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Abstract The occurrence of noise is a common problem in

biomedical imaging applications. The denoising of cor-

rupted biomedical images is a challenging task. In this

paper, we present a biologically inspired parallel-frame-

work based multi-gene genetic programming (MGGP)

approach for denoising biomedical images from mixed

impulse noise. Our biologically inspired approach has

achieved an improved denoising performance by exploiting

its parallel framework of multiple genes modeling capa-

bility in noise detection and removal stages. In the detec-

tion stage, we developed MGGP-based noise detector using

rank-ordered and robust statistical features to effectively

locate the corrupted pixels and generate noise map. In the

noise removal stage, the detected noisy pixels are denoised

by developing a bio-inspired MGGP-based estimator using

statistical features of only noise-free pixels in their neigh-

borhood. Extensive experimentation is carried out to

demonstrate the robust performance of the proposed

approach on diverse types of biomedical images corrupted

with different noise densities. As a test case, we evaluated

the performance of the proposed bio-inspired approach for

benchmark biomedical images of Algae, C05c, Celulas,

Crm04280, Crm05210, Nemacb1, Nemacl2, MRI, X-ray,

Heart and microscopic images of fungal spores causing

wheat rust. The proposed parallel-framework based bio-

inspired approach has demonstrated an improved

performance over other existing conventional and bio-in-

spired learning approaches.

Keywords Bio-inspired parallel framework � Multi-gene �
Genetic programming � Biomedical images � Denoising

Introduction

The bio-inspired learning approaches are gaining impor-

tance in a variety of applications [1, 2]. Due to their natural

representation, effective computational models are devel-

oped to address real-life problems. These biologically

inspired approaches work better where traditional com-

puting approaches lack in developing effective models for

practical applications. A similar challenging problem is the

denoising of mixed impulse noise from biomedical images

without deteriorating the visual image quality. The demand

of high-quality microscopic and biomedical images is

increasing in the field of biomedicine for disease diagnosis

and understanding biological processes [3]. For example,

microscopic images play a very important role in under-

standing the behavior of various microorganisms such as

germination of fungal spores for rust detection in wheat

plants [4]. These images help in the investigation to cure

from different diseases. Wheat rust causes a significant

reduction in the overall production of wheat every year.

The adverse effect of this disease and to find its cure can be

studied through an imaging application based on

microscopy.

In various biomedical imaging applications, the quality

of images is degraded due to the occurrence of mixed

impulse noise during its acquisition, transmission and

storage [6]. Mixed impulse noise is substitutive in nature,

as given in Eq. (1). When mixed impulse noise corrupts a
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biomedical image, the actual value at random pixel f(x, y)

is replaced by either salt and pepper g1(x, y) 2 {Lmin, Lmax}

or the uniform impulse noise g2(x, y) 2 [Lmin, Lmax], where

Lmin = 0 and Lmax = 255 show the lowest and highest

possible intensity values, respectively. However, there are

few pixels in the degraded biomedical image d(x, y) that

are not affected by the impulse noise.

d x; yð Þ ¼
g1 x; yð Þ with probability p=2
g2 x; yð Þ with probability p=2
f x; yð Þ with probability ð1� pÞ

8
<

:
ð1Þ

It is vital to denoise the corrupted biomedical images

before edge detection, segmentation and analysis. This

inherent impulse noise affects the performance of the

biomedical imaging applications. In this paper, we propose

a novel bio-inspired parallel-framework based multi-gene

genetic programming (MGGP) approach. To the best of our

knowledge, MGGP-based bio-inspired approach has not

been employed for the removal of mixed impulse noise

from biomedical images.

The proposed approach exploits the concept of repre-

senting individuals as an ensemble of multiple genes that

process in parallel. The MGGP-based evolutionary process

eliminates the individuals, which contains weak genes.

Only those individuals would survive, which have the fit-

test genes in ensemble. To denoise biomedical images,

MGGP approach is capable of generating multiple genes,

which provides a parallel framework for noise detection

and removal. The proposed approach consists of the noise

detection and removal stages. The noise detection is based

on the parallel framework of multiple genes in which each

gene behaves as a noise detector that discriminates pixels

as noisy or noise-free. Each detector uses the rank-ordered

and robust statistics features that represent impulsive

behavior to decide, and the decisions of all the detectors are

combined using majority voting scheme to generate noise

map. The noise removal stage is also based on the MGGP

estimator to denoise the noisy pixel. The estimator function

efficiently removes the noise from the detected noisy pixels

using statistical features of noise-free pixels in their

neighborhood.

