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Abstract Hesitant fuzzy set (HFS) as an effective tool to
reflect human’s hesitancy has received great attention in
recent years. The importance weights of possible values in
hesitant fuzzy elements (HFEs), which are the basic units
of a HFS, have not been taken into account in the existing
literature. Thus, the frequently used HFEs cannot deal with
the situations where all the possible values are provided by
experts with different levels of expertise. Consequently, in
this paper, we propose an extension of typical HFS called
the ordered weighted hesitant fuzzy set (OWHFS). The
basic units of an OWHFS allow the membership of a given
element to be defined in terms of several possible values
together with their importance weights. Moreover, in order
to indicate that the OWHFS has a good performance in deci-
sion making, we first present some information measures
and several aggregation operators for OWHFSs. Then, we
apply them to multi-attribute decision making with ordered
weighted hesitant fuzzy information.
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Introduction

Nowadays, many different extensions of fuzzy sets (FSs)
have been made, including: L-fuzzy sets (L-FSs) [18],
interval-valued fuzzy sets (IVFSs) [30], vague sets (VSs)
[6], intuitionistic fuzzy sets (IFSs) [3], interval-valued intu-
itionistic fuzzy sets (IVIFSs) [4], linguistic fuzzy sets
(LFSs) [36], type-2 fuzzy sets (T2FSs) [26], type-n fuzzy
sets (TnFSs) [8], and fuzzy multisets (FMSs) [25].

Recently, Torra and Narukawa [27] introduced hesitant
fuzzy sets (HFSs) which are quite suitable for the situation
where we have a set of possible values. Later, a number of
other extensions of the HFSs have been developed such as
dual hesitant fuzzy sets (DHFSs) [12, 45], generalized hesi-
tant fuzzy sets (G-HFSs) [28], hesitant fuzzy linguistic term
sets (HFLTSs) [29], and higher order hesitant fuzzy sets
(HOHFSs) [11]. Moreover, various applications of HFSs in
decision making problems have been discussed in the exist-
ing literature, such as Rodriguez et al. [29], Wei et al. [33],
Yu [40], Meng and Chen [22], Meng et al. [23], and Tian
et al. [43], etc.

However, HFS [27] has its inherent drawbacks, because
it expresses the membership degrees of an element to a
given set only by possible values without emphasizing the
importance of each possible value. In many practical deci-
sion making problems, the information provided by decision
makers, who are familiar with the area, might often be
described by the same preferences. In such situations, the
value repeated several times is more important than that
appeared only one time. Thus, the importance of possi-
ble membership degrees (i.e., their repetition rate) should
be considered in improving the definition of HFS. This
fact has, as far as we know, rarely been studied. The only
work, in which the importance of possible values in HFEs
has been considered, was done by Zhang and Wu [42].
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They introduced the concept of weighted hesitant fuzzy set
(WHFS), and then illustrated the procedure of constructing
a WHFE as follows: Suppose that L experts are asked to
evaluate the membership degree of the element x in the set
ωH . l1 experts provide hσ(1)(x), l2 experts provide hσ(2)(x),
..., and lm experts provide hσ(m)(x) such that

∑m
k=1 lk = L.

Keeping in the mind that these L experts cannot persuade
each other to change their opinions. In such a situation,
the membership degree of the element x in the set ωH

has m possible values hσ(1)(x), hσ(2)(x),..., and hσ(m)(x)

associated respectively with the weights wσ(1)(x) = l1
L
,

wσ(2)(x) = l2
L
,..., and wσ(m)(x) = lm

L
. In this regard, the

membership degree of the element x in the set ωH should be
represented by a weighted hesitant fuzzy element (WHFE)
ωh(x) = ⋃

1≤j≤m
{〈hσ(j)(x), wσ(j)(x)〉}. On the basis of the

above analysis, one can construct a WHFE by the help of
these two steps: (i) Collecting different possible member-
ship degrees into a HFE; (ii) Assigning the weights to these
different membership degrees.

In this contribution, we will show that Zhang and Wu’s
definitions of union, intersection, addition, and multipli-
cation operations for WHFSs are not correctly proposed.
This motivates us to modify a fault of WHFS proposed by
Zhang and Wu [42]. The modified definition of WHFS is
acceptable in accordance with the well-known axioms for
mathematical operations. It also allows that all information
measures are to be defined reasonably. We call the new
proposed extension of HFS as the ordered weighted HFS
(OWHFS).

Nowadays, a growing number of studies have focused on
the distance measure, the similarity measure for HFSs [37]
and some extensions of HFS [9–17]. Distance measures are
fundamentally important in various fields such as decision
making, market prediction, pattern recognition, etc.

Based on the theorem which shows that the similarity and
distance measures can be transformed by each other, this
article deals mainly with distance measures for OWHFSs.

Besides the measures of HFSs, the aggregation opera-
tors for HFSs are one of the most important research topic
at present. Many researchers have proposed a variety of
aggregation operators for HFSs and investigated their prop-
erties. For instance, Xia and Xu [35] developed a series of
aggregation operators for hesitant fuzzy information. Wei
[31] investigated hesitant fuzzy prioritized operators. Zhu
et al. [46] investigated hesitant fuzzy geometric Bonferroni
means.

The recent popular attention to this research topic moti-
vates us to develop some aggregation operators for OWH-
FEs in this contribution.

The present paper is organized as follows: The ordered
weighted HFS (OWHFS) is introduced in “Preliminaries”.

Section “Distance and Similarity Measures for OWHFSs”
presents the axioms for distance and similarity measures
and gives a variety of distance measures for OWHFSs.
Section “Aggregation Operators for OWHFSs” is devoted
to the development of some aggregation operators for
OWHFEs. In “Multi-Attribute Decision Making Problem
Involving OWHFSs”, we apply the proposed distance mea-
sures and aggregation operators to multi-attribute decision-
making. Finally, the conclusion is drawn in “Conclusion”.

Preliminaries

This section is devoted to describing the basic definitions
and notions of hesitant fuzzy set (HFS) which was originally
developed by Torra [27].

Definition 2.1 [35] Let X be the universe of discourse. A
hesitant fuzzy set (HFS) on X is symbolized by

H = {〈x, h(x)〉 : x ∈ X},

where h(x), referred to as the hesitant fuzzy element (HFE)
[35], is a set of some values in [0, 1] . It denotes the possible
membership degree of the element x ∈ X to the set H .

Example 2.1 [10] If X = {x1, x2, x3} is the universe of
discourse, h(x1) = {0.2, 0.4, 0.5}, h(x2) = {0.3, 0.4} and
h(x3) = {0.3, 0.2, 0.5, 0.6} are the HFEs of xi (i = 1, 2, 3)
to a setH , respectively. ThenH can be considered as a HFS,
i.e.,

H = {〈x1, {0.2, 0.4, 0.5}〉, 〈x2, {0.3, 0.4}〉,
〈x3, {0.3, 0.2, 0.5.0.6}〉}.

Assumption 2.1 Notice that the number of values in differ-
ent HFEs may be different. Suppose that l(h1(x)) stands
for the number of values in h1(x). Hereafter, the follow-
ing assumptions are made: (see [31, 35, 37, 46]) (A1)
All the elements in each h1(x) are arranged in increasing
order, and then h

σ(j)

1 (x) is referred to as the j th largest
value in h1(x). (A2) If, for some x ∈ X, l(h1(x)) �=
l(h2(x)), then lx = max{l(h1(x)), l(h2(x))}. To have a cor-
rect comparison, the two HFEs h1(x) and h2(x) should
have the same length lx . If there are fewer elements in
h1(x) than in h2(x), then we can extend h1(x) by repeat-
ing its maximum element until it has the same length with
h2(x).

