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Abstract

Background Big social data analysis is the area of research

focusing on collecting, examining, and processing large

multi-modal and multi-source datasets in order to discover

patterns/correlations and extract information from the

Social Web. This is usually accomplished through the use

of supervised and unsupervised machine learning algo-

rithms that learn from the available data. However, these

are usually highly computationally expensive, either in the

training or in the prediction phase, as they are often not

able to handle current data volumes. Parallel approaches

have been proposed in order to boost processing speeds,

but this clearly requires technologies that support dis-

tributed computations.

Methods Extreme learning machines (ELMs) are an

emerging learning paradigm, presenting an efficient unified

solution to generalized feed-forward neural networks. ELM

offers significant advantages such as fast learning speed,

ease of implementation, and minimal human intervention.

However, ELM cannot be easily parallelized, due to the

presence of a pseudo-inverse calculation. Therefore, this

paper aims to find a reliable method to realize a parallel

implementation of ELM that can be applied to large

datasets typical of Big Data problems with the employment

of the most recent technology for parallel in-memory

computation, i.e., Spark, designed to efficiently deal with

iterative procedures that recursively perform operations

over the same data. Moreover, this paper shows how to

take advantage of the most recent advances in statistical

learning theory (SLT) in order to address the issue of

selecting ELM hyperparameters that give the best gener-

alization performance. This involves assessing the perfor-

mance of such algorithms (i.e., resampling methods and in-

sample methods) by exploiting the most recent results in

SLT and adapting them to the Big Data framework. The

proposed approach has been tested on two affective ana-

logical reasoning datasets. Affective analogical reasoning

can be defined as the intrinsically human capacity to

interpret the cognitive and affective information associated

with natural language. In particular, we employed two

benchmarks, each one composed by 21,743 common-sense

concepts; each concept is represented according to two

models of a semantic network in which common-sense

concepts are linked to a hierarchy of affective domain

labels.

Results The labeled data have been split into two sets: The

first 20,000 samples have been used for building the model

with the ELM with the different SLT strategies, while the

rest of the labeled samples, numbering 1743, have been

kept apart as reference set in order to test the performance

of the learned model. The splitting process has been

repeated 30 times in order to obtain statistically relevant

results. We ran the experiments through the use of the

Google Cloud Platform, in particular, the Google Compute

& Erik Cambria

cambria@ntu.edu.sg

Luca Oneto

luca.oneto@unige.it

Federica Bisio

federica.bisio@aizoongroup.com

Davide Anguita

davide.anguita@unige.it

1 DIBRIS - University of Genova, Via Opera Pia 13,

16145 Genoa, Italy

2 aizoOn S.r.l., Strada del Lionetto 6, 10146 Turin, Italy

3 School of Computer Science and Engineering, Nanyang

Technological University, 50 Nanyang Avenue,

Singapore 639798, Singapore

123

Cogn Comput (2017) 9:18–42

DOI 10.1007/s12559-016-9433-5

http://orcid.org/0000-0002-3030-1280
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-016-9433-5&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-016-9433-5&amp;domain=pdf


Engine. We employed the Google Compute Engine Plat-

form with NM = 4 machines with two cores and 1.8 GB of

RAM (machine type n1-highcpu-2) and an HDD of 30 GB

equipped with Spark. Results on the affective dataset both

show the effectiveness of the proposed parallel approach

and underline the most suitable SLT strategies for the

specific Big Data problem.

Conclusion In this paper we showed how to build an ELM

model with a novel scalable approach and to carefully

assess the performance, with the use of the most recent

results from SLT, for a sentiment analysis problem. Thanks

to recent technologies and methods, the computational

requirements of these methods have been improved to

allow for the scaling to large datasets, which are typical of

Big Data applications.

Keywords Analogical reasoning � Sentiment analysis �
Semi-supervised learning � Classification � Model

selection � Extreme learning machines � Vapnik–
Chervonenkis theory � Rademacher complexity �
Algorithmic stability

Introduction

The advent of social networks, web communities, blogs,

Wikipedia, and other online collaborative media has deeply

changed the ways people express their opinions and sen-

timents. A growing amount of content and ideas are con-

tinuously expressed by the millions of people connected to

the World Wide Web. As a major consequence, the dis-

tillation of knowledge from this huge quantity of unstruc-

tured information can be a key tool for marketers who want

to create a brand or product image and identity in the minds

of their customers. Such a scenario has led to the emerging

fields of opinion mining and sentiment analysis [1–4],

which deal with information retrieval and knowledge dis-

covery from text using data mining and natural language

processing (NLP) techniques [5–8]. However, mining

opinions and sentiments from natural language is an

extremely difficult task as it involves a deep and broad

understanding of the explicit and implicit, regular and

irregular, syntactical and semantic rules proper of a

language.

Sentic computing [9] tackles these crucial issues by

exploiting affective common-sense reasoning, i.e., the

intrinsically human capacity to interpret cognitive and

affective information associated with natural language,

and thus differs from standard statistical approaches to big

social data analysis. Common-sense computing techniques

are applied in different contexts (including multi-modality

[10], handwriting recognition [11], e-health [12], and

more) to bridge the semantic gap between word-level

natural language data and the concept-level opinions

conveyed by these. To achieve this goal, the sentic

computing framework takes advantage of AffectNet [13],

a semantic network in which common-sense concepts are

linked to a hierarchy of affective domain labels. In par-

ticular, the vector space representation of one such

semantic network, termed AffectiveSpace [14], enables

affective analogical reasoning on natural language

concepts.

Current research shows that the emerging field of big

social data analysis [15–18] can take advantage of induc-

tive learning systems to support emotion recognition in

natural language text. In this context, every common-sense

concept is represented according to AffectiveSpace and

defined by four affective dimensions [19]: Pleasantness,

Attention, Sensitivity, and Aptitude. This representation

leads to a further polarity detection task. The current

emotion recognition problem is complicated by the fact

that labeling all the common-sense concepts of Affec-

tiveSpace is often difficult, expensive, and time-consum-

ing. Therefore, affective dimensions labeling is only

available for a set of concepts. The need to properly tackle

these issues leads to the use of a semi-supervised classifier.

Eventually, a semi-supervised version of the extreme

learning machine (ELM) framework [20–23] is adopted.

The interest in semi-supervised learning [4, 24–26] has

recently increased, especially because application domains

exist (e.g., text mining, natural language processing, image

and video retrieval, bioinformatics). In this context, semi-

supervised learning can be formalized as a supervised

learning problem biased by an unsupervised reference

solution. First, a general biased-regularization scheme that

encompasses the biased version of ELM is introduced.

Then, a semi-supervised learning model based on the

biased-regularization [27] scheme follows a two-step pro-

cedure. In the first step, an unsupervised clustering of the

whole dataset (including both labeled and unlabeled data)

obtains a reference solution. As a result, the eventual semi-

supervised classification framework can derive a reference

function from any clustering algorithm, thus providing

remarkable flexibility. In the second step, the clustering

outcomes drive the learning process in a biased-regular-

ization ELM to acquire the class information provided by

labels. The ultimate result is that the overall learned

function exploits both labeled and unlabeled data. The

integrated framework applies to both linear and nonlinear

data distributions: In the former, one works under a cluster

assumption on data; in the latter, one works under a

manifold hypothesis [28].

In this paper, we want to address the problem of

assessing the performance of a predictive model, i.e., the

semi-supervised version of ELM, and quantify its uncer-

tainty. Similar problems have been addressed in the field of
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statistical inference since the last century [29]. The now

classic approach of parametric statistics identifies a family

of models (e.g., linear functions) and a noise assumption

(e.g., Gaussian). Given some data, it easily provides an

assessment of the performance of the fitted model, along

with a quantification of the uncertainty or, in modern terms,

an estimation of the generalization error and the related

confidence interval1. On the contrary, data-driven models

exploit nonparametric inference, where it is expected that

an effective model would stem out directly from the data,

without any assumption on the model family nor any other

information that is external to the dataset itself [31, 32].

Statistical learning theory (SLT) tries to find necessary

and sufficient conditions for nonparametric inference to

build predictive models from data [33–35] or, using the

language of SLT, learn an optimal model from data. The

main SLT results have been obtained by deriving

nonasymptotic bounds on the generalization error of a

model or, to be more precise, upper bounds on the excess

risk between the optimal predictor and the learned model,

as a function of the possibly infinite family of models and

the number of available samples [36]. For a long time, SLT

has been considered only a theoretical, albeit very sound

and deep, statistical framework, without any real applica-

bility to practical problems [37]. It was only in the last

decade, after important advances in this field [38], that SLT

has been shown to be able to provide practical answers, at

least when targeting the inference of data-driven models

for classification purposes [39, 40].

This paper shows how to exploit unlabeled samples in

the usual semi-supervised learning context so as to tune

and assess the performance of a learning algorithm, with

particular reference to the ELM applied to an affective

analogical reasoning problem. We review all most recent

methodologies of model selection (MS) and error estima-

tion (EE) that can be applied to the ELM, as well as how

these methodologies can take advantage of unlabeled

samples. In brief, among the several methods proposed in

the literature for MS and EE, we identify two main cate-

gories: out-of-sample and in-sample methods [40]. The first

works well in many situations and allows the application of

simple statistical techniques in order to estimate quantities

of interest by splitting data in different sets, each for a

different purpose (training, validation, and test). Some

examples of out-of-sample methods are the well-known

holdout (HO) and k-fold cross-validation (KCV) [41],

leave-one-out (LOO), and bootstrap [42]. In contrast, the

in-sample methods exploit the whole set of available data

for training the model, assessing its performance and

estimating its generalization error, thanks to the application

of rigorous statistical procedures. We describe how in-

sample methods can be further divided into two subgroups:

the hypothesis space-based methods and the algorithm-

based methods [43]. The first subgroup requires knowledge

of the hypothesis space from which the algorithm chooses

the model. Some examples of these methods are the Vap-

nik–Chervonenkis (VC) theory [36, 44], (local) Rade-

macher complexity (RC) theory [38, 45–48], and PAC

Bayes theory [39, 49–52]. The second subgroup of methods

does not require advance knowledge of the hypothesis

space, instead just relying on application of the algorithm

on a series of modified training sets. Some examples are

the compression bound [53, 54] and algorithmic stability

theory (AS) [43, 55, 56]. We also mention the distinctions

between the frequentist and Bayesian approaches, although

some approaches combine aspects from these two [57].