The improved performance of the proposed approach is

demonstrated using various types of biomedical images

and real microscopic images of the wheat rust fungal

spores. The denoising performance is evaluated in terms

of peak signal-to-noise ratio and Structural Similarity

Index Measures. The visual results demonstrated that the

proposed approach has effectively preserved the fine

details in the denoised images corrupted with high-density

noise. The comparative results highlighted the effective-

ness of the bio-inspired parallel-framework based

approach over the other benchmark noise removal

approaches.

The organization of this paper is as follows: Sec-

tion ‘Related Work’ describes the related work. A brief

description of MGGP and its working are given in section

‘Bio-inspired MGGP Approach.’ The proposed bio-in-

spired mixed impulse denoising approach is explained in

section ‘Proposed Bio-inspired Parallel Framework

Approach.’ Results are discussed in section ‘Results and

Discussions’ and concluding remarks are given in section

‘Conclusion.’

Related Work

In the literature, several conventional and biologically

inspired denoising approaches are developed to restore

biomedical images corrupted with impulse noise. It is an

active research area in the field of biomedical image pro-

cessing. The performance of noise removal approach is

based on the nature of the problem domain and the type of

noise present in image. Every approach possesses its own

merits and limitations. The conventional impulse noise

removal approaches process the whole image. These

approaches are based on the standard median filter (SMF)

[5], adaptive median filters (AMF) [6] and their variants.

These filters were easy to implement, but they have limited

performance due to removal of the fine details in the image.

Later on, an impulse noise detection mechanism was

introduced to preserve the details in the image. These

detectors first detect noisy pixels by using some threshold

and then apply filtration techniques to restore them. Some

of the interesting approaches include switching median

filters [7, 8], pixel-wise median absolute deviation filter [9],

directional weighted median filter [10], the rank-ordered

logarithmic difference edge-preserving regularization filter

[11] and robust outlyingness ratio-based nonlocal means

method (ROR-NLM) [12].

Due to effective learning capability of bio-inspired

evolutionary approaches, previously researchers have

developed various serial-framework based biologically

inspired GP models for impulse noise removal from gen-

eral images. These serial-framework based approaches

include universal impulse noise filtering (UINFGP) [13],

impulse noise filtering (INFGP) [14] and impulse noise

detection and estimation (INDE-GP) [15]. Petrovic et al.

[13] developed the impulse noise detection mechanism that

works serially in two stages. Each detection stage consists

of a GP-based developed expression. In these detection

stages, same features are extracted from the noisy image to

classify pixels as noisy or noise-free. In this approach, the

noise removal stage employed the center-weighted median

filter and alpha-trimmed mean filter. Majid et al. [14]

employed the switching median filtering-based detection

mechanism by selecting minimum absolute value of
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convolution kernels. In this work, the convolution values

were obtained using 1D Laplacian operators. Their detec-

tion mechanism uses the image-dependent threshold val-

ues, which limits the detection performance. Then, a serial

GP-based estimator has been developed for the noise

removal stage. In previous work, we developed a GP-based

serial framework ‘‘INDE-GP’’ for impulse detection and

estimation to remove noise from general images [15]. In

biomedical images, the preservation of fine details of the

subject is very important because the occurrence of noise

may cause significant loss of the information and may

affect biological investigations. Keeping in view this, we

have developed a specialized denoising approach for

biomedical images. In the current work, we proposed a

biologically inspired parallel-framework based multi-gene

genetic programming approach (MGGP) for denoising

biomedical images to keep their subject’s fine details well

preserved. The main advantage of the proposed bio-in-

spired parallel-framework based approach is that, during

evolution, it develops multiple noise detectors and esti-

mators simultaneously to give improved denoising perfor-

mance over existing serial-framework based approaches. In

the next section, we explain in detail the biologically

inspired MGGP approach.

Bio-inspired MGGP Approach

The MGGP is a biologically inspired evolutionary learning

approach, which is an advanced version of the conventional

GP. In simple GP, each individual is represented as a single

expression composed of randomly evolved terminal and

function sets [16, 17]. This gives a serial framework to

develop a model or approximate the target function. In

nature, species are composed of a number of genes, and

during mating, they transfer their genes to new generation.