Throughout this paper, we assume that all HFEs have the
same length N .
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Definition 2.2 Let h = ⋃
1≤j≤N

{hσ(j)}, h1 = ⋃
1≤j≤N

{hσ(j)

1 } and h2 =⋃
1≤j≤N

{hσ(j)

2 } be three HFEs. Then, some
operations on the HFEs h, h1 and h2 which are also HFEs
can be defined as follows (see [35] and [27]):

hc =
⋃

1≤j≤N

{1 − hσ(j)}; (1)

h1 ∪ h2 =
⋃

1≤j≤N

{max{hσ(j)

1 , h
σ(j)

2 }}; (2)

h1 ∩ h2 =
⋃

1≤j≤N

{min{hσ(j)

1 , h
σ(j)

2 }}; (3)

hλ =
⋃

1≤j≤N

{hσ(j)λ}; (4)

λh =
⋃

1≤j≤N

{1 − (1 − hσ(j))λ}; (5)

h1 ⊕ h2 =
⋃

1≤j≤N

{hσ(j)

1 + h
σ(j)

2 − h
σ(j)

1 h
σ(j)

2 }; (6)

h1 ⊗ h2 =
⋃

1≤j≤N

{hσ(j)

1 h
σ(j)

2 }. (7)

Note that all the latter definitions are not only possible
expressions for these operations. Among the great vari-
ety of expressions for the operations of complement, union
and intersection the above standard fuzzy operations have
certain properties that give them a special significance [21].

As can be seen from Definition 2.1, HFS expresses the
membership degrees of an element to a given set only by
several real numbers between 0 and 1 with equal impor-
tance. In many real-world situations, assigning exact values
without importance weights to the membership degrees
does not describe properly the imprecise or uncertain deci-
sion information. Thus, it seems to be difficult for the
decision makers to rely on the present form of HFSs for
expressing uncertainty of an element.

To overcome the difficulty associated with the present
form of HFSs, Zhang and Wu [42] introduced the concept
of weighted hesitant fuzzy set (WHFS). The membership
degrees of an element to a WHFS can be expressed by sev-
eral possible values together with their importance weights.

Definition 2.3 [42] Let X be the universe of discourse.
Zhang and Wu’s representation of weighted hesitant fuzzy
set (WHFS) on X can be defined as:

ωH = {〈x, ωh(x)〉 : x ∈ X}
= {〈x,

⋃

γ∈ ωh(x)

{(γ, wxγ )}〉 : x ∈ X}, (8)

where ωh(x) is a set of some different values in [0, 1],
denoting all possible membership degrees of the element

x ∈ X to the set ωH , and wxγ ∈ [0, 1] is the weight of γ

such that
∑

γ∈ ωh(x) wxγ = 1 for any x ∈ X.
Zhang andWu [42] called ωh(x) =⋃γ∈ωh(x){(γ, wxγ )}

a weighted hesitant fuzzy element (WHFE). A WHFE is
conveniently denoted by ωh =⋃γ∈ωh{(γ, wγ )}.

Definition 2.4 [42] Let ωh = ⋃γ∈ωh{(γ, wγ )}, ωh1 =⋃
γ1∈ωh1

{(γ1, wγ1)} and ωh2 =⋃γ2∈ωh2
{(γ2, wγ2)} be three

WHFEs. Then, some operations on the WHFEs ωh, ωh1 and
ωh2 were defined by Zhang and Wu as follows:

ωhc =
⋃

γ∈ωh

{(1 − γ,wγ )}; (9)

ωh1 ∪ ωh2 =
⋃

γ1∈ωh1,γ2∈ωh2

{(max{γ1, γ2}, wγ1 .wγ2)}; (10)

ωh1 ∩ ωh2 =
⋃

γ1∈ωh1,γ2∈ωh2

{(min{γ1, γ2}, wγ1 .wγ2)}. (11)

ωhλ =
⋃

γ∈ωh

{(γ λ, wγ )}; (12)

λωh =
⋃

γ1∈ωh1,γ2∈ωh2

{(1 − (1 − γ )λ, wγ )}; (13)

ωh1 ⊕ ωh2=
⋃

γ1∈ωh1,γ2∈ωh2

{(γ1+γ2−γ1γ2,wγ1 .wγ2)};(14)

ωh1 ⊗ ωh2 =
⋃

γ1∈ωh1,γ2∈ωh2

{(γ1.γ2, wγ1 .wγ2)}. (15)

Notice that Zhang and Wu [42] were careless about their
definitions of the above mathematical operations because
such definitions inherit some fundamental disadvantages. It
is not hard to see that Zhang and Wu’s union and inter-
section operations given by Eqs. 10 and 11 are not idem-
potent, that is, for any WHFE ωh = ⋃γ∈ωh{(γ, wγ )} =
{(γ1, wγ1), ..., (γl, wγl

)}

ωh ∪ ωh =
⋃

1≤j≤l

{(γj , fj (wγ1 , ..., wγl
))}

�=
⋃

1≤j≤l

{(γj , wγj
)} = ωh; (16)

ωh ∩ ωh =
⋃

1≤j≤l

{(γj , gj (wγ1 , ..., wγl
))}

�=
⋃

1≤j≤l

{(γj , wγj
)} = ωh, (17)

where fj and gj are real functions of wγ1 , ..., wγl
such that

fj (wγ1 , ..., wγl
) �= wγj

and gj (wγ1 , ..., wγl
) �= wγj

for 1 ≤
j ≤ l.
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For example, a company wants to classify some different
cars. It asks 10 experts to provide their evaluation infor-
mation of a car with respect to the safety criterion. Six
experts express their evaluation information by the value
“70 percent” and others by the value “80 percent”. Keep-
ing in mind that these 10 experts cannot persuade each other
to change their opinions. In such a situation, their evalu-
ation information can be described by a WHFE as ωh =
{〈0.7, 6

10 〉, 〈0.8, 4
10 〉}. If we apply Zhang and Wu’s union

and intersection definitions given by Eqs. 10 and 11 to ωh,
it results in

ωh ∪ ωh = {〈0.7, 0.36〉, 〈0.8, 0.64〉};
ωh ∩ ωh = {〈0.7, 0.84〉, 〈0.8, 0.16〉}.
From ωh ∪ ωh, one finds that near four experts are con-

fident with “70 %” about the safety of a car, and near six
experts are confident with “80%”. But, as observed from the
definition of WHFE ωh = {〈0.7, 6

10 〉, 〈0.8, 4
10 〉}, the num-

ber of experts who are confident with “70 %” and “80 %”
are 6 and 4, respectively. Such a comparison of confidence
level can be made for ωh ∩ ωh, where near eight experts
are confident with “70 %” about the safety of a car, and
near two experts are confident with “80 %”. These numbers
of experts have been already mentioned as 6 and 4 in the
WHFE ωh.

On the other hand, one can see that applying Zhang
and Wu’s addition and multiplication definitions given by
Eqs. 14 and 15 to any WHFE ωh does not give a reasonable
result, that is,

ωh ⊕ ωh =
⋃

1≤j≤l

{(2γj − γ 2
j , fj (wγ1 , ..., wγl

))}

�=
⋃

1≤j≤l

{(2γj − γ 2
j , wγj

))} = 2 ωh;

ωh ⊗ ωh =
⋃

1≤j≤l

{(γ 2
j , gj (wγ1 , ..., wγl

))}

�=
⋃

1≤j≤l

{(γ 2
j , wγj

)} = ωh2,

where fj and gj are real functions of wγ1 , ..., wγl
such that

fj (wγ1 , ..., wγl
) �= wγj

and gj (wγ1 , ..., wγl
) �= wγj

for 1 ≤
j ≤ l.

Once again, we consider the WHFE ωh =
{〈0.7, 6

10 〉, 〈0.8, 4
10 〉}, then

ωh ⊕ ωh={〈0.91, 0.36〉, 〈0.94, 0.48〉, 〈0.96, 0.16〉} �= 2 ωh

={〈0.91, 0.6〉, 〈0.96, 0.4〉};
ωh ⊗ ωh={〈0.49, 0.36〉, 〈0.56, 0.48〉, 〈0.64, 0.16〉} �= ωh2

={〈0.49, 0.6〉, 〈0.64, 0.4〉}.

Here, in order to avoid the disadvantages arising from
Zhang and Wu’s definition of WHFS and mathematical
operations on WHFSs, we define the ordered weighted
hesitant fuzzy set (OWHFS) as follows:

Definition 2.5 Let X be the universe of discourse. An
ordered weighted hesitant fuzzy set (OWHFS) on X is
defined as:

ωH = {〈x, ωh(x)〉 : x ∈ X}
= {〈x,

⋃

1≤j≤lx

{〈hσ(j)(x), wσ(j)(x)〉}〉 : x ∈ X}, (18)

where ωh(x), referred to as the ordered weighted hesitant
fuzzy element (OWHFE), is a set of some different values
in [0, 1]. It denotes all possible membership degrees of the
element x ∈ X to the set ωH , and wσ(j)(x) ∈ [0, 1] is the
weight of hσ(j)(x) such that

∑
1≤j≤lx

wσ(j)(x) = 1 for any
x ∈ X.