Semi-supervised Binary Classification

Before getting into the discussion proper, let us recall some

common preliminary definitions [36, 55]. Let us consider a

set of labeled samples Dn ¼ fðx1; y1Þ; . . .; ðxn; ynÞg ¼
fz1; . . .; zng and another set of unlabeled ones Dnu ¼
fxnþ1; . . .; xnþnug drawn i.i.d., according to an unknown

probability distribution l over the cartesian product

between the input space X � Rd and the output space Y ¼
f�1;þ1g defined as Z ¼ X�Y. Let us also consider a

function f 2 F where f : X ! Y ¼ R. The error of f in

approximating l is measured with reference to some [0, 1]-

bounded loss function ‘ : F� z ! ½0; 1�. The risk of f can

be then defined as such:

Lðf Þ ¼ Ez ‘ðf ; zÞf g: ð1Þ

Since l is unknown, L(f) cannot be computed though we

can compute its empirical estimators. Before defining

them, let us introduce two modified training sets Dni
n and

Di
n, where the ith element is respectively removed or

replaced by another sample z0i sampled i.i.d. from l:

Dni
n : z1; . . .; zi�1; ziþ1; . . .; znf g;
Di

n : z1; . . .; zi�1; z
0
i; ziþ1; . . .; zn

� �
:

ð2Þ

If bf ¼ AðDn[Dnu ;HÞ, bf
ni ¼ AðDni

n [Dnu ;HÞ, and bf
i ¼

AðDi
n[Dnu ;HÞ are chosen form of functions FH according

to some criteria, or algorithm, AH, where H is a set of

hyperparameters that must be tuned, and based respectively

on Dn [Dnu , Dni
n [Dnu , and Di

n [Dnu (Dnu can be

exploited or not based on A), we can define the empirical

1 In this paper, we deal with a frequentist approach, which derives

confidence intervals for quantities of interest, but the credible

intervals of the Bayesian approach can be addressed equally well in

the parametric setting [30].
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risk of a function f 2 FH and the LOO risk of the algo-

rithm A [55] as:

bLempðf Þ ¼
1

n

Xn

i¼1

‘ðf ; zÞ;

f 2 F; bLlooðAHÞ ¼ 1

n

Xn

i¼1

‘ðAðDni
n [Dnu ;HÞ; ziÞ:

ð3Þ

If the loss function is not specified, all the results hold for

any [0, 1]-bounded loss function. Instead, some results just

hold for particular loss functions; in such cases, we specify

which loss function must be adopted as L‘ðf Þ, bL‘

empðf Þ,
bL
‘

looðAHÞ, etc.

Semi-supervised Extreme Learning Machines

The biased model adopted as a semi-supervised approach

exploits both unlabeled and labeled data to learn a classi-

fication function empirically. The model is based on the

biased-regularization theory, defined as follows: A refer-

ence solution (e.g., a hyperplane) is used to bias the solu-

tion of a regularization-based learning machine.

Extreme Learning Machines

The ELM model [20, 58–60] implements a single-hidden

layer feed-forward neural network (SLFN) with Nh map-

ping neurons. Thus, the hypothesis space can be formalized

as follows

f ðxÞ ¼
XNh

j¼1

wjajðx; fjÞ; ð4Þ

where wj 2 R, and aðx; fÞ is a nonlinear piecewise con-

tinuous function satisfying ELM universal approximation

capability theorems [20]. In general, the activation function

is characterized by a set of parameters f, and the jth neuron

has its fj. Sigmoid function, RBF, and polynomial func-

tions represent three popular choices for the activation

function.

The peculiar aspect of ELM is that the parameters fj are
set randomly. Accordingly, the hidden layer implements an

explicit mapping of the original input space X into a new

space RNh . Hence, training ELMs is equivalent to solving a

regularized least squares (RLS) problem in a linear space

[20]. Let H 2 Rn�Nh be an activation matrix such that the

entry Hi;j is the activation value of the jth hidden neuron for

the ith input pattern. Then, the training problem reduces to

the minimization of the convex cost:

w� ¼ argmin
w

Hw� yk k2: ð5Þ

A matrix pseudo-inversion yields the unique L2 solution, as

proven in [20]:

w� ¼ Hþy: ð6Þ

Furthermore, the theory derived in [61] proves that regu-

larization strategies can further improve the generalization

performance of the model. As a result, the cost function of

Eq. (5) is augmented by a L2 regularization factor as

follows:

w� ¼ argmin
w

Hw� yk k2þk wk k2: ð7Þ

The vector of weights w� is then obtained as follows:

w� ¼ ðHTH þ kIÞ�1
HTy; ð8Þ

where I 2 RNh�Nh is an identity matrix.

A Biased Regularization

The general biased-regularization model works via biasing

the solution of a regularization-based learning machine by

a reference function (e.g., a hyperplane) [62]. The nature of

this reference function is a crucial aspect that concerns the

learning theory in general. In the linear domain one can

define a generic convex loss function ‘, and a biased-reg-

ularizing term, with the resulting cost function being

‘þ k1 w� k2w0k k2; ð9Þ

where w0 is a reference hyperplane, k1 is the classical

regularization parameter that controls smoothness, and k2
controls the adherence to the reference solution w0. The

expression of Eq. (9) is a convex functional and thus

admits a global solution. From Eq. (9) one obtains:

argmin
w

Hw�yk k2þk1 w�k2w0k k2

¼ argmin
w

Hw�yk k2þ k1
2

wk k2�k1k2ww0: ð10Þ

The role played by parameterk2 is indeed critical from both

the theoretical and the practical point of view [62]. This

parameter allows the cost function (10) to exploit a strong

or weak bias on the hypothesis space; i.e., by adjusting k2
one can modulate the contribution provided by w0 to the

cost function. Hence, one can take advantage of biased

regularization even when the reference solution is not

optimal. The crucial aspect is the ability to shrink the space

to be explored in order to get an optimal solution, which in

turn means the ability to reduce the complexity of the

hypothesis space [62].

Note that given a reference hyperplane w0, a regular-

ization constant k1, and a biasing constant k2, the problem:
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w� ¼ argmin
w

Hw� yk k2þk1 w� k2w0k k2; ð11Þ

has solution:

w� ¼ ðHTH þ k1IÞ�1ðHTyþ k1k2w0Þ: ð12Þ

The proof is trivial [62]. Note, also, that thanks to the

representer theorem [63, 64] it is possible to write w� as:

w� ¼
Xn

i¼1

ai/ðxiÞ ¼ HTa: ð13Þ

A Semi-supervised Learning Scheme Based

on Biased Regularization

The biased version of the ELM can support a semi-super-

vised framework for the classification task [62]. Let H de-

note the activation matrix of the whole dataset Dn [Dnu ,

Hn denote the activation matrix of Dn, yn denote the cor-

responding vector of labels, and Hnu denote the activation

matrix of Dnu . The semi-supervised learning scheme then

requires one to apply the following four-step procedure:

1. Clustering: Use any clustering algorithm to perform an

unsupervised partition of the dataset Dn [Dnu by

discarding the available labels (a bipartition in the

simplest case).

2. Calibration: For every cluster, a majority voting

scheme is adopted to set the cluster label; this is done

by exploiting the labeled samples. Then, for each

cluster, assign to each sample the cluster label. Let by
denote this new set of labels.

3. Mapping: Given Dn [Dnu and by, train the selected

learning machine and obtain the solution w0.

4. Biasing: Given Dn, train the biased version of the

learning machine (biased by w0). The solution w carries

information derived from both the labeled data Dn and

the unlabeled data Dnu .

This procedure, Step 4, Biasing, has similarities to that

adopted in deep learning architectures [65, 66]. In the

latter case, the training algorithm performs a preliminary

unsupervised stage and then uses labels only to adjust the

network for the specific classification task; the eventual

representation still mostly reflects the outcome of the

learning process completed in the pre-training phase.

Likewise, in the proposed framework, a pre-training

phase builds w0 and a final adjustment derives the final

w .

The semi-supervised learning scheme possesses some

interesting features:

• Since the proposed method could be applied to both

linear and nonlinear domains, the result is a completely

generalizable learning scheme.

• Clustering and biasing can be tackled independently. If

one wants to adopt a particular solution for biasing or a

new clustering algorithm is designed, then the two

actions can be controlled and adjusted separately.

• If the learning machine is a single-layer learning

machine whose cost is convex then convexity is

preserved and a global solution is granted.

• Every clustering method can be used to build the

reference solution.

Model Selection

The selection of the optimal hyperparameters of a pre-

dictive model is the fundamental problem of SLT and is

still the target of current research

[38, 40, 41, 57, 67, 68]. The approaches can be divided

into two large families: out-of-sample methods, like HO,

cross-validation, and the bootstrap [40–42, 69], and more

recent in-sample methods, like the class of function-

based methods [40] (based on the VC dimension [36],

RC [45–47, 70], PAC Bayes theory [49, 50]), algorithm-

based methods [43] (based on compression bounds [53],

and AS theory [55, 56]).

Out-of-sample methods [40, 71] are favored by prac-

titioners because they work well in many situations and

allow the application of simple statistical techniques for

estimating the quantities of interest. Some examples of

out-of-sample methods are the well-known HO, the

KCV, the LOO, and the bootstrap (BOO) [41, 42, 72].

All these techniques rely on a similar idea: The original

dataset is resampled, with or without replacement, to

build two independent datasets called, respectively, the

training and validation (or estimation) sets. The first one

is used for training a classifier, while the second one is

exploited to estimate its generalization error, so that the

hyperparameters can be tuned to achieve its minimum

value. Note that both error estimates computed through

the training and validation sets are, obviously, opti-

mistically biased; therefore, if a generalization estimate

of the final model is desired, it is necessary to build a

third independent set, called the test set, by nesting two

of the resampling procedures mentioned above. Further-

more, the resampling procedure itself can introduce

artifacts in the estimation process and so must be care-

fully designed.

In-sample methods [40, 71], instead, allow the whole

set of available data for both training the model and

estimating its generalization error to be exploited, thanks

to the application of rigorous statistical procedures

[38, 50, 55]. Despite their unquestionable advantage with

respect to out-of-sample methods, their use is not

22 Cogn Comput (2017) 9:18–42
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widespread: One of the reasons is the common belief that

though in-sample methods are very useful for gaining

deep theoretical insights on the learning process or for

developing new learning algorithms, they are not suit-

able for practical purposes. However, recent advances and

deeper insights on these methods demonstrate that this is

no longer true [73].

Note that the conventional out-of-sample and in-sample

techniques neither take into account nor take advantages of

the unlabeled samples available in the semi-supervised

learning framework. For more details about the advantages

and disadvantages of the different methods one can refer to

[39, 40, 43].

