSA is used to optimize
the input weights and hidden biases of the ELM, and the
ELM is employed to calculate the output weights. In the
experiment part of this paper, our method is compared

Table 4 Specifications of the seven classfication benchmark datasets

Dataset Data Attributes Classes

Training Testing

Iris 75 75 4 3

Heart 135 135 13 2

Diabetes 384 384 8 2

Image 1155 1155 19 7

Satellite 3218 3217 36 7

Occupancy 10,280 10,280 7 2

Shuttle 29,000 29,000 9 5
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with the standard ELM and three state-of-the-art methods,
which are the PSO-ELM, E-ELM, and SaE-ELM under
six regression benchmark datasets and seven classification
benchmark datasets obtained from the UCI Machine
Learning Repository. Experimental results show that our
method has better generalization performances with more
compact networks than the standard ELM. Moreover, our
algorithm can achieve better testing results (smaller
RMSE on reg r e s s i on and h ighe r accu r acy on

classification). According to Wilcoxon’s signed-rank tests,
the dolphin swarm extreme learning machine is superior
to the other four methods both on the six regression
datasets and the seven classification datasets in the exper-
iments. However, the DS-ELM is time consuming com-
pared with the standard ELM. Besides, it does not reduce
the number of hidden nodes compared with the state-of-
the-art methods. Future research works will be concentrat-
ed on how to get faster as well as how to make the net-
work more compact.

Acknowledgements This paper is the partial achievement of Project
61272261 supported by the National Natural Science Foundation of
China.

Compliance with Ethical Standards

Conflict of Interest The authors declare that they have no conflict of
interest.

Informed Consent Informed consent was not required as no human or
animal was involved.

Ethical Approval This article does not contain any studies with human
participants or animals performed by any of the authors.

References

1. Huang, Guang-Bin, Qin-Yu Zhu, and Chee-Kheong Siew. Extreme
learning machine: a new learning scheme of feedforward neural
networks. Neural Networks, 2004. Proceedings. 2004 I.E.
International Joint Conference on. Vol. 2. IEEE, 2004.

2. Huang G-B, Siew C-K. Extreme learning machine with randomly
assigned RBF kernels. Int J Inf Technol. 2005;11(1):16–24.

3. Huang, Guang-Bin, and Chee-Kheong Siew. Extreme learning ma-
chine: RBF network case. Control, Automation, Robotics and
Vision Conference, 2004. ICARCV 2004 8th. Vol. 2. IEEE, 2004.

4. Huang G-B, Chen L, Siew CK. Universal approximation using
incremental constructive feedforward networks with random hid-
den nodes. IEEE Transactions on Neural Networks. 2006;17(4):
879–92.

5. Huang G-B, Chen L. Convex incremental extreme learning ma-
chine. Neurocomputing. 2007;70(16):3056–62.

6. Duan L, et al. A voting optimized strategy based on ELM for im-
proving classification of motor imagery BCI data. Cogn Comput.
2014;6.3:477–83.

7. Akusok A, et al. A two-stage methodology using K-NN and false-
positive minimizing ELM for nominal data classification. Cogn
Comput. 2014;6(3):432–45.

8. Cao K, et al. Classification of uncertain data streams based on
extreme learning machine. Cogn Comput. 2015;7.1:150–60.

9. Zhao Z, et al. A class incremental extreme learning machine for
activity recognition. Cogn Comput. 2014;6(3):423–31.

10. Zhang S, et al. Fast image recognition based on independent com-
ponent analysis and extreme learning machine. Cogn Comput.
2014;6.3:405–22.

11. He B, et al. Fast face recognition via sparse coding and extreme
learning machine. Cogn Comput. 2014;6(2):264–77.

12. Xie SJ, et al. Feature component-based extreme learning machines
for finger vein recognition. Cogn Comput. 2014;6.3:446–61.

Table 5 Results of the five algorithms under the seven classification
benchmark datasets

Dataset Algorithm Testing accuracy (%) Training Hidden

Means StDev Time (s) Nodes

Iris DS-ELM 97.798 3.057 2.255 20

PSO-ELM 95.732 4.422 2.290 20

E-ELM 95.200 4.269 2.374 20

SaE-ELM 96.798 3.335 2.449 20

ELM 94.666 4.988 0.004 35

Heart DS-ELM 82.593 6.425 1.307 20

PSO-ELM 80.743 7.551 1.309 20

E-ELM 80.371 7.115 1.318 20

SaE-ELM 81.482 8.921 1.343 20

ELM 78.889 8.615 0.006 45

Diabetes DS-ELM 79.160 2.963 2.616 20

PSO-ELM 77.079 3.111 2.631 20

E-ELM 77.217 3.020 2.671 20

SaE-ELM 77.861 3.368 2.702 20

ELM 75.007 5.446 0.004 40

Image DS-ELM 95.239 1.113 23.122 100

PSO-ELM 94.112 1.712 23.124 100

E-ELM 94.028 1.751 23.316 105

SaE-ELM 94.805 1.240 23.497 105

ELM 93.723 2.261 0.060 190

Satellite DS-ELM 88.716 1.072 38.625 100

PSO-ELM 87.475 1.549 37.709 100

E-ELM 87.398 1.203 38.206 100

SaE-ELM 87.615 1.490 38.180 100

ELM 86.422 1.682 0.060 190

Occupancy DS-ELM 99.055 0.156 137.515 50

PSO-ELM 98.963 0.171 138.836 50

E-ELM 98.878 0.164 139.097 50

SaE-ELM 98.990 0.167 139.670 50

ELM 98.905 0.184 0.423 100

Shuttle DS-ELM 99.609 0.101 247.797 50

PSO-ELM 99.266 0.140 248.340 50

E-ELM 99.277 0.145 249.372 50

SaE-ELM 99.481 0.179 251.368 50

ELM 99.079 0.225 0.875 100

Cogn Comput (2017) 9:275–284 283



13. Vong C-M, et al. Imbalanced learning for air pollution by meta-
cognitive online sequential extreme learning machine. Cogn
Comput. 2015;7.3:381–91.