It is interesting to note that if we take wσ(1)(x) = ... =
wσ(lx)(x) = 1

lx
for any x ∈ X, then the OWHFS ωH is

reduced to a typical HFS.
Hereafter, for the convenience of representa-

tion, we denote the OWHFE ωh(x) by ωh =⋃
1≤j≤lx

{〈hσ(j), wσ(j)〉}.

Assumption 2.2 Notice that the number of values in dif-
ferent OWHFEs may be different. Suppose that l(ωh1(x))

stands for the number of values in ωh1(x). Hereafter, the
following assumptions are made: (A1) All the first compo-
nents of elements in each ωh1(x) are arranged in increasing
order, and then h

σ(j)

1 (x) is referred to as the j th largest
value in ωh1(x). (A2) If, for some x ∈ X, l(ωh1(x)) �=
l(ωh2(x)), then lx = max{l(ωh1(x)), l(ωh2(x))}. To have
a correct comparison, the two OWHFEs ωh1(x) and
ωh2(x) should have the same length lx . If there are
fewer elements in ωh1(x) than in ωh2(x), then we can
extend ωh1(x) by repeating the maximum first compo-
nent of elements associated with zero weight until it
has the same length with ωh2(x). This kind of exten-
sion is quite reasonable since the added element with zero
weight is meant to be an element that does not really
exist.

Throughout this paper, we assume that all OWHFEs have
the same length N .

Definition 2.6 Let ωh = ⋃
1≤j≤N

{〈hσ(j), wσ(j)〉}, ωh1 =
⋃

1≤j≤N
{〈hσ(j)

1 , w
σ(j)

1 〉} and ωh2 = ⋃
1≤j≤N

{〈hσ(j)

2 , w
σ(j)

2 〉}
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be three OWHFEs. Then, some operations on the OWHFEs
ωh, ωh1 and ωh2 are defined as follows:

ωhc =
⋃

1≤j≤N

{〈1 − hσ(j), wσ(j)〉}; (19)

ωh1 ∪ ωh2 =
⋃

1≤j≤N

{〈max{hσ(j)

1 , h
σ(j)

2 }, (wσ(j)

1 + w
σ(j)

2 )〉}; (20)

ωh1 ∩ ωh2 =
⋃

1≤j≤N

{〈min{hσ(j)

1 , h
σ(j)

2 }, (wσ(j)

1 + w
σ(j)

2 )〉}; (21)

ωhλ =
⋃

1≤j≤N

{〈hσ(j)λ, wσ(j)〉}; (22)

λωh =
⋃

1≤j≤N

{〈1 − (1 − hσ(j))λ, wσ(j)〉}; (23)

ωh1 ⊕ ωh2 =
⋃

1≤j≤N

{〈hσ(j)

1 +h
σ(j)

2 −h
σ(j)

1 h
σ(j)

2 ,

(w
σ(j)

1 +w
σ(j)

2 )〉}; (24)

ωh1 ⊗ ωh2 =
⋃

1≤j≤N

{〈hσ(j)

1 h
σ(j)

2 , (w
σ(j)

1 + w
σ(j)

2 )〉}, (25)

where (w
σ(j)

1 + w
σ(j)

2 ) for 1 ≤ j ≤ N , referred hereafter to
as the normalized weights, are determined in two steps: (i)
We first calculate the weight of j th component of the binary
operation ωh1�ωh2 by simply adding the weightsw

σ(j)

1 and

w
σ(j)

2 for 1 ≤ j ≤ N ; (ii) After the whole components of
ωh1 � ωh2 are obtained, their weights are considered again
and then normalized. In this regard, the normalized weights
of the above binary operations are defined as follows:

(w
σ(j)

1 +w
σ(j)

2 )= (w
σ(j)

1 +w
σ(j)

2 )
∑N

k=1 (w
σ(k)
1 +w

σ(k)
2 )

, 1≤j ≤N. (26)

Remark 2.1 In the case that the associative binary operation
� is iterated on the finite set of OWHFEs ωh1,

ωh2, ...,
ωhm,

i.e., ωh1 � ωh2 � ... � ωhm = (...((ωh1 � ωh2) � ωh3)... �
ωhm), we can construct the normalized weights as:

(

m∑

i=1

w
σ(j)
i ) := (w

σ(j)

1 +w
σ(j)

2 +...+w
σ(j)
m )

= (...((w
σ(j)

1 +w
σ(j)

2 )+w
σ(j)

3 )+... + w
σ(j)
m )

∑N
k=1 (w

σ(k)
1 + w

σ(k)
2 + ... + w

σ(k)
m )

,

1 ≤ j ≤ N. (27)

Example 2.2 Suppose that ωh1 = {〈0.2, 0.1〉, 〈0.4, 0.3〉,
〈0.5, 0.6〉} and ωh2 = {〈0.3, 0.5〉, 〈0.7, 0.5〉} are two given

OWHFEs. Bearing Assumption 2.2 in mind, ωh2 should be
first extended as ωh2 = {〈0.3, 0.5〉, 〈0.7, 0.5〉, 〈0.7, 0.0〉}.
Then, we get

ωhc
1 = {〈0.5, 0.6〉, 〈0.6, 0.3〉, 〈0.8, 0.1〉};

ωh1 ∪ ωh2 = {〈max{0.2, 0.3}, (0.1 + 0.5)

2
〉,

〈0.7, 0.4〉, 〈0.7, 0.3〉};
ωh1 ∩ ωh2 = {〈min{0.2, 0.3}, (0.1 + 0.5)

2
〉,

〈0.4, 0.4〉, 〈0.5, 0.3〉};
(ωh1 ∪ ωh2) ∪ ωh1 = {〈max{max{0.2, 0.3}, 0.2},
((0.1 + 0.5) + 0.1)

3
〉, 〈0.7, 1.1

3
〉, 〈0.7, 1.2

3
〉};

(ωh1 ∩ ωh2) ∩ ωh1 = {〈min{min{0.2, 0.3}, 0.2},
((0.1 + 0.5) + 0.1)

3
〉, 〈0.4, 1.1

3
〉, 〈0.5, 1.2

3
〉};

ωhλ
1 = {〈0.2λ, 0.1〉, 〈0.4λ, 0.3〉, 〈0.5λ, 0.6〉};

λωh1={〈1 − 0.8λ, 0.1〉, 〈1 − 0.6λ, 0.3〉, 〈1 − 0.5λ, 0.6〉};
ωh1 ⊕ ωh2 = {〈0.44, 0.3〉, 〈0.82, 0.4〉, 〈0.85, 0.3〉};
ωh1 ⊗ ωh2 = {〈0.06, 0.3〉, 〈0.28, 0.4〉, 〈0.35, 0.3〉}.

Theorem 2.1 Let ωh = ⋃
1≤j≤N

{〈hσ(j), wσ(j)〉}, ωh1 =
⋃

1≤j≤N
{〈hσ(j)

1 , w
σ(j)

1 〉} and ωh2 = ⋃
1≤j≤N

{〈hσ(j)

2 , w
σ(j)

2 〉}
be three OWHFEs. Then, all operations ωhc

1,
ωh1 ∪ ωh2,

ωh1 ∩ ωh2, ωhλ
1 , λωh1, ωh1 ⊕ ωh2, ωh1 ⊗ ωh2 are also

OWHFEs.

Proof We only prove that ωh1 ∪ ωh2 is also OWHFE.
Known by the definition of ωh1∪ωh2 from Eq. 20, i.e., ωh1∪
ωh2 = ⋃

1≤j≤N
{〈max{hσ(j)

1 , h
σ(j)

2 }, (wσ(j)

1 + w
σ(j)

2 )〉}, we
need to show that

N∑

j=1

(w
σ(j)

1 + w
σ(j)

2 ) = 1.