Out-of-Sample methods

As described earlier, these techniques rely on a similar

idea: The original dataset Dn is resampled once or many

(nr) times, with or without replacement, to build two

independent datasets called training and validation sets,

respectively Tr
nt
and Vr

nv
, with r 2 f1; . . .; nrg. Note that

Tr
nt
\Vr

nv
¼ ø and Tr

nt
[Vr

nv
¼ Dn. Then, in order to

select the best set of hyperparameters H from a set of

possible ones H ¼ fH1;H2; . . .;HnHg for the algorithm

AH or, in other words, to perform the MS, we have to

apply the following procedure:

H� : arg min
H2H

1

nr

Xnr

r¼1

bLempðAðTr
nt
[Dnu ;HÞ;V

r
nv
Þ: ð14Þ

Since the data in Tr
nt
are i.i.d. from the ones in Vr

nv
, the

idea is that H� should be the set of hyperparameters

which result in a small error on a dataset that is inde-

pendent from the training set. This approach is theoreti-

cally grounded by the following reasoning: Since the data

in Tr
nt

are i.i.d. from the ones in Vr
nv
, we can state,

thanks to the Hoeffding’s inequality [74], that the gen-

eralization error of the function trained using Tr
nt
[Dnu

can be bounded as:

LðAðTr
nt
[Dnu ;HÞÞ � bLempðAðTr

nt
[Dnu ;HÞ;V

r
nv
Þ þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

2nv

s

;

ð15Þ

and the bound holds with probability ð1� dÞ. Since we are
choosing H� 2 H (i.e., we are choosing over nH functions

trained with different configurations of the hyperparame-

ters) we have to apply the union bound [36] and we have

that, with probability ð1� dÞ, the generalization error of

the function chosen between the nH functions is:

LðAðTr
nt
[Dnu ;HÞÞ � bLempðAðTr

nt
[Dnu ;HÞ;V

r
nv
Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nH

d

� �

2nv

s

� bLempðAðTr
nt
[Dnu ;HÞ;V

r
nv
Þ þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

2nv

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nHð Þ
2nv

s

:

ð16Þ

In repeating the training/validation split procedure nr
times, then, we choose the set of hyperparameters H 2 H

and obtain the generalization error of the classifier fH
which randomly selects one of the functions AðTr

nt
[Dnu ;H

�Þ

with r 2 f1; . . .; nrg. Each time a new sample must be

classified, it can be bounded with the probability ð1� dÞ:

LðfHÞ� 1

nr

Xnr

r¼1

bLempðAðTr
nt
[Dnu ;HÞ;V

r
nv
Þ þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

2nv

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nHð Þ
2nv

s

; H

2 H: ð17Þ

Based on the SLT, we have to choose the set of hyperpa-

rameters that minimize the estimated generalization error

and obtain that:

H� : arg min
H2H

LðfHÞ

	 arg min
H2H

1

nr

Xnr

r¼1

bLempðAðTr
nt
[Dnu ;HÞ;V

r
nv
Þ

þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

2nv

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nHð Þ
2nv

s

¼ arg min
H2H

1

nr

Xnr

r¼1

bLempðAðTr
nt
[Dnu ;HÞ;V

r
nv
Þ:

ð18Þ

The first approximation is due to the fact that the distri-

bution of the data is unknown and hence the true gener-

alization error of LðfHÞ cannot be computed [36]. Since we

have its rigorous upper bound, we can use it based on SLT

[36]. The last equality holds because the last two terms,ffiffiffiffiffiffiffiffi
ln 1

dð Þ
2nv

r

and

ffiffiffiffiffiffiffiffiffiffi
ln nHð Þ
2nv

q
, are constants and do not affect the

choice of H�. Consequently, we have retrieved the criteria

of Eq. (14). Note that after the best set of hyperparameters

is found, one usually replaces the model fH� with the

model obtained by training the algorithm with the whole

dataset AðDn;H
�Þ [75]. Moreover, note that this is an

approximation, since for classifying a new sample we use

the function retrained with H� over the whole set of data
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and so, basically, we are not directly optimizing the

hyperparameters for AðDn;HÞ with H 2 H.

If nr ¼ 1, if t and v are aprioristically set such that

n ¼ t þ v, and if the resample procedure is performed

without replacement, we obtain the HO method [40]. In

order to implement the KCV method, we have to set

nr �
n

k

� �
, t ¼ ðk � 1Þ n

k
, and v ¼ n

k
and the resampling

must be done without replacement [40, 41, 67]. Finally, for

implementing the BOO method, t ¼ n and Tr
t must be

sampled with replacement from Dn, while Vr
nv
¼ DnnTr

t

and Tr
nt

[40, 42]. Note that for the bootstrap procedure

nr �
2n� 1

n

� �
.

It is worthwhile noting that the only hypothesis needed

in order to rigorously apply the out-of-sample technique is

the i.i.d. hypothesis on the data in Dn and that all these

techniques work for any deterministic algorithm.

In-Sample Methods

For the in-sample methods, there are two subfamilies of

techniques: the class of function-based ones and the algo-

rithm-based ones [43]. The difference between the two is

that the first requires the knowledge of FH and so cannot

be applied to some algorithms (e.g., the k-nearest neighbor

algorithm) while the second can be applied to any deter-

ministic algorithm without additional knowledge. Both

subfamilies, like the out-of-sample methods, require the

i.i.d. hypothesis.

Vapnik–Chervonenkis Theory

The milestone result from the class of function-based

methods in SLT is the VC theory [36]. In this case, the

analysis holds just for the semi-supervised learning prob-

lems where the hard loss function ‘H is exploited:

‘Hðf ; zÞ ¼
1 if y f ðxÞ� 0

0 otherwise

	
¼ 1� y sign½fðxÞ�

2
:

ð19Þ

In the VC theory the following quantity is defined:

FHjDn
¼ fsign½f ðx1Þ�; . . .; sign½f ðxnÞg�

???f 2 FH

n o
;

ð20Þ

which is the set of distinct functions that shatter the dataset.

Then the VC entropy HnðFHÞ and the annealed VC

entropy AnðFHÞ, together with their empirical counter-

parts bHnðFHÞ and bAnðFHÞ [36], can be recalled:

HnðFHÞ ¼ Ex1;...;xn
bHnðFHÞ;

bHnðFHÞ ¼ ln FHjDn



 

� �
;

ð21Þ

AnðFHÞ ¼ ln Ex1;...;xn FHjDn



 

� �
; bAnðFHÞ ¼ bHnðFHÞ;

ð22Þ

where �j j is the cardinality of a set. Based on previous defi-

nitions, it is possible to define the growth function and theVC

dimension, respectively GnðFHÞ and dVCðFHÞ, as:

GnðFHÞ ¼ max
x1;...;xn

ln FHjDn



 

� �
; ð23Þ

dVCðFHÞ ¼ max
n

fn : GnðFHÞ ¼ 2ng: ð24Þ

Note that GnðFHÞ� dVCðFHÞ lnðnÞ: Thanks to the Vap-

nik results it is possible to prove that [76]:

P sup
f2FH

L‘H ðf Þ � bL‘H
empðf Þ









 t

( )

� 4 exp
A2nðFHÞ

n
� t2

� �
n

� �

� 4 exp
dVCðFHÞ lnðnÞ

n
� t2

� �
n

� �
:

ð25Þ

Consequently, we have that with probability ð1� dÞ:

L‘H ðf Þ� bL‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVCðFHÞ lnðnÞ þ ln 4

d

� �

n

s

� bL‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVCðFHÞ lnðnÞ

n

r

þ

ffiffiffiffiffiffiffiffiffiffi
ln 4

d

� �

n

s

; 8f 2 FH:

ð26Þ

Moreover, since FH is chosen in a set of possible spaces

F ¼ fFH1
; . . .;FHnH

g, we have to apply the union

bound [36, 77], so we have that with probability ð1� 2dÞ:

L‘H ðf Þ� bL‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVCðFHÞ lnðnÞ

n

r

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 4nH

d

� �

n

s

� bL‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVCðFHÞ lnðnÞ

n

r

þ

ffiffiffiffiffiffiffiffiffiffi
ln 4

d

� �

n

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nHð Þ

n

r

; 8f 2 FH 2 F:

ð27Þ

The VC theory is basically a more refined form of union

bound that is able to deal with the class of functions which

have an infinite number of functions [36]. In particular, the

entropies and the growth function measure the number of

distinct functions with respect to the distribution of the

data, while the dVC is a measure of dimensionality for a

general nonlinear class of functions [36, 44].

Recently in [78, 79] it has been proved that with prob-

ability ð1� dÞ:
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A2nðFHÞ� 4bAnðFHÞ þ 8 ln
1

d

� �

¼ 4bHnðFHÞ þ 8 ln
1

d

� �
: ð28Þ

Consequently, we can state that with probability ð1� dÞ:

P sup
f2FH

L‘H ðf Þ � bL‘H
empðf Þ









 t

( )

� 4 exp
4bAnðFHÞþ8 ln 1

d

� �

n
�t2

 !

n

" #

:

ð29Þ

Based on this last result, we can state that with probability

ð1� 2dÞ the following inequality holds:

L‘H ðf Þ� bL‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bAnðFHÞ þ 8 ln 1

d

� �
þ ln 4

d

� �

n

s

� bL‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bAnðFHÞ þ 9 ln 4

d

� �

n

s

� bL‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bAnðFHÞ

n

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 ln 4

d

� �

n

s

; 8f 2 FH:

ð30Þ

Moreover, since FH 2 F by applying the union bound

[36, 77] we have that with probability ð1� 2dÞ:

L‘H ðf Þ� bL‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bAnðFHÞ

n

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 ln 4nH

d

� �

n

s

� bL‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bAnðFHÞ

n

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
9 ln 4

d

� �

n

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9 ln nHð Þ

n

r

; 8f 2 FH 2 F:

ð31Þ

Based on the results of Eqs. (27) and (31) we can present

the two MS procedures based on the VC theory, noting that

some terms are constants. In particular, the original

approach based on Eq. (27) says that:

f �H� ;H� : arg min
f2FH2F

L‘H ðf Þ

	 arg min
f2FH2F

bL
‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVCðFHÞ lnðnÞ

n

r

:

ð32Þ

The second approach, based on Eq. (31), says that:

f �H� ;H� : arg min
f2FH2F

L‘H ðf Þ

	 arg min
f2FH2F

bL
‘H
empðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bAnðFHÞ

n

s

:

ð33Þ

In order to extend the analysis to a real-valued loss we have

to exploit a result of [36] which states that:

P sup
f2FH

Lðf Þ � bLempðf Þ









 t

( )

¼ P sup
f2FH

Ez‘ðf ; zÞ �
1

nl

Xn

i¼1

‘ðf ; ziÞ














 t

( )

�P sup
f2FH

sup
b2½0;1�

Ez ‘ðf ; zÞ[ bf gj
(

� 1

nl

Xn

i¼1

‘ðf ; ziÞ[ bf gj
 tg:

ð34Þ

Then, we define:

Fb
HjDn

¼ ½‘ðf ; z1Þ[ b�; . . .; ½‘ðf ; z1Þ[ b�g
???f 2 FH

n o
:

ð35Þ

Based on these definitions, it is possible to define the VC

entropy, the growth function, and the VC dimension for

real-valued functions:

Ab
nðFHÞ ¼ ln Ex1;...;xn sup

b2½0;1�
Fb

HjDn










 !