14. Xia S-X, et al. A kernel clustering-based possibilistic fuzzy extreme
learning machine for class imbalance learning. Cogn Comput.
2015;7.1:74–85.

15. Sachnev V, et al. A cognitive ensemble of extreme learning ma-
chines for steganalysis based on risk-sensitive hinge loss function.
Cogn Comput. 2015;7.1:103–10.

16. Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: the-
ory and applications. Neurocomputing. 2006;70(1):489–501.

17. Hagan MT, Menhaj MB. Training feedforward networks with the
Marquardt algorithm. IEEE transactions on Neural Networks.
1994;5(6):989–93.

18. Levenberg K. A method for the solution of certain non-linear prob-
lems in least squares. Q Appl Math. 1944;2(2):164–8.

19. Zhu Q-Y, et al. Evolutionary extreme learning machine. Pattern
Recogn. 2005;38(10):1759–63.

20. Cao J, Lin Z, Huang G-B. Self-adaptive evolutionary extreme
learning machine. Neural Process Lett. 2012;36(3):285–305.

21. Xu, You, and Yang Shu. Evolutionary extreme learning machine–
based on particle swarm optimization. International Symposium on
Neural Networks. Springer Berlin Heidelberg, 2006.

22. Saraswathi S, et al. ICGA-PSO-ELM approach for accurate
multiclass cancer classification resulting in reduced gene sets in
which genes encoding secreted proteins are highly represented.
IEEE/ACM Transactions on Computational Biology and
Bioinformatics. 2011;8.2:452–63.

23. Silva, Danielle NG, Luciano DS Pacifico, and Teresa Bernarda
Ludermir. An evolutionary extreme learning machine based on
group search optimization. 2011 I.E. Congress of Evolutionary
Computation (CEC). IEEE, 2011.

24. Drigo, M., V. Maniezzo, and A. Colorni. The ant system: optimi-
zation by a colony of cooperation agents. IEEE Trans Syst, Man,
Cybernet Part B. 1996: 29–41.

25. Dorigo M, Gambardella LM. Ant colony system: a cooperative
learning approach to the traveling salesman problem. IEEE Trans
Evol Comput. 1997;1.1:53–66.

26. Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE
Comput Intell Mag. 2006;1(4):28–39.

27. Karaboga D, Basturk B. Artificial bee colony (ABC) optimization
algorithm for solving constrained optimization problems.
International Fuzzy Systems Association World Congress.
Springer Berlin Heidelberg, 2007.

28. Karaboga D, Basturk B. On the performance of artificial bee colony
(ABC) algorithm. Appl Soft Comput. 2008;8(1):687–97.

29. Karaboga D, Akay B. A comparative study of artificial bee colony
algorithm. Appl Math Comput. 2009;214(1):108–32.

30. Yang X-S. Firefly algorithm, stochastic test functions and design
optimisation. International Journal of Bio-Inspired Computation.
2010;2(2):78–84.

31. Yang, Xin-She Nature-inspired metaheuristic algorithms. Luniver
Press. Beckington. 2008.

32. Taormina R, Chau K-W. Data-driven input variable selection for
rainfall–runoff modeling using binary-coded particle swarm opti-
mization and extreme learning machines. J Hydrol. 2015;529:
1617–32.

33. Zhang J, Chau K-W. Multilayer ensemble pruning via novel multi-
sub-swarm particle swarm optimization. Journal of Universal
Computer Science. 2009;15(4):840–58.

34. Tian-qi WU, Min YAO, Jian-hua YANG. Dolphin swarm algo-
rithm. Frontiers of Information Technology & Electronic
Engineering. 2016;707–729

35. Yao X, Liu Y, Lin G. Evolutionary programming made faster. IEEE
Trans Evol Comput. 1999;3(2):82–102.

36. A. Frank and A. Asuncion, UCI Machine Learning Repository,
Univ. California, Sch. Inform. Comput. Sci., Irvine, CA, 2011
[Online]. Available: http://archive.ics.uci.edu/ml.

37. Huang G-B. An insight into extreme learning machines: random
neurons, random features and kernels. Cogn Comput. 2014;6(3):
376–90.

38. Huang G-B. What are extreme learning machines? Filling the gap
between Frank Rosenblatt’s dream and John von Neumann’s puz-
zle. Cogn Comput. 2015;7.3:263–78.

39. Huang G-B, et al. Extreme learning machine for regression and
multiclass classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part B (Cybernetics). 2012;42.2:513–29.

284 Cogn Comput (2017) 9:275–284

http://archive.ics.uci.edu/ml

	Dolphin Swarm Extreme Learning Machine
	Abstract
	Introduction
	Preliminaries
	Extreme Learning Machine (ELM)
	Dolphin Swarm Algorithm (DSA)
	Search Phase
	Call Phase
	Reception Phase
	Predation Phase


	Dolphin Swarm Extreme Learning Machine (DS-ELM)
	Experiments
	Regression
	Classification

	Conclusion
	References