By definition of the normalized weight (wσ(j)

1 + w
σ(j)

2 ),
we have

N∑

j=1

(w
σ(j)

1 + w
σ(j)

2 ) =
N∑

j=1

(w
σ(j)

1 + w
σ(j)

2 )
∑N

k=1 (w
σ(k)
1 + w

σ(k)
2 )

=
∑N

j=1(w
σ(j)

1 + w
σ(j)

2 )
∑N

k=1 (w
σ(k)
1 + w

σ(k)
2 )

= 1.

This completes the proof.
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Theorem 2.2 Let ωh = ⋃
1≤j≤N

{〈hσ(j), wσ(j)〉}, ωh1 =
⋃

1≤j≤N
{〈hσ(j)

1 , w
σ(j)

1 〉} and ωh2 = ⋃
1≤j≤N

{〈hσ(j)

2 , w
σ(j)

2 〉}
be three OWHFEs. Then,

(ωhc)λ = (λωh)c; (28)

(ωhλ)c = λ(ωhc); (29)

(ωh1 ∪ ωh2)
c = ωhc

1 ∩ ωhc
2; (30)

(ωh1 ∩ ωh2)
c = ωhc

1 ∪ ωhc
2; (31)

(ωh1 ⊗ ωh2)
λ = ωhλ

1 ⊗ ωhλ
2; (32)

λ(ωh1 ⊕ ωh2) = λωh1 ⊕ λωh2; (33)

(ωh1 ⊕ ωh2)
c = ωhc

1 ⊗ ωhc
2; (34)

(ωh1 ⊗ ωh2)
c = ωhc

1 ⊕ ωhc
2; (35)

ωh1 ⊕ ωh2 = ωh2 ⊕ ωh1; (36)
ωh1 ⊗ ωh2 = ωh2 ⊗ ωh1; (37)
ωh1 ∪ ωh2 = ωh2 ∪ ωh1; (38)
ωh1 ∩ ωh2 = ωh2 ∩ ωh1; (39)

ωh ∪ (ωh1 ∪ ωh2) = (ωh ∪ ωh1) ∪ ωh2; (40)
ωh ∩ (ωh1 ∩ ωh2) = (ωh ∩ ωh1) ∩ ωh2; (41)

ωh ∪ ωh = ωh; (42)
ωh ∩ ωh = ωh; (43)
ωh ⊕ ωh = 2 ωh; (44)
ωh ⊗ ωh = ωh2. (45)

It is noteworthy to say that properties given by Eqs. 42–
45 show the superiority of OWHFS proposed here over
WHFS suggested by Zhang and Wu [42].

For further discussion on the properties of aggregation
operators, we need to define a comparison law to compare
OWHFEs.

Definition 2.7 Let ωh = ⋃
1≤j≤N

{〈hσ(j), wσ(j)〉} be an
OWHFE. Then, we define

�(ωh) =
N∑

j=1

hσ(j)wσ(j), (46)

∇(ωh) =
N∑

j=1

(�(ωh) − hσ(j))2wσ(j). (47)

Now, we are in a position to present a law to compare any
two OWHFEs ωh1 and ωh2 as follows:

• If �(ωh1) > �(ωh2), then ωh1 > ωh2;
• If �(ωh1) = �(ωh2), then

– if ∇(ωh1) > ∇(ωh2), then ωh1 < ωh2;
– if ∇(ωh1) < ∇(ωh2), then ωh1 > ωh2;
– if ∇(ωh1) = ∇(ωh2), then ωh1 = ωh2.

Distance and Similarity Measures for OWHFSs

There are many studies which deal with the distance mea-
sures and the similarity measures for FSs [41], IFSs [2] and
interval-valued intuitionistic fuzzy sets (IVIFSs) [32]. Lit-
tle effort has been made to study the similarity measures
for T2FSs [24]. There are several similarity measures for
interval T2FSs (IT2FSs), such as Gorzalczany’s degree of
compatibility [19], Bustince’s interval-valued normal simi-
larity measure [5], and Wu and Mendel’s vector similarity
measure [34].

Distance measures are fundamentally important in var-
ious fields such as decision making, market prediction,
pattern recognition, etc.

A growing number of studies have focused on the dis-
tance measure and the similarity measure for HFSs [10, 37]
and HOHFS [11]. In this section, we are interested in intro-
ducing a class of distance measures and similarity measures
for OWHFSs.

In the following, we first give the axiomatic definition
of information measures for OWHFSs. First of all, we call
ω0 the empty OWHFS, where ω0 = {〈x, ω0(x)〉 : x ∈
X} = {〈x,

⋃
1≤j≤N {〈0, 1

N
〉}〉 : x ∈ X}. We call ω1 the

full OWHFS, where ω1 = {〈x, ω1(x)〉 : x ∈ X} =
{〈x,
⋃

1≤j≤N {〈1, 1
N

〉}〉 : x ∈ X}.

Definition 3.1 Let ωH1 = {〈x, ωh1(x)〉 : x ∈ X} and
ωH2 = {〈x, ωh2(x)〉 : x ∈ X} be two OWHFSs on X. Then
d is called a distance measure for OWHFSs if it possesses
the following properties:

(d0) Boundary: 0 ≤ d(ωH1,
ωH2) ≤ 1;

(d1) Symmetry: d(ωH1,
ωH2) = d(ωH2,

ωH1);
(d2) Complementarity: d(ωH1,

ωHc
1 ) = 1 iff ωH1 is the

empty OWHFS ω0 or the full OWHFS ω1;
(d3) Reflexivity: d(ωH1,

ωH2) = 0 iff ωH1 = ωH2;

where ωHc
1 = {〈x, ωhc

1(x)〉 : x ∈ X} is the complement set
of OWHFS ωH1.

Definition 3.2 Let ωH1 = {〈x, ωh1(x)〉 : x ∈ X} and
ωH2 = {〈x, ωh2(x)〉 : x ∈ X} be two OWHFSs on X. Then
S is called a similarity measure for OWHFSs if it possesses
the following properties:

(S0) Boundary: 0 ≤ S(ωH1,
ωH2) ≤ 1;

(S1) Symmetry: S(ωH1,
ωH2) = S(ωH2,

ωH1);
(S2) Complementarity: S(ωH1,

ωHc
1 ) = 0 if ωH1 = ω0 or

ωH1 = ω1;
(S3) Reflexivity: S(ωH1,

ωH2) = 1 iff ωH1 = ωH2.

Theorem 3.1 Let Z : [0, 1] → [0, 1] be a strictly mono-
tone decreasing real function, and d be a distance between
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OWHFSs. Then, for any OWHFSs ωH1 and ωH2 on X

Sd(ωH1,
ωH2) = Z(d(ωH1,

ωH2)) − Z(1)

Z(0) − Z(1)
,

is a similarity measure for OWHFSs based on the corre-
sponding distance d.

Proof From Definition 3.1 and the property of Z(.), it
is evident that Sd meets all the requirements listed in
Definition 3.2.

By Theorem 3.1, different formulas can be developed
to calculate the similarity measures between OWHFSs
using different strictly monotone decreasing functions Z :
[0, 1] → [0, 1], for instance, (1) Z(t) = 1 − t ; (2) Z(t) =
1−t
1+t

; (3) Z(t) = 1 − tet−1; (4) Z(t) = 1 − t2.
For more information regarding the relationship between

the distance measure and the similarity measure for HFSs
(as a special case of OWHFSs) based on their axiomatic
definitions, please refer to [10]. Here, we mainly discuss
the distance measures for OWHFSs, and the corresponding
similarity measures can be obtained easily.