;

bA
b

nðFHÞ ¼ ln sup
b2½0;1�

Fb
HjDn










 !

;

Gb
nðFHÞ ¼ max

x1;...;xn
sup

b2½0;1�
ln Fb

HjDn










 �
;

d
b
VCðFHÞ ¼ max

n
fn : Gb

nðFHÞ ¼ 2ng;

ð36Þ

and finally state that:

P sup
f2FH

Lðf Þ � bLempðf Þ









 t

( )

� 4 exp
A
b
2nðFHÞ

n
� t2

 !

n

" #

� 4 exp
d
b
VCðFHÞ lnðnÞ

n
� t2

 !

n

" #

:

ð37Þ

since Gb
nðFHÞ� d

b
VCðFHÞ lnðnÞ: By following the same

argument presented before we can state that with proba-

bility ð1� dÞ:

A
b
2nðFHÞ� 4bA

b

nðFHÞ þ 8 ln
1

d

� �
: ð38Þ

Consequently, we can state that with probability ð1� dÞ:

P sup
f2FH

Lðf Þ � bLempðf Þ









 t

( )

� 4 exp
4bA

b

nðFHÞþ8 ln 1
d

� �

n
�t2

 !

n

" #

:

ð39Þ

By following the same argument presented before, it is

possible to propose the two approaches for MS based on
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the VC theory for real-valued loss functions. The first

approach states that:

f �H� ;H� : arg min
f2FH2F

bLempðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d
b
VCðFHÞ lnðnÞ

n

s

:

ð40Þ

The second approach, based on Eq. (31), instead says that:

f �H� ;H� : arg min
f2FH2F

bLempðf Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4bA

b

nðFHÞ
n

s

: ð41Þ

(Local) Rademacher Complexity

One of the most powerful classes of function-based

methods is based on the RC [40, 70]. In particular, it is

possible to prove that the following bound holds with

probability ð1� dÞ [80]:

Lðf Þ� bLempðf Þ þ bRnðFHÞ þ 3

ffiffiffiffiffiffiffiffiffiffi
lnð2dÞ
2n

s

þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðnHÞ
2n

r

;

8f 2 FH 2 F;

ð42Þ

where

bRnðFHÞ ¼ Er sup
f2FH

2

n

Xn

i¼1

ri‘ðf ; ziÞ;

ri2f1;...;ng 2 f�1g; Pfri ¼ þ1g ¼ Pfri ¼ �1g ¼ 1

2
:

ð43Þ

RC is essentially a more refined form of union bound that is

able to deal with class of functions with infinite number of

functions [80]. Another interpretation of the RC is that it

measures the ability of the class of functions to fit random

labels [38]. More refined interpretations and the advantages

and disadvantages with respect to the VC theory can be

found in [44].

Therefore, based on the same principles described

above, we have that:

f �H� ;H� :

arg min
f2FH2F

Lðf Þ 	 arg min
f2FH2F

bLempðf Þ þ bRnðFHÞ:

ð44Þ

Let us use the following loss function:

‘Sðf ; zÞ ¼
1 if yf ðxÞ\0

1� yf ðxÞ if 0� yf ðxÞ� 1

0 if yf ðxÞ[ 1

8
<

:
; ð45Þ

also called soft loss function. Let us also suppose that the

f 2 F 2 F can be expressed as:

f ðxÞ ¼ wTx ¼
Xn

i¼1

ai/ðxiÞT/ðxÞ; a 2 Rn; ð46Þ

where w is constrained such that

w� k1w0k k2 �W2; k1 2 ½0;1Þ: ð47Þ

In such a case, instead of computing bRnðFHÞ we can

bound it as [80]:

bR
‘S
n ðFHÞ ¼ Er sup

f2FH

2

n

Xn

i¼1

ri‘Sðf ; ziÞ

� 4W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxiÞ

T
/ðxiÞ

n

s

:

ð48Þ

Consequently, we obtain that:

f �H� ;H� : arg min
f2FH2F

L‘Sðf Þ 	 arg min
f2FH2F

bL
‘S
empðf Þ þ bRnðFHÞ

	 arg min
f2FH2F

bL
‘S
empðf Þ þ 4W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxiÞ

T
/ðxiÞ

n

s

:

ð49Þ

Recently, a more refined version of the RC, named the

local Rademacher complexity (LRC), which is able to

discard those functions from the class of functions which

are not useful during the learning process, has been pro-

posed in the literature [46, 47]. The result is the following

bound which holds with probability ð1� 3nHdÞ:
Lðf Þ� min

K2ð1;1Þ

K

K � 1
bLempðf Þ þ

r

K
; 8f 2 FH 2 F:

s.t. sup
a2½0;1�

a LRþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1dÞ

n

s2

4

3

5� r

K
; r
 0

LR� bR f : f 2 FH; bLempðf Þ�
r

a
þ LRþ

ffiffiffiffiffiffiffiffiffiffi
lnð1dÞ
2n

s8
<

:

9
=

;

0

@

1

A

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð1dÞ

n

s

ð50Þ

Unfortunately, computing the above LRC-based bound is

not a trivial task and can be undertaken only when the

number of samples is limited [45–47]. Furthermore, when

there are a large number of samples, the advantages of

using the LRC with respect to RC are not so evident [45].

PAC Bayes Theory

The PAC Bayes theory is the last major theory in the class of

function-basedmethods. In the PACBayes theory, we do not

bound the error of a f 2 FH 2 H but instead bound the error

of the stochastic Gibbs classifier (also called randomized

classifier) and the majority vote classifier (also called Bayes
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classifier) [49–51, 68, 81, 82]. The Gibbs classifier draws an

f 2 FH according to a probability distribution QH over

FH each time a label for an inputX 2 X is required.One can

also choose from different distributions QH 2 Q ¼

fQ1
H; . . .;Q

n
Q

H

H g [50]. The Bayes classifier is the majority

voting of the different classifiers according to the distribution

QH [51]. This framework, despite being really powerful, is

not suited for algorithm like the ELM since it is built for

ensemble methods [51] like Bagging [83, 84], Boosting

[85, 86] or Bayesian approaches [87].

Algorithmic Stability Theory

Algorithmic-based methods circumvent the problem of

knowing the class of functions by defining the properties

that an algorithm should satisfy in order to achieve good

generalization performances [43]. The AS theory

[43, 55, 88], in particular, states that it is possible to prove

that the following bounds hold with probability ð1� dÞ
[55]:

LðAðDn[Dnu ;HÞÞ � bLempðAðDn[Dnu ;HÞÞ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nH

2nd
þ
3nHbemp

d

r

; 8H
2 H; ð51Þ

LðAðDn[Dnu ;HÞÞ � bLlooðAHÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nH

2nd
þ 3nHbloo

d

r

;8H
2 H;

ð52Þ

where

bempðAH; nÞ ¼ EDn;z
0
i
‘ðAðDn[Dnu ;HÞ; ziÞ




�‘ðAðDi
n[Dnu ;HÞ; ziÞj;

ð53Þ

blooðAH; nÞ ¼ EDn;zj‘ðAðDn[Dnu ;HÞ; zÞ
� ‘ðAðDni

n [Dnu ;HÞ; zÞj: ð54Þ

Basically, AS states that if an algorithm selects similar

functions, the training set being slightly changed results in

the algorithmhaving goodgeneralization performances [56].

It has been proven recently in [43] that blooðAH; nÞ can
be estimated directly from the data, if blooðAH; nÞ
decreases with n. We wish to highlight that this property is

a desirable requirement for any learning algorithm, since

we need that in order to be able to prove the learnability in

the AS framework:

lim
n!1

bempðAH; nÞ ¼ 0; ð55Þ

or that, in other words, the impact on the learning procedure

of removing or replacing one sample from Dn should

decrease, on average, as n grows. Numerous researchers

have already studied this property in the past. In particular, it

is related to the consistency concept [89]. However, con-

nections can also be identified with the trend of the learning

curves of an algorithm [90]. Such quantity is also strictly

linked to the concept of Smart Rule [89]. It is worth under-

lining that, in many of the above-referenced works, the

required property is proved satisfied by many well-known

algorithms like least squares, regularized least squares, and

kerneled regularized least squares. Consequently, the prop-

erty is also true for ELM, which is itself represented by a

random protection with a regularized least squares.

Therefore in [43] it is proved that with probability

ð1� dÞ:

blooðAH; nÞ� 8

n
ffiffiffi
n

p
X
ffiffi
n

p
=2

i;j;k¼1

j‘ðAð �Dk ffiffi
n

p
=2
[Dnu ;HÞ; �z

k
j Þ

�‘ðAð �Dkniffiffi
n

p
=2
[Dnu ;HÞ; �z

k
j Þjþ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

ffiffiffi
n

p

s

;

ð56Þ

where

�Dk ffiffi
n

p
=2 : fzðk�1Þ

ffiffi
n

p
þ1; . . .; zðk�1Þ

ffiffi
n

p
þ
ffiffi
n

p
=2g;

k 2 1; . . .;
ffiffiffi
n

p
=2

� �
;

ð57Þ

�zkj : zðk�1Þ
ffiffi
n

p
þ
ffiffi
n

p
=2þj; k 2 1; . . .;

ffiffiffi
n

p
=2

� �
: ð58Þ

By plugging this last result in the bound of Eq. (52) we obtain

the fully empirical-based bound of [43], where every quantity

involved in the bound can be computed from the available

data. Note also that bH looðA D ffiffinp
=2;Hð Þ;D ffiffi

n
p

=2Þ can be effec-

tively estimated via a Monte Carlo procedure: This enables

computing a subset sMC of the required steps, i.e., sMC � n
ffiffi
n

p

8
.

The bounds of Eqs. (51) and (52) are polynomial bounds

in n (so not very tight when n is small), while bemp and bloo
are two versions of hypothesis stability (HS) which are able

to take into account both the properties of the algorithm

and the property of the distribution that has generated the

data Dn [43, 55]. It is possible to improve the bounds of

Eqs. (51) and (52) by exploiting a stronger notion of AS,

known as the uniform stability (US). In particular, the

following bounds hold with probability ð1� dÞ:
LðAðDn[Dnu ;HÞÞ � bLempðAðDn[Dnu ;HÞÞ þ bi þ ð4nbi

þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðnHd Þ
2n

r

;

8H 2 H;

ð59Þ

LðAðDn[Dnu ;HÞÞ � bLlooðAHÞ þ bni þ ð4nbni þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðnHd Þ
2n

r

;

8H 2 H;

ð60Þ

where
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bi ¼ ‘ðAðDn[Dnu ;HÞ; �Þ � ‘ðAðDi
n[Dnu ;HÞ; �Þ









1
; ð61Þ

bni ¼ j‘ðAðDn[Dnu ;HÞ; �Þ � ‘ðAðDni
n [Dnu ;HÞ; �Þj1: ð62Þ

Note that bi � 2bni.

