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Acknowledgment, and References.

Also, Dr. Erik Cambria is the co-corresponding author

of the article.

The corrected versions of the sections are given below.

Abstract

With the advent of the internet, people actively express

their opinions about products, services, events, political

parties, etc., in social media, blogs, and website comments.

The amount of research work on sentiment analysis is

growing explosively. However, the majority of research

efforts are devoted to English language data, while a great

share of information is available in other languages. We

present a state-of-the-art review on multilingual sentiment

analysis. More importantly, we compare our own imple-

mentation of existing state-of-the-art approaches on com-

mon data. Precision observed in our experiments is

typically lower than that reported by the original authors,

which we attribute to lack of detail in the original pre-

sentation of those approaches. Thus, we compare the

existing works by what they really offer to the reader,

including whether they allow for accurate implementation

and for reliable reproduction of the reported results.

Conclusion

We gave an overview of state-of-the-art multilingual sen-

timent analysis methods. We described data pre-process-

ing, typical features, and the main resources used for

multilingual sentiment analysis. Then, we discussed dif-

ferent approaches applied by their authors to English and

other languages. We have classified these approaches into

corpus-based, lexicon-based, and hybrid ones.

The real value of any sentiment analysis technique for

the research community corresponds to the results that

can be reproduced with it, not in the results its original

authors reportedly obtained with it. To evaluate this real

value, we have implemented eleven selected approaches
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as closely as we could, based on their descriptions in the

original papers, and tested them on the same two cor-

pora. In the majority of the cases, we obtained lower

results than those reported by their corresponding

authors. We attribute this mainly to the incompleteness

of their descriptions in the original papers. In some

cases, though, the methods were developed for a specific

domain, so in such cases, comparison on our test corpora

may not be fair. A lesson learnt was that for a method to

be useful for the research community, authors should

provide sufficient detail to allow its correct implemen-

tation by the reader.

According to our results, the approach proposed by

Singh et al. [52] outperforms other approaches. However,

this approach is computationally expensive and has been

tested only on English language data. The least accurate

approaches of those that we considered were the ones

proposed by Zhu et al. [73], Habernal et al. [23], and

Mizumoto et al. [34].

The main problem of multilingual sentiment analysis is

the lack of lexical resources [18]. In our future work, we

are planning to develop a multilingual corpus, which will

include Persian, Arabic, Turkish, and English data, and

compare a range of state-of-the-art methods.
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23. Habernal I, Ptácek T, Steinberger J. Sentiment analysis in Czech

social media using supervised machine learning. In: Proceedings

of the 4th workshop on computational approaches to subjectivity,

sentiment and social media analysis. 2013, p. 65–74.

24. He Y, Zhou D. Self-training from labeled features for sentiment

analysis. Inf Process Manag. 2011;47:606–16.

25. Holmes G, Donkin A, Witten IH. Weka: a machine learning

workbench. In: Proceedings of the 1994 second Australian and

New Zealand conference on intelligent information systems.

IEEE; 1994, p. 357–61.

26. Hu M, Liu B. Mining and summarizing customer reviews. In:

Proceedings of the tenth ACM SIGKDD international conference

on knowledge discovery and data mining. ACM; 2004,

p. 168–77.

27. Jimenez S, Gonzalez FA, Gelbukh A. Soft cardinality in semantic

text processing: experience of the SemEval international com-

petitions. Polibits. 2015;51:63–72.

28. Liu B. Sentiment analysis: mining opinions, sentiments, and

emotions. Cambridge: Cambridge University Press; 2015.

29. Liu Z, Dong X, Guan Y, Yang J. Reserved self-training: a

semisupervised sentiment classification method for Chinese

microblogs. In: Proceedings of IJCNLP; 2013.

30. Mahyoub FHH, Siddiqui MA, Dahab MY. Building an Arabic

sentiment lexicon using semi-supervised learning. J King Saud

Univ Comput Inf Sci. 2014;26(4):417–24.

Cogn Comput (2016) 8:772–775 773

123



31. Manning CD, Raghavan P, Schütze H. Introduction to informa-

tion retrieval. Cambridge: Cambridge University Press; 2008.

32. Medhat W, Hassan A, Korashy H. Sentiment analysis algorithms

and applications: a survey. Ain Shams Eng. J. 2014;5:1093–113.

33. Mirchev U, Last M. Multi-document summarization by extended

graph text representation and importance refinement. Innov Doc

Summ Tech Revolut Knowl Underst Revolut Knowl Underst.

2014; 28.

34. Mizumoto K, Yanagimoto H, Yoshioka M. Sentiment analysis of

stock market news with semi-supervised learning. In: 2012 IEEE/

ACIS 11th international conference on computer and information

science (ICIS). IEEE, 2012; p. 325–28.

35. Morency L-P, Mihalcea R, Doshi P. Towards multimodal senti-

ment analysis: harvesting opinions from the web. In: Proceedings

of the 13th international conference on multimodal interfaces.

ACM; 2011, p. 169–76.

36. Narayanan V, Arora I, Bhatia A. Fast and accurate sentiment

classification using an enhanced Naive Bayes model. In: Intelli-

gent data engineering and automated learning–IDEAL 2013.

Berlin: Springer; 2013, p. 194–201.

37. Pang B, Lee L. A sentimental education: sentiment analysis using

subjectivity summarization based on minimum cuts. In: Pro-

ceedings of the 42nd annual meeting on association for compu-

tational linguistics. Association for Computational Linguistics;

2004, p. 271.

38. Pang B, Lee L, Vaithyanathan S. Thumbs up?: sentiment clas-

sification using machine learning techniques. In: Proceedings of

the ACL-02 conference on empirical methods in natural language

processing, vol 10. Association for Computational Linguistics,

2002; p. 79–86.

39. Posadas-Durán J-P, Markov I, Gómez-Adorno H, Sidorov G,
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