The definitions of distance measures for OWHFSs are
based on those for their OWHFEs. Among numerous dis-
tance measures for HFSs, the most widely used distance
measures for two HFSs H1 = {〈x, h1(x)〉 : x ∈ X} =
{〈x,
⋃

1≤j≤lx
{hσ(j)

1 (x)}〉 : x ∈ X} and H2 = {〈x, h2(x)〉 :
x ∈ X} = {〈x,

⋃
1≤j≤lx

{hσ(j)

2 (x)}〉 : x ∈ X} on X =
{x1, ..., xn} are as follows (see [37]):
• The generalized hesitant normalized distance:

dghn(H1,H2) =
⎡

⎣ 1

n

n∑

i=1

⎛

⎝ 1

lxi

lxi∑

j=1

|hσ(j)

1 (xi ) − h
σ(j)

2 (xi )|λ
⎞

⎠

⎤

⎦

1
λ

;

(48)

• The generalized hesitant normalized Hausdorff dis-
tance:

dghnh(H1,H2) = [ 1
n

n∑

i=1

max
1≤j≤lxi

{|hσ(j)

1 (xi) − h
σ(j)

2 (xi)|λ}] 1
λ ;

(49)

• The generalized hybrid hesitant normalized distance:

dghhn(H1, H2) = [ 1

2n

n∑

i=1

(
1

lxi

lxi∑

j=1

|hσ(j)

1 (xi)

−h
σ(j)

2 (xi)|λ + max
1≤j≤lxi

{|hσ(j)

1 (xi) − h
σ(j)

2 (xi)|λ})] 1
λ ,

(50)

where λ > 0.

If the weight of the element xi ∈ X is ξi (i =
1, ..., n) with ξi ∈ [0, 1] and∑n

i=1 ξi = 1, then we get
the weighted form of distance measures as follows:

• The generalized hesitant weighted normalized distance:

dghwn(H1,H2)=
⎡

⎣
n∑

i=1

ξi

⎛

⎝ 1

lxi

lxi∑

j=1

|hσ(j)

1 (xi ) − h
σ(j)

2 (xi )|λ
⎞

⎠

⎤

⎦

1
λ

;

(51)

• The generalized hesitant weighted normalized Haus-
dorff distance:

dghwnh(H1,H2) =
[

n∑

i=1

ξi max
1≤j≤lxi

{
|hσ(j)

1 (xi ) − h
σ(j)

2 (xi )|λ
}
] 1

λ

;

(52)

• The generalized hybrid hesitant weighted normalized
distance:

dghhwn(H1,H2) =
⎡

⎣1

2

n∑

i=1

ξi

⎛

⎝ 1

lxi

lxi∑

j=1

|hσ(j)

1 (xi ) − h
σ(j)

2 (xi )|λ

+ max
1≤j≤lxi

{|hσ(j)

1 (xi ) − h
σ(j)

2 (xi )|λ}
)] 1

λ

, (53)

where λ > 0.

Before formulating distance measures for two OWHFSs,
let us make a convention: if ωh1 = ⋃

1≤j≤N
{〈hσ(j)

1 , w
σ(j)

1 〉}
and ωh2 =⋃

1≤j≤N
{〈hσ(j)

2 , w
σ(j)

2 〉} are two OWHFEs, then

||〈hσ(j)

1 , w
σ(j)

1 〉 − 〈hσ(j)

2 , w
σ(j)

2 〉|| = (|hσ(j)

1 − h
σ(j)

2 |2
+ |wσ(j)

1 − w
σ(j)

2 |2) 1
2 , (54)

for any 1 ≤ j ≤ N .
By the help of the latter convention, we can for-

mulate some distance measures for two OWHFSs
ωH1 = {〈x, ωh1(x)〉 : x ∈ X} = {〈x,

⋃
1≤j≤N

{〈hσ(j)

1 (x), w
σ(j)

1 (x)〉}〉 : x ∈ X} and ωH2 = {〈x, ωh2(x)〉 :
x ∈ X} = {〈x,

⋃
1≤j≤N {〈hσ(j)

2 (x), w
σ(j)

2 (x)〉}〉 : x ∈ X}
on X = {x1, ..., xn} as follows:
• The generalized ordered weighted hesitant normalized

distance:

dgowhn(
ωH1,

ωH2) =
⎡

⎣ 1

n

n∑

i=1

⎛

⎝ 1

N

N∑

j=1

||
〈
h

σ(j)

1 (xi), w
σ(j)

1 (xi)
〉

−
〈
h

σ(j)

2 (xi), w
σ(j)

2 (xi)
〉
||λ
⎞

⎠

⎤

⎦

1
λ

; (55)
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• The generalized ordered weighted hesitant normalized
Hausdorff distance:

dgowhnh(ωH1,
ωH2) =

[
1

n

n∑

i=1

max
1≤j≤N

{||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉

−〈hσ(j)

2 (xi), w
σ(j)

2 (xi)〉||λ}
] 1

λ ; (56)

• The generalized hybrid ordered weighted hesitant nor-
malized distance:

dghowhn(
ωH1,

ωH2) = [ 1

2n

n∑

i=1

(
1

N

N∑

j=1

||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉 − 〈hσ(j)

2 (xi), w
σ(j)

2 (xi)〉||λ

+ max
1≤j≤N

{||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉 − 〈hσ(j)

2 (xi), w
σ(j)

2 (xi)〉||λ})] 1
λ , (57)

where λ > 0.
If the weight of the element xi ∈ X is ξi (i = 1, ..., n)

with ξi ∈ [0, 1] and
∑n

i=1 ξi = 1, then we get the
weighted form of distance measures as follows:

• The generalized ordered weighted hesitant weighted
normalized distance:

dgowhwn(
ωH1,

ωH2) = [
n∑

i=1

ξi(
1

N

N∑

j=1

||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉

−〈hσ(j)

2 (xi), w
σ(j)

2 (xi)〉||λ)] 1
λ ; (58)

• The generalized ordered weighted hesitant weighted
normalized Hausdorff distance:

dgowhwnh(ωH1,
ωH2) = [

n∑

i=1

ξi max
1≤j≤N

{||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉

−〈hσ(j)

2 (xi), w
σ(j)

2 (xi)〉||λ}] 1
λ ; (59)

• The generalized hybrid ordered weighted hesitant
weighted normalized distance:

dghowhwn(
ωH1,

ωH2) = [1
2

n∑

i=1

ξi(
1

N

N∑

j=1

||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉 − 〈hσ(j)

2 (xi), w
σ(j)

2 (xi)〉||λ

+ max
1≤j≤N

{||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉 − 〈hσ(j)

2 (xi), w
σ(j)

2 (xi)〉||λ})] 1
λ , (60)

where λ > 0.

Theorem 3.2 All measure functions dgowhn, dgowhnh,

dghowhn, dgowhwn, dgowhwnh, dghowhwn given respectively
by Eqs. 55–60 are distance measures for OWHFSs.

Proof It is necessary to show that each measure function
satisfies the requirements (d0)–(d3) listed in Definition 3.1.
The proofs of (d0), (d1), and (d3) for dghowhwn given by
Eq. 60 are straightforward and we prove only (d2). Let

dghowhwn(
ωH1,

ωHc
1 ) = [1

2

n∑

i=1

ξi(
1

N

N∑

j=1

||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉 − 〈1 − h
σ(j)

1 (xi), w
σ(j)

1 (xi)〉||λ

+ max
1≤j≤N

{||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉 − 〈1 − h
σ(j)

1 (xi), w
σ(j)

1 (xi)〉||λ})] 1
λ = 1,

if and only if

||〈hσ(j)

1 (xi), w
σ(j)

1 (xi)〉 − 〈1 − h
σ(j)

1 (xi), w
σ(j)

1 (xi)〉|| = 1, f or any 1 ≤ i ≤ n, and 1 ≤ j ≤ N,
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if and only if

|hσ(j)

1 (xi) − (1 − h
σ(j)

1 (xi))| = 1, |wσ(j)

1 (xi) − w
σ(j)

1 (xi)| = 0, f or any 1 ≤ i ≤ n and 1 ≤ j ≤ N,

if and only if

h
σ(j)

1 (xi) = 0, or h
σ(j)

1 (xi) = 1, f or any 1 ≤ i ≤ n and 1 ≤ j ≤ N.

This implies that ωH1 is the empty OWHFS ω0 or the full
OWHFS ω1.