Unfortunately, the US (bi or bni) is not able to take into

account the properties of the distribution that has generated

the data Dn and sometimes is not even able to capture the

properties of the algorithm because it deals with a worst-

case learning scenario [43].

All the four AS-based bounds of Eqs. (51), (52), (59), and

(60) can be used to select the best set of hyperparameters

H 2 H for the algorithm AH. In particular, all the bounds

are in the form: LðAðDn;HÞÞ � �ðAH;Dn; n; d; nHÞ. In order
to perform the MS procedure we have:

AðDn;H
�Þ;H

� : arg min
H2H

�ðAH;Dn; n; d; nHÞ: ð63Þ

The procedure of Eq. (63) can be exploited with any algo-

rithm for which it is possible to compute one notion of AS.

Compression Bound

The compression bound is the result of the approximation of

the Kolmogorov theory [91] and, in particular, the minimum

description length principle [92]. The compression bound

[53] states that the less data of Dn we use for learning the

better generalization performance our model will have.

Unfortunately, this approach is not suited for ELM but just

for algorithms which produce sparse models like SVM [39].

The Use of Unlabeled Samples for Extreme
Learning Machine Model Selection

As we described before, it is not possible (or it does not make

sense) to apply some of the methodologies described above

(e.g., the PAC Bayes theory and the compression bound

theory). In this section, we show how to apply the out-of-

sample methods, the VC theory, the RC theory, and the AS

theory to the ELM and how to take advantage of unlabeled

samples both for training amore accuratemodel thanks to the

regularization framework depicted in ‘‘Semi-supervised

Extreme Learning Machines’’ section, and during the MS

process. In particular, we show how to perform the MS

effectivelywith andwithout exploiting the unlabeled samples

for the three version of ELM presented in this paper:

• ELM-NoR: the easier ELM which does not implement

any regularization strategy [see Eq. (5)],

• ELM-R: the now-standard ELM which implements the

typical Tikhonov regularization schema [93] [see

Eq. (7)],

• ELM-SemiR: the ELM which implements the semi-

supervised regularization schema presented in Eq. (11).

The ELM-NoR has just one hyperparameter: the number

of hidden neurons, so H ¼ fNhg. For ELM-R the

hyperparameters are the number of hidden neurons and

the regularization hyperparameter, so we have that

H ¼ fNh; kg. Finally, for the ELM-SemiR the hyperpa-

rameters are the number of hidden neutrons and the two

regularization hyperparameters, so we have that

H ¼ fNh; k1; k2g.

Out-of-Sample Methods

The main problem of the out-of-sample methods, as

described in ‘‘Out-of-Sample Methods’’ section, is that

instead of tuning the hyperparameters for the classifier we

are tuning the performance of an ensemble classifier.

Since we are dealing with binary classification a reason-

able choice is to use the hard loss function ‘H which

counts the number of errors of a classifier trained with

AH over a dataset. In particular, if we use the ELM we

can define:

w
Tr

nt
[Dnu

H ¼ AðTr
nt
[Dnu ;HÞ;w

Dn[Dnu

H

¼ AðDn[Dnu ;HÞ;w
D

ni
n [Dnu

H ¼ AðDni
n [Dnu ;HÞ;

ð64Þ

where AH can be the solution of ELM-NoR or ELM-R or

ELM-SemiR trained over Tr
nt
[Dnu for w

Tr
nt
[Dnu

H , trained

over Dn [Dnu for w
Dn[Dnu

H , etc. Note that Dnu can be

exploited or not based on A, in fact ELM-NoR and ELM-

R do not use it. The procedure of Eq. (18) states that:

w
Dn[Dnu

H� ;H� : arg min
H2H

1

nr

Xnr

r¼1

bL
‘H
empðw

Tr
nt
[Dnu

H ;Vr
nv
Þ:

ð65Þ

We remember that (see ‘‘Out-of-Sample Methods’’ section)

we are minimizing the error of the classifier which randomly

chooses one of thew
Tr

nt
[Dnu

H with r 2 f1; . . .; nrgwhile at the
end of the procedure we classify a new sample with w

Dn[Dnu

H .

This produces a sub-optimal result [40, 57]. In order to fix this

bias we can employ the unlabeled samples. In particular, we

can estimate the differencebetween the error ofw
Tr

nt
[Dnu

H with

r 2 f1; . . .; nrg and the one ofwDn[Dnu

H . In fact, when the hard

loss function is used, the error of w
Dn[Dnu

H is bounded by the

average error of w
Tr

nt
[Dnu

H with r 2 f1; . . .; nrg plus the

average difference between the prediction of w
Dn[Dnu

H and

w
Tr

nt
[Dnu

H with r 2 f1; . . .; nrg:
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L‘H ðwDn[Dnu

H Þ� 1

nr

Xnr

r¼1

L‘H ðwTr
nt
[Dnu

H Þ

þ 1

nr

Xnr

r¼1

P sign w
Dn[Dnu

H

 �T
x

� �
6¼ sign w

Tr
nt
[Dnu

H

 �T
x

� �	 �
:

ð66Þ

The first term can be bounded as we have done in ‘‘Out-of-

Sample Methods’’ section, while the second term can be

bounded by using the unlabeled patterns. In fact, if we

define the following quantity:

bDH ¼ 1

nrðnþnuÞ
Xnr

r¼1

Xnþnu

i¼1

sign w
Dn[Dnu

H

 �T
x

� �	

6¼sign w
Tr

nt
[Dnu

H

 �T
x

� �
g;

ð67Þ

since the data in Dn [Dnu are i.i.d., the quantity of

Eq. (67) is an unbiased estimator of

DH ¼ 1

nr

Xnr

r¼1

P sign w
Dn[Dnu

H

 �T
x

� �	

6¼ sign w
Tr

nt
[Dnu

H

 �T
x

� �
g:

ð68Þ

Consequently by exploiting the Hoeffing’s inequality we

can state that with probability ð1� dÞ:

DH� bDH þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

2ðnþ nuÞ

s

: ð69Þ

Consequently, we have that with probability ð1� 2dÞ:

L‘H ðwDn[Dnu

H Þ� 1

nr

Xnr

r¼1

L‘H ðwTr
nt
[Dnu

H Þ þ DH

� 1

nr

Xnr

r¼1

bL
‘H
empðAðTr

nt
[Dnu ;HÞ;V

r
nv
Þ

þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

2nv

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nHð Þ
2nv

s

þ bDH þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

2ðnþ nuÞ

s

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln nHð Þ

2ðnþ nuÞ

s

; H 2 H:

ð70Þ

Note that, if we have just few unlabeled samples the bound

is very loose, while if we have a lot of unlabeled samples

(in the semi-supervised learning framework usually

nu  n) the bound fast converges to the conventional

bound [see Eq. (17)], plus bDH which takes into account

the bias discussed above. Based on this last result we can

derive the out-of-sample MS procedure for ELM which

exploits also the unlabeled samples:

w
Dn[Dnu

H� ;H� :

arg min
H2H

1

nr

Xnr

r¼1

bL
‘H
empðw

Tr
nt
[Dnu

H ;Vr
nv
Þ þ bDH:

ð71Þ

where bDH is defined above.

Vapnik–Chervonenkis Theory

Let us start by considering the ELM-NoR. Let us consider

the VC theory when the hard loss function is employed.

Since the ELM searches a linear separator in the space

defined by the random protection of the original input

space Rr into the space defined by the Nh hidden neurons

we have that dVC �Nh [36].

Unfortunately, this is a loose upper bound which does

not depend on the distribution of the data [36]. In order to

be able to take into account the distribution of the data we

have to use the VC entropy bAnðFHÞ. Note that, from

Eq. (33), in order to perform the MS procedure with the

VC entropy we need to compute bAnðFHÞ=n 2 ½0; lnð2Þ�.
The VC entropy is the number of configurations of the

labels that can be shattered by FH. Consequently, let ri 2
f�1; 1gn be one of the possible 2n configurations of the

labels; we have to search how many of them can be shat-

tered by a linear separator in the random projection space,

then we have to check for how many of the following

problems

min
w

0Tw; s.t. Hw ¼ ri; i 2 f1; . . .; 2ng; ð72Þ

at least one solution exists. Note that the above problem is

a linear programming (LP) problem [94]. Searching for a

feasible solution of an LP problem is again an LP problem

[94] which can be solved in polynomial time [94]. We have

to solve 2n problems and this represents an NP problem.

The issue can be circumvented by noting that we can

estimate bAnðFHÞ through a Monte Carlo procedure by

checking just a random subset, and in particular nMC � 2n

realizations of the labels [44]. If we indicate with
bbAnðFHÞ

the logarithm number of configurations of the nMC that can

be shattered, thanks to the Serfling’s bound [95] (since we

are bounding the expected value of an hypergeometric

distribution), we can state that with probability ð1� dÞ:

P
bAnðFHÞ

n


bbAnðFHÞ
nMC

þ t

8
<

:

9
=

;
� e

�
2nMC

t2

lnð2Þ

1�nMC�1

2n � e
� nMCt2

1�nMC�1

2n :

ð73Þ

Note that the quality of the estimation does not depend on

n but just on nMC. Consequently,
bbAnðFHÞ=nMC rapidly

converges to its mean bAnðFHÞ=n. Consequently, let us

suppose that wH is the solution of the ELM-NoR for a

value of its hyperparameters, thanks to the procedure of

Eqs. (32) and (33), we have that, based on the VC theory:
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wH� ;H� : arg min
H2H

bL
‘H
empðwHÞ þ

ffiffiffiffiffiffi
Nh

n

r

; ð74Þ

wH� ;H� : arg min
H2H

bL
‘H
empðwHÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

bbAnðFHÞ
nMC

s

: ð75Þ

We now show that the unlabeled samples can be useful to

improve the quality of the estimation of the VC entropy. In

particular, let us suppose that Dnu contains more samples

than Dn, in particular nu 
 2n. This is a reasonable

hypothesis since usually the number of unlabeled samples

exceeds by a large amount the number of labeled ones [96].