Aggregation Operators for OWHFSs

Definition 4.1 Let ωE = {ωh1,
ωh2, ...,

ωhn} be a set of n

OWHFEs, and � be a function on ωE. Then

�ωE =
⋃

1≤j≤N

⎧
⎨

⎩

〈
(
h

σ(j)

1 , ..., h
σ(j)
n

)
,

⎛

⎝
n∑

i=1

w
σ(j)
i

⎞

⎠

〉⎫
⎬

⎭
, (61)

where (h
σ(j)

1 , ..., h
σ(j)
n ) ∈ ωh1×...×ωhn, and (

∑n
i=1 w

σ(j)
i )

is calculated using Eq. 27 in Remark 2.1.
By taking Definition 2.6 and Definition 4.1 into account,

we define some aggregation operators for OWHFEs. Let
ωh1,

ωh2, ...,
ωhn be n OWHFEs. Then, we define

• The ordered weighted hesitant fuzzy weighted averag-
ing (OWHFWA) operator:

OWHFWA(ωh1,
ωh2, ...,

ωhn) =
n⊕

i=1

(�i
ωhi)

=
⋃

1≤j≤N

⎧
⎨

⎩

〈

1 −
n∏

i=1

(1 − h
σ(j)
i )�i ,

⎛

⎝
n∑

i=1

w
σ(j)
i

⎞

⎠

〉⎫
⎬

⎭
; (62)

• The ordered weighted hesitant fuzzy weighted geomet-
ric (OWHFWG) operator:

OWHFWG(ωh1,
ωh2, ...,

ωhn) =
n⊗

i=1

(ωh
�i

i )

=
⋃

1≤j≤N

⎧
⎨

⎩

〈
n∏

i=1

(h
σ(j)
i )�i ,

⎛

⎝
n∑

i=1

w
σ(j)
i

⎞

⎠

〉⎫
⎬

⎭
; (63)

• The ordered weighted generalized hesitant fuzzy
weighted averaging (OWGHFWA) operator:

OWGHFWAλ(
ωh1,

ωh2, ...,
ωhn) =

[
n⊕

i=1

(�i
ωhλ

i )

] 1
λ

=
⋃

1≤j≤N

⎧
⎨

⎩

〈[

1 −
n∏

i=1

(1 − (h
σ(j)
i )λ)�i

] 1
λ

,

⎛

⎝
n∑

i=1

w
σ(j)
i

⎞

⎠

〉⎫
⎬

⎭
;

(64)

• The ordered weighted generalized hesitant fuzzy
weighted geometric (OWGHFWG) operator:

OWGHFWGλ(ωh1,
ωh2, ...,

ωhn) = 1

λ

[
n⊗

i=1

(λ ωh
�i

i )

]

=
⋃

1≤j≤N

⎧
⎪⎨

⎪⎩

〈

1−
⎡

⎣1−
n∏

i=1

(1 − (1 − h
σ(j)
i )

1
λ )�i ,

⎛

⎝
n∑

i=1

w
σ(j)
i

⎞

⎠

⎤

⎦

1
λ 〉
⎫
⎪⎬

⎪⎭
;

(65)

where � = (�1, �2, ...,�n) is the weight vector of
ωhi (i = 1, 2, ..., n), with �i ∈ [0, 1] and ∑n

i=1 �i = 1.
Moreover, λ > 0.

Theorem 4.1 Suppose that ωh1,
ωh2, ...,

ωhn are n OWH-
FEs, and � = (�1, �2, ...,�n) is the weight vector of
ωhi (i = 1, 2, ..., n) with �i ∈ [0, 1] and ∑n

i=1 �i = 1.
Then

OWHFWG(ωh1,
ωh2, ...,

ωhn) ≤ OWHFWA(ωh1,
ωh2, ...,

ωhn); (66)

OWHFWG(ωh1,
ωh2, ...,

ωhn) ≤ OWGHFWAλ(
ωh1,

ωh2, ...,
ωhn); (67)

OWGHFWGλ(
ωh1,

ωh2, ...,
ωhn) ≤ OWHFWA(ωh1,

ωh2, ...,
ωhn). (68)
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Proof We only prove the assertion (66), and the assertions
(67) and (68) can be proven similarly. For any h

σ(j)
i ∈

ωhi (i = 1, 2, ..., n) and (�1, �2, ...,�n), with �i ∈ [0, 1]
and
∑n

i=1 �i = 1, Xia and Xu [35] verified that

n∏

i=1

(h
σ(j)
i )�i ≤ 1 −

n∏

i=1

(1 − h
σ(j)
i )�i . (69)

On the other hand, from Eqs. 62 and 63, one observes
that the importance weights of the aggregation operators

OWHFWA and OWHFWG are equal to (
∑n

i=1 w
σ(j)
i ).

Thus, by applying the comparison law presented in Defini-
tion 2.7 together with the relation (69), we get

�(OWHFWG(ωh1,
ωh2, ...,

ωhn))

≤ �(OWHFWA(ωh1,
ωh2, ...,

ωhn)),

which completes the proof.
All the above-mentioned aggregation operators can be

extended to the operators being used in a situation where the
ordering of OWHFEs is important.

Suppose that ωh1,
ωh2, ...,

ωhn are n OWHFEs, and
ωhδ(i) is the i-th largest of them. Let � = (�1, �2, ...,�n)

be the aggregation-associated vector such that �i ∈ [0, 1]
and
∑n

i=1 �i = 1. Then, motivated by the idea of the OWA
operator [38], we define

• The ordered weighted hesitant fuzzy ordered weighted
averaging (OWHFOWA) operator:

OWHFOWA(ωh1,
ωh2, ...,

ωhn) =
n⊕

i=1

(�i
ωhδ(i))

=
⋃

1≤j≤N

⎧
⎨

⎩

〈

1 −
n∏

i=1

(
1 − h

σ(j)

δ(i)

)�i

,

⎛

⎝
n∑

i=1

w
σ(j)
i

⎞

⎠

〉⎫
⎬

⎭
;

(70)

• The ordered weighted hesitant fuzzy ordered weighted
geometric (OWHFOWG) operator:

OWHFOWG(ωh1,
ωh2, ...,

ωhn) =
n⊗

i=1

(ωh
�i

δ(i))

=
⋃

1≤j≤N

⎧
⎨

⎩

〈
n∏

i=1

(h
σ(j)

δ(i) )�i ,

⎛

⎝
n∑

i=1

w
σ(j)
i

⎞

⎠

〉⎫
⎬

⎭
; (71)

• The ordered weighted generalized hesitant fuzzy
ordered weighted averaging (OWGHFOWA) operator:

OWGHFOWAλ(
ωh1,

ωh2, ...,
ωhn) =

[
n⊕

i=1

(�i
ωhλ

δ(i))

] 1
λ

=
⋃

1≤j≤N

⎧
⎨

⎩

〈[

1 −
n∏

i=1

(1 − (h
σ(j)

δ(i) )λ)�i

] 1
λ

,

⎛

⎝
n∑

i=1

w
σ(j)
i

⎞

⎠

〉⎫
⎬

⎭
;

(72)

• The ordered weighted generalized hesitant fuzzy
ordered weighted geometric (OWGHFOWG) operator:

OWGHFOWGλ(ωh1,
ωh2, ...,

ωhn) = 1

λ

[
n⊗

i=1

(λ ωh
�i

δ(i))

]

=
⋃

1≤j≤N

⎧
⎪⎨

⎪⎩

〈

1 −
⎡

⎣1 −
n∏

i=1

(1 − (1 − h
σ(j)

δ(i) )
1
λ )�i ,

⎛

⎝
n∑

i=1

w
σ(j)
i

⎞

⎠

⎤

⎦

1
λ 〉
⎫
⎪⎬

⎪⎭
;

(73)

where λ > 0.

Multi-Attribute Decision Making Problem
Involving OWHFSs

This section is divided into two parts, one is devoted to
a distance-based algorithm for ordered weighted hesitant
fuzzy multi-attribute decision making (OWHFMADM), and
the other is devoted to an aggregation-based algorithm for
OWHFMADM.

The Distance-Based Algorithm for OWHFMADM

In what follows, we first apply the proposed distance mea-
sures to solve the hesitant fuzzy multi-attribute decision
making problems, which can be described below:

Example 5.1.1 (Remodeled and adopted from [20, 37]).
Energy is an indispensable factor for the socioeconomic
development of societies. Thus, the correct energy pol-
icy affects economic development and environment, and so
on, the most appropriate energy policy selection is very
important. Suppose that there are five alternatives (energy
projects) Ai (i = 1, 2, 3, 4, 5) to be invested, and four
attributes to be considered: P1: technological; P2: envi-
ronmental; P3: socio-political; P4: economic. The attribute
weight vector is ξ = (0.15, 0.3, 0.2, 0.35). Six decision
makers Dl (l = 1, 2, 3, 4, 5, 6) are invited to evaluate
the performances of the five alternatives. For an alterna-
tive under an attribute, all of the decision makers provide
anonymously their evaluated values. As an example, for the
alternative A1 under the attribute P1, the evaluation value
provided by the decision makers D1, D3, and D5 is 0.7; D2

and D4’s evaluation value is 0.4; and D6’s evaluation value
is 0.5. In this regard, the evaluation of the alternative A1

under the attribute P1 can be represented by an OWHFE
as ωh(A1, P1) := ωh11 = {〈0.4, 2

6 〉, 〈0.5, 1
6 〉, 〈0.7, 3

6 〉}.
Note that the characteristics of the alternative A1 under the
attributes Pj (j = 2, 3, 4), denoted respectively by the
OWHFEs ωh1j (j = 2, 3, 4), form the OWHFS ωH1 which
is indicated in the first row of Table 1. The results evaluated
for other alternatives under the attributes are contained in a
weighted hesitant fuzzy decision matrix, shown in Table 1.
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Table 1 Ordered weighted hesitant fuzzy decision matrix

P1 P2 P3 P4

ωH1 A1 {〈0.4, 2
6 〉, 〈0.5, 1

6 〉, 〈0.7, 3
6 〉} {〈0.3, 2

6 〉, 〈0.6, 1
6 〉, 〈0.7, 3

6 〉} {〈0.1, 2
6 〉, 〈0.2, 1

6 〉, 〈0.3, 3
6 〉} {〈0.3, 2

6 〉, 〈0.5, 1
6 〉, 〈0.8, 3

6 〉}
ωH2 A2 {〈0.3, 2

6 〉, 〈0.5, 1
6 〉, 〈0.6, 3

6 〉} {〈0.2, 2
6 〉, 〈0.4, 1

6 〉, 〈0.5, 3
6 〉} {〈0.1, 2

6 〉, 〈0.5, 1
6 〉, 〈0.6, 3

6 〉} {〈0.1, 2
6 〉, 〈0.6, 1

6 〉, 〈0.8, 3
6 〉}

ωH3 A3 {〈0.1, 2
6 〉, 〈0.5, 1

6 〉, 〈0.8, 3
6 〉} {〈0.3, 2

6 〉, 〈0.4, 1
6 〉, 〈0.7, 3

6 〉} {〈0.1, 2
6 〉, 〈0.2, 1

6 〉, 〈0.5, 3
6 〉} {〈0.2, 2

6 〉, 〈0.3, 1
6 〉, 〈0.8, 3

6 〉}
ωH4 A4 {〈0.3, 2

6 〉, 〈0.4, 1
6 〉, 〈0.5, 3

6 〉} {〈0.1, 2
6 〉, 〈0.3, 1

6 〉, 〈0.5, 3
6 〉} {〈0.4, 2

6 〉, 〈0.6, 1
6 〉, 〈0.7, 3

6 〉} {〈0.3, 2
6 〉, 〈0.4, 1

6 〉, 〈0.6, 3
6 〉}

ωH5 A5 {〈0.2, 2
6 〉, 〈0.3, 1

6 〉, 〈0.7, 3
6 〉} {〈0.4, 2

6 〉, 〈0.7, 1
6 〉, 〈0.8, 3

6 〉} {〈0.2, 2
6 〉, 〈0.5, 1

6 〉, 〈0.6, 3
6 〉} {〈0.3, 2

6 〉, 〈0.5, 1
6 〉, 〈0.8, 3

6 〉}

We let the full OWHFS
ω1 = {〈x, ω1(x)〉 : x ∈ X = {P1, ..., P4}}

= {〈x,
⋃

1≤j≤3

{〈1, 1
3
〉}〉 : x ∈ X}

= {〈 Pj , {〈1, 1
3
〉, 〈1, 1

3
〉, 〈1, 1

3
〉} 〉 : j = 1, 2, 3, 4},

be the representative of ideal alternative. By using Eq. 58
to calculate the deviations between each alternative and

the ideal alternative, the ranking of all alternatives can be
obtained. For example, the deviation between the alterna-
tive A1 (correspondingly, ωH1) and the ideal alternative
(correspondingly, ω1) is calculated as follows:

dgowhwn(
ωH1,

ω1) =
⎡

⎣
4∑

i=1

ξi

⎛

⎝1

3

3∑

j=1

||〈hσ(j)

1 (Pi), w
σ(j)

1 (Pi)〉

−
〈

1,
1

3

〉

||λ
)] 1

λ

.

Taking λ = 1 and ξ = (0.15, 0.3, 0.2, 0.35) gives rise to

dgowhwn(
ωH1,

ω1) = 0.15(

√
|0.4 − 1|2 + | 26 − 1

3 |2 +
√

|0.5 − 1|2 + | 16 − 1
3 |2 +
√

|0.7 − 1|2 + | 36 − 1
3 |2

3
)

+0.3(

√
|0.3 − 1|2 + | 26 − 1

3 |2 +
√

|0.6 − 1|2 + | 16 − 1
3 |2 +
√

|0.7 − 1|2 + | 36 − 1
3 |2

3
)

+0.2(

√
|0.1 − 1|2 + | 26 − 1

3 |2 +
√

|0.2 − 1|2 + | 16 − 1
3 |2 +
√

|0.3 − 1|2 + | 36 − 1
3 |2

3
)

+0.35(

√
|0.3 − 1|2 + | 26 − 1

3 |2 +
√

|0.5 − 1|2 + | 16 − 1
3 |2 +
√

|0.8 − 1|2 + | 36 − 1
3 |2

3
) = 0.5667.

The deviation between the other OWHFSs ωHi (i =
2, 3, 4, 5) and the representative of ideal alternative ω1 are
obtained as:

dgowhwn(
ωH2,

ω1) = 0.5995, dgowhwn(
ωH3,

ω1) = 0.6119,
dgowhwn(

ωH4,
ω1) = 0.6150, dgowhwn(

ωH5,
ω1) = 0.5138.

Corresponding to the ranking of the OWHFSs ωHi (i =
1, 2, 3, 4, 5), we get the ranking of the alternatives Ai (i =
1, 2, 3, 4, 5) as:

A5 � A1 � A2 � A3 � A4.

The deviation between ωHi (i = 1, 2, 3, 4, 5) and the
ideal ω1 for several values of λ and the corresponding
ranking orders are all shown in Table 2.

The Aggregation-Based Algorithm for OWHFMADM

In some practical problems such as in a presidential elec-
tion, it is required to protect the decision makers’ privacy or
avoid influencing each other. For instance, in the case where
two decision makers provide their preference information
over an attribute by the same value, then the value emerges
only once in the HFE. Meanwhile, the OWHFE allows
us to conserve all opinions without ignoring the repea-
ted opinions, and really, this is the main point of the current
work.

In this section, we apply the ordered weighted hesi-
tant fuzzy aggregation operators to multi-attribute decision
making with anonymity.

In what follows, we present the aggregation-based deci-
sion making method:
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Table 2 Results obtained by the generalized ordered weighted hesitant weighted normalized distance for OWHFSs

A1 A2 A3 A4 A5 Rankings

λ = 0.1 0.5216 0.5561 0.5505 0.5930 0.4664 A5 � A1 � A3 � A2 � A4

λ = 0.2 0.5271 0.5614 0.5582 0.5956 0.4721 A5 � A1 � A3 � A2 � A4

λ = 0.5 0.5428 0.5766 0.5799 0.6030 0.4886 A5 � A1 � A2 � A3 � A4

λ = 1 0.5667 0.5995 0.6119 0.6150 0.5138 A5 � A1 � A2 � A3 � A4

λ = 2 0.6053 0.6373 0.6602 0.6368 0.5550 A5 � A1 � A4 � A2 � A3

λ = 5 0.6756 0.7117 0.7324 0.6881 0.6267 A5 � A1 � A4 � A2 � A3

λ = 10 0.7391 0.7762 0.7804 0.7440 0.6812 A5 � A1 � A4 � A2 � A3

Step 1. Suppose that the decision maker’s evaluation for
the alternative Ai under the attribute Pj can be repre-
sented by an OWHFE as ωhij := ωh(Ai, Pj ) (i =
1, ..., m; j = 1, ..., n).