In particular, let us define m ¼ bnþ nu=2nc and let us

consider the original bound of [33]:

P sup
f2FH

L‘H ðf Þ � bL‘H
empðf Þ









 t

( )

� 4 exp
A2nðFHÞ

n
� t2

� �
n

� �
: ð76Þ

We show that A2nðFHÞ can be estimated more effectively

with the use of the unlabeled samples. In particular, let us

define the following quantity:

bA
m

2nðFHÞ

¼ 1

m

Xm�1

i¼0

ln fsign½f ðxi2nþ1Þ�; . . .; sign½f ðxi2nþ2nÞg�
???f 2 FH

n o








 �
;

ð77Þ

which is basically the VC entropy for sample size of

2n averaged over m different realizations. Thanks to the

results of [78, 79] we can state that with probability

ð1� dÞ:

A2nðFHÞ� bAm

2nðFHÞ þ 1

m
ln

1

d

� �
; ð78Þ

which is a much tighter estimate with respect to the one

presented in Eq. (28). Moreover, bA
m

2nðFHÞ can be esti-

mated from the data since we do not need the labels of the

unlabeled samples; hence, by following the same reasoning

presented above we can define a Monte Carlo estimation of

bA
m

2nðFHÞ through bbAm

2nðFHÞ, which is VC entropy-based

MS procedure which exploits also the unlabeled samples

[the counterpart of the method of Eq. (75)]:

wH� ;H� : arg min
H2H

bL
‘H
empðwHÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bbA
m

n ðFHÞ
nMC

s

: ð79Þ

Regarding the ELM-R and the ELM-SemiR the reasoning

is more complex. In fact, in this case we cannot use the

hard loss function ‘H since we would eliminate the effect of

the regularization hyperparameter [76, 97]. For this reason

we have to employ a smooth loss function like the ‘S. In

particular, it is straightforward to see that ‘H � ‘S. So, even

if we use ‘S we still have information about ‘H [80]. In

order to apply the procedure for real-valued losses [see

Eqs. (40) and (41)] we have to compute the VC entropy

and the VC dimension for real-valued functions which are

d
b
VCðFHÞ and bA

b

nðFHÞ. Unfortunately, upper bounding

the d
b
VCðFHÞ is a rather complex phase while estimating

bA
b

nðFHÞ cannot be transformed to a polynomial problem

as we have done for the bAnðFHÞ. Moreover, bA
b

nðFHÞ
requires the knowledge of the labels so the unlabeled

samples cannot be exploited for improving the MS strat-

egy. Other extensions to real-valued functions of the VC

theory have been proposed in [98, 99], but their applica-

tions in real world are not feasible.

Rademacher Complexity Theory

By exploiting the same notation adopted in ‘‘Out-of-Sam-

ple Methods’’ section and by noting again that ‘H � ‘S we

can state, thanks to the result of ‘‘(Local) Rademacher

Complexity’’ section, that with probability ð1� dÞ:

L‘H ðwDn[Dnu

H Þ� bL‘H
empðw

Dn[Dnu

H ÞþbR‘H
n ðFHÞ

þ 3

ffiffiffiffiffiffiffiffiffiffi
lnð2dÞ
2n

s

þ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðnHÞ
2n

r

; 8H 2 H:

and

L‘H ðwDn[Dnu

H Þ� L‘SðwDn[Dnu

H Þ� bL‘S
empðw

Dn[Dnu

H Þ þ bR‘S
n ðFHÞ

þ 3

ffiffiffiffiffiffiffiffiffiffi
lnð2dÞ
2n

s

þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðnHÞ
2n

r

; 8H

2 H:

ð81Þ

When the ELM-NoR is exploited one should use the bound

of Eq. (80) in order to control the generalization perfor-

mance of the ELM, since no regularization is applied,

while for ELM-R and ELM-SemiR the bound of Eq. (81)

should be used. Unfortunately, computing the RC when the

hard loss function is exploited results in an NP-hard

problem [44, 80]. For this reason we can retrieve the

Massart’s Lemma [100] which states that:

bR
‘H
n ðFHÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bAnðFHÞ

n

s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dVC lnðnÞ

n

r

: ð82Þ

By exploiting this result we retrieve the one reported in

‘‘Vapnik–Chervonenkis Theory’’ section for the VC theory.

For ELM-R and ELM-SemiR, instead, we use the ‘S. In

this case, we exploit the property of Eq. (48) which is

proven in [80].

For ELM-R we can state that:
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bR
‘S
n ðFHÞ� 4W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxiÞ

T
/ðxiÞ

n

s

¼ 4 w
Dn[Dnu

H

���
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxiÞ

T
/ðxiÞ

n

s

: ð83Þ

The Tikhonov regularization problem of Eq. (7):

w� ¼ argmin
w

Hw� yk k2þk wk k2; ð84Þ

is equivalent to an Ivanov-based one [69, 101, 102]

w� ¼ argmin
w

Hw� yk k2; s.t. wk k2 �W2; ð85Þ

for a suitable value of W ¼ w
Dn[Dnu

H

���
���. Note that this

bound can be used also for ELM-NoR by exploiting the

soft loss function instead of the hard one, but since no

regularization is applied in ELM-NoR W ¼ w
Dn[Dnu

H

���
��� can

assume any value. In fact, for ELM-R from k ¼ 1 we

have that W ¼ 0 while for k ¼ 0 we retrieve the ELM-

NoR.

For ELM-SemiR we can state that:

bR
‘S
n ðFHÞ� 4W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxiÞ

T
/ðxiÞ

n

s

¼ 4 w
Dn[Dnu

H � k1w0

���
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxiÞ

T
/ðxiÞ

n

s

:

ð86Þ

The Tikhonov regularization problem of Eq. (11):

w� ¼ argmin
w

Hw� yk k2þk1 w� k2w0k k2; ð87Þ

is equivalent to an Ivanov-based one:

w� ¼ argmin
w

Hw� yk k2; s.t. w� k2w0k k2 �W ; ð88Þ

for a suitable value of W ¼ w
Dn[Dnu

H � k1w0

���
���.

Based on these results we can propose the RC-based MS

for ELM-R and ELM-SemiR:

w
Dn[Dnu

H� ;H� :

arg min
H2H

bL
‘S
empðw

Dn[Dnu

H Þ þ 4W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxiÞ

T
/ðxiÞ

n

s

:

ð89Þ

where for ELM-R W ¼ w
Dn[Dnu

H

���
��� while for ELM-SemiR,

which exploits also the unlabeled samples,

W ¼ w
Dn[Dnu

H � k1w0

���
���.

In order to exploit the unlabeled samples also for the MS

process, we have to exploit a recent result reported in

[103, 104] which states that:

Lðf Þ� bLempðf Þ þ
1

m

Xm

i¼j

bR
j

nðFHÞ þ 3

ffiffiffiffiffiffiffiffiffiffi
lnð2dÞ
2n

s

þ 2þ
ffiffiffiffi
m

p
ffiffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnðnHÞ
2n

r

;

8f 2 FH 2 F;

ð90Þ

where m ¼ bnþ nu=nc, Dn [Dnu ¼ x1; . . .; xnþnuf g and

1

m

Xm

j¼1

bR
j

nðFHÞ ¼ 1

m

Xm

j¼1

Er sup
f2FH

2

n

Xn

i¼1

ri‘ðf ; zðj�1ÞmþiÞ:

ð91Þ

Note that the bound of Eq. (90) is tighter than the one of

Eq. (42) since we have a better estimation of the RC thanks

to the unlabeled samples. Basically, the unlabeled samples

give us the ability of computing the average over m dif-

ferent realizations of the RC. Based on the previous results

we can state that if we use the soft loss function, for the

ELM-R we have that:

1

m

Xm

j¼1

bR
j

nðFHÞ
 �‘S

� 1

m

Xm

j¼1

4 w
Dn[Dnu

H

���
���

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxðj�1ÞmþiÞT/ðxðj�1ÞmþiÞ

n

s

;

ð92Þ

while for the ELM-SemiR

1

m

Xm

j¼1

bR
j

nðFHÞ
 �‘S

� 1

m

Xm

j¼1

4 w
Dn[Dnu

H

���

�k1w0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxðj�1ÞmþiÞT/ðxðj�1ÞmþiÞ

n

s

:

ð93Þ

Based on this result we can propose the RC-based MS for

ELM-R and ELM-SemiR which takes into account also the

unlabeled samples:

w
Dn[Dnu

H� ;H� :

arg min
H2H

bL
‘S
empðw

Dn[Dnu

H Þ

þ 1

m

Xm

j¼1

4W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 /ðxðj�1ÞmþiÞT/ðxðj�1ÞmþiÞ

n

s

;

ð94Þ

where W ¼ w
Dn[Dnu

H

���
��� for ELM-R and W ¼

w
Dn[Dnu

H � k1w0

���
��� for ELM-SemiR.

Also for the LRC it has been proved that the unlabeled

samples can improve the reliability of the estimation of the
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generalization error of the model [47] but, unfortunately,

the open question remains how to effectively compute the

LRC in practice.

Algorithmic Stability Theory

In order to apply the AS to ELM we have to exploit some

known results and prove some new ones. We use the same

notation of ‘‘Out-of-Sample Methods’’ section.

Let us start with the US. If we use the hard loss function,

it is straightforward to prove that for any ELM we have

[43, 46, 56]:

bni
 �‘H

¼ bi
� �‘H¼ 1; ð95Þ

which is the only possible, and trivial, result. If instead we

use the soft loss function in [55] it is proved that for a

Tikhonov regularization problem like the ELM-R we have

that:

bni
 �‘S

� 8
max /ðx1ÞT/ðx1Þ; . . .;/ðxnÞT/ðxnÞ

n o

nk
: ð96Þ

Note that ELM-R is equal to ELM-NoR if k ! 0, which

results in bniðAH; nÞ
 �‘

H
! þ1. This means that without

regularization the ELM is not stable. For the ELM-SemiR

we have that:

bni
 �‘S

� 8
max /ðx1ÞT/ðx1Þ; . . .;/ðxnÞT/ðxnÞ

n o

nk1
: ð97Þ

Consequently, we can use the US just for ELM-R and

ELM-SemiR and by exploiting the results of ‘‘Algorithmic

Stability Theory’’ section we can state that:

w
Dn[Dnu

H� ;H� : arg min
H2H

bL
‘S
empðw

Dn[Dnu

H Þ þ 2 bni
 �‘S

;

ð98Þ

w
Dn[Dnu

H� ;H� : arg min
H2H

bL
‘S
looðAHÞ þ bni

 �‘S
: ð99Þ

Note that bni must be computed based on Eqs. (96) and

(97), respectively, for ELM-R and ELM-SemiR. Note that

there is no advantage in having unlabeled samples.