Step 2. Employ the proposed aggregation operators to
obtain the collective OWHFEs ωhi (i = 1, 2, ..., m) for
the alternatives Ai (i = 1, 2, ..., m) such that

ωhi = AGG(ωhi1,
ωhi2, ...,

ωhin), (74)

where AGG is chosen from the set of the proposed
aggregation operators for OWHFEs.

Step 3. Determine the rank ordering of ωhi (i =
1, 2, ..., m) by the use of comparison law presented in
Definition 2.7.

Step 4. Specify the priority of the alternatives Ai (i =
1, 2, ..., m) according to the rank ordering of ωhi (i =
1, 2, ..., m).

Once again, we consider that Example 5.1.1, where the
decision maker’s evaluation of the alternative Ai under
the attribute Pj is in the form of an OWHFE ωhij :=
ωh(Ai, Pj ) (i = 1, ..., 5; j = 1, ..., 4). The corresponding
ordered weighted hesitant fuzzy decision matrix is shown in
Table 1.

Now, we employ the OWGHFWA operator given by
Eq. 64 to get the collective OWHFEs ωhi (i = 1, 2, ..., 5).
For example, let λ = 1, then by taking into account ξ =
(0.15, 0.3, 0.2, 0.35) as the weight vector of ωhij (j =

1, 2, 3, 4), which is denoted hereafter by (�1, �2, �3, �4),
we get

ωh1 = OWGHFWA1(
ωh11,

ωh12,
ωh13,

ωh14)

= OWGHFWA1

({〈

0.4,
2

6

〉

,

〈

0.5,
1

6

〉

,

〈

0.7,
3

6

〉}

,

{〈

0.3,
2

6

〉

,

〈

0.6,
1

6

〉

,

〈

0.7,
3

6

〉}

,

{〈

0.1,
2

6

〉

,

〈

0.2,
1

6

〉

,

〈

0.3,
3

6

〉}

,

{〈

0.3,
2

6

〉

,

〈

0.5,
1

6

〉

,

〈

0.8,
3

6

〉})

=
[

4⊕

k=1

(�k
ωh1k)

]

=
⋃

1≤j≤3

⎧
⎨

⎩

〈

[1 −
4∏

k=1

(1 − (h
σ(j)

1k ))�k

]

,

⎛

⎝
n∑

k=1

w
σ(j)
k

⎞

⎠

〉⎫
⎬

⎭

=
{〈

0.2807,
2

6

〉

,

〈

0.4863,
1

6

〉

,

〈

0.6916,
3

6

〉}

.

Now, the calculation of the function � introduced in
Definition 2.7 for ωh1 results in

�(ωh1) =
3∑

j=1

h
σ(j)

1 w
σ(j)

1 = 0.2807 × 2

6
+ 0.4863 × 1

6

+0.6916 × 3

6
= 0.5204.

For the other OWHFEs ωhi (i = 2, 3, 4, 5), the values of
the function � are obtained as:

�(ωh2) = 0.4719, �(ωh3) = 0.4886,

�(ωh4) = 0.4507, �(ωh5) = 0.5693.

Thus, known by the above values and using the compari-
son law presented in Definition 2.7, we find that the priority
of the alternatives Ai (i = 1, 2, ..., 5) is as follows:

A5 � A1 � A3 � A2 � A4.

Table 3 The values of the function � for the OWGHFWAλ aggregated OWHFEs, and the priority of alternatives

A1 A2 A3 A4 A5 Rankings

λ = 1 0.5204 0.4719 0.4886 0.4507 0.5693 A5 � A1 � A3 � A2 � A4

λ = 2 0.5317 0.4809 0.4968 0.4598 0.5747 A5 � A1 � A3 � A2 � A4

λ = 5 0.5546 0.5076 0.5179 0.4826 0.5908 A5 � A1 � A3 � A2 � A4

λ = 10 0.5750 0.5381 0.5387 0.5100 0.6097 A5 � A1 � A3 � A2 � A4
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Table 4 Ordered weighted hesitant fuzzy decision matrix

P1 P2 P3

ωH1 A1 {〈0.6, 0.3〉, 〈0.5, 0.3〉, 〈0.4, 0.4〉} {〈0.6, 0.8〉, 〈0.4, 0.2〉} {〈0.5, 0.3〉, 〈0.3, 0.7〉}
ωH2 A2 {〈0.4, 0.6〉, 〈0.3, 0.4〉} {〈0.8, 1〉} {〈0.4, 0.2〉, 〈0.3, 0.3〉, 〈0.2, 0.5〉}
ωH3 A3 {〈0.8, 1〉} {〈0.7, 0.1〉, 〈0.6, 0.3〉, 〈0.5, 0.6〉} {〈0.2, 0.5〉, 〈0.1, 0.5〉}

The priority of the alternatives Ai (i = 1, 2, ..., 5) with
respect to several values of λ and the corresponding ranking
orders are all shown in Table 3.

Comparison of the Proposed Method with Zhang and Wu’s
Method

Let us now resolve the problem discussed by Zhang and Wu
in [42] using the method explained here. This problem was
adapted from [44, 46].

Example 5.2.1 A factory intends to select a new site for
new buildings. In this regard, there are three alternatives
Ai (i = 1, 2, 3) to be invested, and three attributes
are considered to decide which site to choose: P1: price;
P2: location; P3: environment. The attribute weight vec-
tor is ξ = (0.3, 0.2, 0.5). Let the characteristics of
the alternatives Ai (i = 1, 2, 3) with respect to the
attributes Pj (j = 1, 2, 3) be denoted by the OWHFSs in
Table 4.

It is noticeable that all of the attributes Pj (j = 1, 2, 3)
are of the benefit type and therefore the performance val-
ues of the alternatives Ai (i = 1, 2, 3) do not require any
normalization.

Zhang and Wu [42] implemented the WHFHWA opera-
tor with θ = 1 (Equation (21) in [42]) to aggregate all the
preference values. In this case, the operator WHFHWA is
reduced here to the OWGHFWA operator with λ = 1 in
Eq. 24. As applied before in the pervious part of this paper, it
is necessary to calculate OWGHFWA1 to get the collective
OWHFSs ωhi (i = 1, 2, 3).

To do so, we get

ωh1 = {〈0.5528, 0.4667〉, 〈0.3864, 0.4000〉, 〈0.3519, 0.1333〉},
ωh2 = {〈0.5184, 0.6000〉, 〈0.4551, 0.2333〉, 〈0.4175, 0.1667〉},
ωh3 = {〈0.5662, 0.5333〉, 〈0.5126, 0.2667〉, 〈0.4904, 0.2000〉}.

Now, the calculation of the function � introduced in Defi-
nition 2.7 for ωhi (i = 1, 2, 3) results in

�(ωh1) = 0.4595, �(ωh2) = 0.4868, �(ωh3) = 0.5368.

Thus, known by the above values and using the comparison
law presented in Definition 2.7, we find that the priority of
the alternatives Ai (i = 1, 2, 3) is as follows:

A3 � A2 � A1,

and the best alternative is A3. This priority of the alterna-
tives was obtained exactly by Zhang and Wu [42].

Once again, it should be mentioned that although the
result of Zhang and Wu [42] is similar to the obtained one,
the proposed method does not inherit the shortcomings of
Zhang and Wu’s [42] method.

Conclusion

Recently, the researchers have been challenged with mul-
tiple acts of decision making, and it is necessary to use
the cognitive information during the decision making pro-
cess [1, 7, 39]. This article has introduced an extension
of HFS, which is referred to as OWHFS. The membership
degree of an element to a OWHFS is expressed by several
possible values together with their importance weights. By
introducing OWHFS, we have modified a fault of WHFS
proposed by Zhang andWu [42]. The OWHFS is acceptable
in accordance with the well-known axioms for mathemati-
cal operations and also allows that all information measures
are to be defined reasonably. Then, we have developed a
series of information measures and aggregation operators
for OWHFSs and employed them to solve the hesitant fuzzy
decision making problems. As future work, we consider the
study of score functions of OWHFSs for handling multi-
attribute decision making with ordered weighted hesitant
fuzzy information. Moreover, the application potentials of
OWHFSs are diverse and can be investigated in clustering,
pattern recognition, image processing, etc.
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