With the HS the approach is quite different. In this

case, we can exploit the hard loss function as described

also in [43]. Since bempðAH; nÞ cannot be estimated from

the data [43] we can just use the bound which takes into

the LOO error [see Eq. (52)]. In order to compute the

blooðAH; nÞ of Eq. (56) for ELM with the hard loss

function we have to take Eq. (56) and note that with

probability ð1� dÞ:

b‘HlooðAH; nÞ� bb
‘H

looðAH;
ffiffiffi
n

p
=2Þ

¼ 8

n
ffiffiffi
n

p
X
ffiffi
n

p
=2

i;j;k¼1

j‘HðAð �Dk ffiffi
n

p
=2
[Dnu ;HÞ; �z

k
j Þ

� ‘HðAð �Dkniffiffi
n

p
=2
[Dnu ;HÞ; �z

k
j Þj þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

ffiffiffi
n

p

s

¼ 8

n
ffiffiffi
n

p
X
ffiffi
n

p
=2

i;j;k¼1

sign w
�Dk ffiffi

n
p

=2
[Dnu

H

� �T
�xkj

" #"

6¼sign w
�D
kniffiffi
n

p
=2
[Dnu

H

� �T
�xkj

" #

�þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

ffiffiffi
n

p

s

:

ð100Þ

Note that bb
‘H

looðAH;
ffiffiffi
n

p
=2Þ can be computed from the data

and so by applying the bound of Eq. (52) we have the HS

MS strategy2:

w
Dn[Dnu

H� ;H� : arg min
H2H

bL
‘H
looðAHÞ þ bb

‘H

looðAH;
ffiffiffi
n

p
=2Þ:

ð101Þ

This approach can be applied to ELM-NoR, ELM-R, or

ELM-SemiR.

It can also be shown that the bound of Eq. (56), as well

as the MS strategy, can be improved, if some unlabeled

data are available. In particular, from Eq. (100) it is pos-

sible to note that, if the hard loss function is exploited,

bblooðAH;
ffiffiffi
n

p
=2Þ does not require the knowledge of the

labels. In particular, let us suppose to have at least nu ¼ n

unlabeled data, since for the ELM blooðAH; nÞ decreases

with n we have that:

b‘HlooðAH; nÞ� b‘HlooðAH;
ffiffiffi
n

p
Þ: ð102Þ

Let us define now the following quantity:

bb
‘H

looðAH;
ffiffiffi
n

p
Þ

¼ 1

n
ffiffiffi
n

p
X
ffiffi
n

p

i;j;k¼1

j‘HðAð ��Dk ffiffi
n

p [Dnu ;HÞ;
��zkj Þ

� ‘HðAð ��Dkniffiffi
n

p [Dnu ;HÞ;
��zkj Þj þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

n

s

;

ð103Þ

where

��D
k ffiffi
n

p : fzðk�1Þ
ffiffi
n

p
þ1; . . .; zðk�1Þ

ffiffi
n

p
þ
ffiffi
n

p g; k 2 1; . . .;
ffiffiffi
n

p� �
; z

2 Dn

ð104Þ

2 We have exploited the property
ffiffiffiffiffiffiffiffi
a2b

p
� a

2
þ b in order to remove

all the constant terms which do not depend on bblooðAH;
ffiffiffi
n

p
=2Þ:

32 Cogn Comput (2017) 9:18–42
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��zkj : zðk�1Þ
ffiffi
n

p
þj;

k 2 1; . . .;
ffiffiffi
n

p� �
; k 2 1; . . .;

ffiffiffi
n

p� �
; z 2 Dnu :

ð105Þ

Note that the label in Dnu are unknown but, if the hard loss

function is used, we have that:

bb
‘H

looðAH;
ffiffiffi
n

p
Þ

¼ 1

n
ffiffiffi
n

p
X
ffiffi
n

p

i;j;k¼1

j‘HðAð ��Dk ffiffi
n

p [Dnu ;HÞ;
��zkj Þ

� ‘HðAð ��Dkniffiffi
n

p [Dnu ;HÞ;
��zkj Þj þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

n

s

¼ 1

n
ffiffiffi
n

p
X
ffiffi
n

p

i;j;k¼1

sign w
��D
k ffiffi
n

p [Dnu

H

� �T
��xkj

" #"

6¼ sign w
��D
kniffiffi
n

p [Dnu

H

� �T
��xkj

" #

�;

ð106Þ

which does not require the knowledge of the labels.

Moreover, bb
‘H

looðAH;
ffiffiffi
n

p
Þ is an empirical unbiased esti-

mator of b‘HlooðAH;
ffiffiffi
n

p
Þ (based on the same reasoning

proposed in [43]) and therefore thanks to the Hoeffding’s

inequality we can state that:

b‘HlooðAH;
ffiffiffi
n

p
Þ� bb

‘H

looðAH;
ffiffiffi
n

p
Þ þ

ffiffiffiffiffiffiffiffiffiffi
ln 1

d

� �

2
ffiffiffi
n

p

s

: ð107Þ

By plugging these results into the bound of Eq. (52) and by

following the procedure adopted for deriving Eq. (101), we

can derive the HS MS strategy which takes advantage also

of the unlabeled samples:

w
Dn[Dnu

H� ;H� : arg min
H2H

bL
‘H
looðAHÞ þ bb

‘H

looðAH;
ffiffiffi
n

p
Þ:

ð108Þ

This approach can be applied to ELM-NoR, ELM-R, or

ELM-SemiR.

Affective Analogical Reasoning Dataset

The AffectiveSpace model

AffectNet is a semantic network in which common-sense

concepts (e.g., ‘read book,’ ‘payment,’ ‘play music’) are

linked to a hierarchy of affective domain labels (e.g., ‘joy,’

‘amazement,’ ‘fear,’ ‘admiration’). In order to enable

affective analogical reasoning on natural language con-

cepts, AffectiveSpace [13] is obtained as the vector space

representation of such a semantic network. Therefore, in

AffectiveSpace, concepts conveying similar semantic and

affective information, e.g., ‘enjoy conversation’ and ‘chat

with friends,’ tend to fall near each other in the multi-

dimensional space.

Both AffectNet and AffectiveSpace are publicly avail-

able at http://sentic.net. AffectiveSpace has been obtained

applying principal component analysis (PCA) on the

matrix representation of AffectNet. Due to computational

cost issues, truncated singular value decomposition

(TSVD) has been preferred to other dimensionality

reduction techniques. TSVD uses an orthogonal transfor-

mation to convert the set of common-sense features asso-

ciated with each concept into a set of uncorrelated

variables (the principal components of the SVD).

Indicating AffectNet as A, a low-rank approximation of

it is obtained: ~A ¼ UM RM VT
M . This approximation is based

on minimizing the Frobenius norm of the difference

between A and ~A, under the constraint rankð~AÞ ¼ M;

according to the Eckart–Young theorem [105], this repre-

sents the best approximation of A in the least-square sense:

min
~Ajrankð ~AÞ¼M

jA� ~Aj ¼ min
~Ajrankð ~AÞ¼M

jR� UT ~AV j

¼ min
~Ajrankð ~AÞ¼M

jR� Sj; ð109Þ

assuming that ~A ¼ USVT, where S is diagonal and has

M nonzero diagonal entries for the rank constraint. The

minimum of the above equation may be obtained as

follows:

min
~Ajrankð ~AÞ¼M

jR� Sj ¼ min
si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðri � siÞ2
s

¼ min
si

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM

i¼1

ðri � siÞ2 þ
Xn

i¼Mþ1

r2i

vuut

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼Mþ1

r2i

s

:

ð110Þ

In fact, in the Frobenius norm sense the minimum is

obtained when ri ¼ si ði ¼ 1; . . .;MÞ and the correspond-

ing singular vectors are the same as those of A. Thus, if

only the first M principal components are kept, common-

sense concepts are represented by vectors ofM coordinates.

As already said, concepts with the same affective ori-

entation are likely to have similar features; i.e., concepts

conveying the same emotion tend to fall near each other in

AffectiveSpace. Concept similarity does not depend on

their absolute positions in the vector space, but rather on

the angle they make with the origin, as it can be seen in

Fig. 1.

The number of singular values M, which indicates the

dimensionality of the AffectiveSpace, represents the trade-

off between efficiency and precision: The bigger is M, the

Cogn Comput (2017) 9:18–42 33

123



more precisely AffectiveSpace represents AffectNet’s

knowledge, but generating the vector space is slower, while

the smaller is M, the more efficiently AffectiveSpace can

be obtained.

The hourglass of emotions [9], used in Fig. 2, is

employed to reason on the disposition of concepts in

AffectiveSpace. In the model, affective states are repre-

sented by four concomitant but independent dimensions

(Pleasantness, Attention, Sensitivity, and Aptitude), each

one characterized by six levels of activation, which deter-

mine the intensity of the expressed/perceived emotion.

Such levels represent a set of 24 basic emotions (six for

each affective dimension). Therefore, a four-dimensional

vector can potentially synthesize the level of activation of

each affective dimension of a concept. Beyond emotion

detection, the hourglass model is also used for polarity

detection tasks. Polarity is defined in terms of the four

affective dimensions, according to the formula:

where ci is an input concept, N the total number of con-

cepts, and 3 the normalization factor (as the hourglass

dimensions are defined as float 2 [-1, ?1]).

In the equation, Attention is taken as absolute value

since both its positive and negative intensity values

correspond to positive polarity values (e.g., ‘surprise’ is

negative in the sense of lack of Attention, but positive

from a polarity point of view). Similarly, Sensitivity is

taken as negative absolute value since both its positive

and negative intensity values correspond to negative

polarity values (e.g., ‘anger’ is positive in the sense of

level of activation of Sensitivity, but negative in terms of

polarity).

Fig. 1 A representation of AffectiveSpace: positive concepts (in the bottom-left corner) and negative concepts (in the up-right corner)

p ¼
XN

i¼1

PleasantnessðciÞ þ jAttentionðciÞj � jSensitivityðciÞj þ AptitudeðciÞ
3N

ð111Þ

34 Cogn Comput (2017) 9:18–42
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Dataset Description

The proposed MS framework was tested on a benchmark of

23,244 common-sense concepts. Each concept is repre-

sented according to the AffectiveSpace model discussed in

‘‘The AffectiveSpace Model’’ section, with dimension M

equal to 50 and 100.

The publicly available Sentic API (on http://sentic.net/

api) was used to obtain for each concept the level of acti-

vation for each affective dimension. According to the

hourglass model presented in ‘‘The AffectiveSpace Model’’

section, the Sentic API expresses the levels of activation as

an analog number in the range ½�1; 1�, which are eventu-

ally mapped into the associated polarity according to

equation Eq. (111). Only 6813 concepts of the benchmark

are labeled, while the others are left unlabeled.

Experimental Results

In this section, we compare the performance of different

ELMs (ELM-noR, ELM-R, and ELM-SemiR) over the

dataset described in ‘‘Dataset Description’’ section, tuned

with the different MS strategies described in ‘‘Model

Selection’’ section. In particular, for the ELMs we have

that:

• ELM-noR: The set of possible configurations of

hyperparameters is every possible combination of the

hyperparameters such that H ¼ fNh : Nh 2 f100;
250; 500; 750; 1000gg

Fig. 2 The 3D model of the hourglass of emotions. Since affective

states go from strongly positive to null to strongly negative, the model

assumes a hourglass shape

Table 1 MS methods and ELM: the ‘9’ indicates if the MS method can be applied to the particular ELM

MS method Sections Equations Suitable for

ELM-noR ELM-R ELM-SemiR

HO Out-of-Sample Methods (65) 9 9 9

HO-SEMI Out-of-Sample Methods (71) 9 9 9

KCV Out-of-Sample Methods (65) 9 9 9

KCV-SEMI Out-of-Sample Methods (71) 9 9 9

BOO Out-of-Sample Methods (65) 9 9 9

BOO-SEMI Out-of-Sample Methods (71) 9 9 9

VC-DIMENSION Vapnik–Chervonenkis Theory (74) 9 – –

VC-ENTROPY Vapnik–Chervonenkis Theory (75) 9 – –

VC-ENTROPY-SEMI Vapnik–Chervonenkis Theory (79) 9 – –

RC Rademacher Complexity Theory (89) – 9 9

RC-SEMI Rademacher Complexity Theory (94) – 9 9

USEMP Algorithmic Stability Theory (98) – 9 9

USLOO Algorithmic Stability Theory (99) – 9 9

HS Algorithmic Stability Theory (101) 9 9 9

HS-SEMI Algorithmic Stability Theory (108) 9 9 9

Cogn Comput (2017) 9:18–42 35
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• ELM-R: The set of possible configurations of hyper-

parameters is every possible combination of the

hyperparameters such that H ¼ fNh : Nh 2 f100;
250; 500; 750; 1000g; k 2 10f�6;�5:5;...;2:5;3gg

• ELM-SemiR: The set of possible configurations of

hyperparameters is every possible combination of the

hyperparameters such that H ¼ fNh : Nh 2 f100;
250; 500; 750; 1000g; k1 2 10f�6;�5:5;...;2:5;3gg; k2 2
10f�6;�5:5;...;2:5;3ggg

For the MS strategies, the possible options are several but

some of them cannot be applied to every version of ELM

exploited in this paper. Therefore, Table 1 reports on the

match between MS methods and the type of ELM in which

the method can be adopted. In Table 1 we refer to the

methods with the following acronyms:

• HO: indicates the usual HO procedure where no

unlabeled samples are exploited (see Eq. (65) in

‘‘Out-of-Sample Methods’’ section). Note that r ¼ 1,

v ¼ b0:1nc and the resample procedure is performed

without replacement;

• HO-SEMI: indicates the usual HO procedure where

also the unlabeled samples are exploited (see Eq. (71)

in ‘‘Out-of-Sample Methods’’ section). Note that we

employed the same parameters of HO;

• KCV: indicates the k-fold cross-validation procedure

where no unlabeled samples are exploited (see Eq. (65)

in ‘‘Out-of-Sample Methods’’ section). Note that

nr ¼ 10, v ¼ b0:1nc (k ¼ 10) and the resample proce-

dure is performed without replacement;

• KCV-SEMI: indicates the k-fold cross-validation pro-

cedure where also the unlabeled samples are exploited

(see Eq. (71) in ‘‘Out-of-Sample Methods’’ section).

Note that we employed the same parameters of KCV;

• BOO: indicates the bootstrap procedure where no

unlabeled samples are exploited (see Eq. (65) in

‘‘Out-of-Sample Methods’’ section). Note that

nr ¼ 30, t ¼ n (k ¼ 10) and the resample procedure is

performed with replacement;

• BOO-SEMI: indicates the bootstrap procedure where

also the unlabeled samples are exploited (see Eq. (71)

in ‘‘Out-of-Sample Methods’’ section). Note that we

employed the same parameters of BOO;

• VC-DIMENSION: exploits the VC dimension without

employing the unlabeled samples (see Eq. (74) in

‘‘Vapnik–Chervonenkis Theory’’ section)

• VC-ENTROPY: exploits the VC entropy without

employing the unlabeled samples (see Eq. (75) in

‘‘Vapnik–Chervonenkis Theory’’ section)

• VC-ENTROPY-SEMI: exploits the VC entropy with

the employment of the unlabeled samples (see Eq. (79)

in ‘‘Vapnik–Chervonenkis Theory’’ section)

• RC: exploits the Rademacher complexity without

employing the unlabeled samples (see Eq. (89) in

‘‘Rademacher Complexity Theory’’ section)

• RC-SEMI: exploits the Rademacher complexity with

the employment of the unlabeled samples (see Eq. (94)

in ‘‘Rademacher Complexity Theory’’ section)

• USEMP: exploits the US and the empirical error

without employing the unlabeled samples (see Eq. (98)

in ‘‘Algorithmic Stability Theory’’ section)

• USLOO: exploits the US and the LOO error without

employing the unlabeled samples (see Eq. (99) in

‘‘Algorithmic Stability Theory’’ section)

• HS: exploits the hypothesis stability without employing

the unlabeled samples (see Eq. (101) in ‘‘Algorithmic

Stability Theory’’ section)

• HS-SEMI: exploits the hypothesis stability with the

employment of the unlabeled samples (see Eq. (108) in

‘‘Algorithmic Stability Theory’’ section)

The labeled data have been split into two sets: The first

5000 samples have been used for building the model with

the different ELMs (ELM-noR, ELM-R, and ELM-SemiR)

and with the different MS strategies (HO, HO-SEMI, KCV,

KCV-SEMI, BOO, BOO-SEMI, VC-DIMENSION, VC-

ENTROPY, VC-ENTROPY-SEMI, RC, RC-SEMI,

USEMP, USLOO, HS, HS-SEMI) as reported in Table 1,

while the rest of the labeled samples, which are 1813, have

been kept apart as reference set in order to test the per-

formance of the learned model. The splitting process has

been repeated 30 times in order to obtain statistically rel-

evant results.

The experiments have been performed on a Workstation

equipped with one Solid Stata Drive disk of 100 GB, one

Hard Disk Drive of 1 TB, 128 GB of RAM, 4 Intel Xeon

CPU E5-4620 @2.20 GHz, and Windows Server 2012 R2.

The code has been written in Fortran 90 and compiled with

the Intel Parallel Studio XE 2016 Composer Edition.

In Tables 2 and 3 we reported the error on the reference

set and the time needed to build the model for the different

combination of ELM and MS strategies (see Table 1), for

M ¼ 50 in Table 2 and M ¼ 100 in Table 3, for the five

binary classification tasks (Polarity, Pleasantness, Atten-

tion, Sensitivity, and Aptitude).

From the results reported in Tables 2 and 3 it is possible

to derive three main conclusions:

• With M ¼ 100 we retrieve models with generally

higher accuracy with respect to M ¼ 50. This is

reasonable since the more information we feed the

learning machine the more accurate results the final

model.

• ELM-SemiR produces models with higher accuracy

with respect to ELM-noR and ELM-R. This means that

the algorithm is able to exploit and take advantage of
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the hidden information given by the unlabeled samples.

Anyway, note that ELM-SemiR requires more time to

build the model because of the unsupervised pre-

training phase.

• The MS strategies which exploit also the unlabeled

samples (HO-SEMI, KCV-SEMI, BOO-SEMI, VC-

ENTROPY-SEMI, RC-SEMI, HS-SEMI) select models

with higher accuracy with respect to their counterparts

where the unlabeled samples are not taken into account

(HO, KCV, BOO, VC-DIMENSION, VC-ENTROPY,

RC, USEMP, USLOO, HS). As expected from theory,

the information hidden in the unlabeled samples helps

to improve the performance of the MS strategy.

Generally, the difference in terms of time to build the

model between the MS methods which exploit the

unlabeled samples and the ones which do not is not

noticeable.

Besides these general considerations it is possible to derive

some other interesting insights from the results of Tables 2

and 3 about the characteristics of each ELM and MS

strategy.

• The in-sample methods (VC-DIMENSION, VC-

ENTROPY, RC, USEMP, USLOO) usually perform

worse, in terms of accuracy of the selected models, with

respect to the out-of-sample ones (HO, KCV, BOO),

when the unlabeled samples are not exploited. Anyway,

the in-sample methods require less computational

effort. The only exception is the HS method which

generally produces models with higher accuracy than

the in-sample methods.

• When the unlabeled data are exploited for MS

purposes, the in-sample methods (RC-SEMI, HS-

SEMI) produce models with higher accuracy compared

to the out-of-sample ones (HO-SEMI, KCV-SEMI,

BOO-SEMI), even if the models selected by the latter

methods possess higher accuracy with respect to their

counterparts when the unlabeled samples are not

exploited (HO, KCV, BOO). The only exception is

the VC-ENTROPY-SEMI, which selects more accurate

models compared to the VC-ENTROPY but less

accurate models than the ones selected with the out-

of-sample methods.

• The out-of-sample method which selects the most

accurate models is the bootstrap (BOO and BOO-

SEMI), while the less accurate models are selected by

the HO method (HO and HO-SEMI). This is due to the

fact that the bootstrap represents the statistical method

which extracts more information from data (as

described in ‘‘Out-of-Sample Methods’’ section). In

fact, the bootstrap is also the out-of-sample method

which requires more time to build the model, while the

HO method is the most computational inexpensive out-

of-sample method.

• The in-sample method which selects the most accurate

models is the hypothesis stability (HS and HS-SEMI),

while the less accurate models are selected by the US-

based methods (USEMP and USLOO) together with

the VC-based methods (VC-ENTROPY and VC-

ENTROPY-SEMI). This is due to the fact that the

VC dimension and the US techniques are not able to

properly take into account the properties of the

algorithms and the probability distributions that have

generated the data (as described in ‘‘In-Sample Meth-

ods’’ section). Again, the in-sample method which

selects the most accurate models is the also the one

with the higher computational requirements.

• Overall, the HS-SEMI method is the one which selects

the most accurate model while requiring less computa-

tional effort with respect to the out-of-sample methods.

Finally, we would like to stress that the proposed approach

is quite general and can be applied in other applications

and other learning algorithms.

Conclusion

In this work, we have addressed the problem of exploiting

unlabeled samples to perform an emotion recognition task. In

particular, we have shown that the unlabeled samples can be

exploited during the formulationof the learning algorithmwith

particular reference to theELM.More in details,weproposed a

different regularization procedure which is able to incapsulate

an unsupervised pre-training hint in a form of a reference

hyperplane into the ELM formulation. Moreover, we have

shown that unlabeled samples can be extremely useful during

another key phase of the learning process, the model selection

phase, where the hyperparameters which influence the gener-

alization performances of the learned model must be tuned

based on the available data. In particular, we have reviewed all

the most important state-of-the-art theoretical approaches to

model selection and we have shown how to modify the theo-

retical framework in order to explicitly take advantage of the

available information hidden in the unlabeled samples. The

results performed on an affective analogical reasoning prob-

lem show that our method is indeed able to exploit the infor-

mation given by unlabeled samples in order to build models

with higher generalization performances with respect to the

models built without exploiting them.
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