Inspired by biological phenomenon, each individual in

MGGP is represented as a combination of multiple genes

that gives more realistic representation of an individual.

Each gene is represented as a tree structure that is com-

posed of random subsets of terminals and function sets.

MGGP technique is based on the principles of natural

selection and recombination under defined fitness criterion

[18]. It is a powerful bio-inspired approach, which searches

for possible solutions in the defined problem space. To

define the problem space, we first need to select the feature

vector u = [u1, u2,…,uN] and the corresponding target

value t. The feature vector u and randomly generated

constants comprise the terminal set for MGGP. The next

step is to specify the primitive operations as function sets

such as {plus, minus, times, divide, log, sin, cos, tanh, exp,

power, min, max}. The selection of primitive operations is

problem dependent. During MGGP evolutionary process,

first, initial population of individuals are constructed, i.e.,

IGP(u), where u [ <N, <N is N-dimensional real vector.

The individuals or candidate solutions are composed of

multiple tree structures or genes. The fitness scores of

individual candidates are evaluated against the selected

fitness criterion. The fitness score demonstrates how well

MGGP individual moves toward the optimal solution. The

success of evolutionary approach depends upon the accu-

rate design of the fitness function. The newly created

population is developed by applying crossover and muta-

tion operators. The simulation is stopped when the termi-

nation criterion is satisfied. Finally, the best individual in

the population, i.e., IGP(u) ? g, is chosen. In general, the

MGGP representation is established on the evaluation of

multiple genes as tree expressions, i.e., g = [g1, g2,…,gm].

Adaptable tree representation automatically discovers the

underlying useful pattern within data. Each gene of the best

individual contains a subset of the terminal comprising the

useful feature vector and random constants generated with

uniform distribution. The most informative values of

parameters and variables are chosen.

The estimation models developed by MGGP are based

on parallel framework of multiple genes. The aim of esti-

mation models is to find a mapping function that trans-

forms the input parameter g = [g1, g2,…,gm] into target t

by minimizing the error between the predicted f̂ and actual

target value t [18]. For m input genes, the estimated output

f̂ of the model is the weighted sum of the outputs of par-

allel genes, which is given as:

f̂ ¼ z0 þ z1g1 þ � � � þ zmgm ð2Þ

where z0 is the bias term and z1, z2, …, zm are the weights

of genes. The gene weights are the regression coefficients

for each gene of an individual, and they are computed by

least squares method.

Figure 1 depicts a typical representation of an individual

and the corresponding estimation model developed by

MGGP. The individual consists of four parallel genes

g = [g1, g2, g3, g4]. Each gene is a tree structure com-

prising subsets of the terminal and function sets. The ter-

minal set consists of input feature vector u = [u1, u2, u3,

u4] and random constants indicated by squares in the tree

structure. The function set {9, -, ?, sin, cod, max, min,

sqrt} is indicated in circles/ellipses. Figure 1 also shows

the estimation model based on weighted sum of these

parallel genes. The parameters z1, z2, z3, z4 are the

regression coefficients (weights) for each gene, and z0 is

the bias term. The evolved estimation model is a linear

combination of nonlinear transformations of the predictor

variables.

The MGGP-based classification model assigns a specific

class to an input feature vector u. While classification-
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based modeling, the aim is to find the best individual

comprising multiple genes that transforms the given input

u into finite distinct target class by maximizing the class

prediction accuracy. The number of distinct classes

depends on the nature of the problem. This classification

modeling provides a parallel framework in which each

gene of the best individual works as a classifier itself. The

output of each gene is processed to result in a discrete

number by rounding to the nearest integer using the fol-

lowing function, i.e.,

Nc � 1ð Þ 1

1þ expð�giÞ

� �

; i ¼ 1. . .gm ð3Þ

where Nc denotes the number of distinct classes, gi is the

output of the ith gene, and gm represents the maximum

number of genes representing an individual in the popu-

lation. For two-class problem Nc = 2, each gene becomes a

binary classifier. The output of an individual is obtained by

applying the majority voting (MV) rule to the outputs of

each gene, i.e., b̂ ¼ MVðgÞ.
In this work, we exploited the parallel framework of

MGGP-based classification model in our proposed impulse

noise removal method to develop impulse noise detectors.

We also exploited the estimation capability to develop

MGGP-based estimators to remove noise from the cor-

rupted images. The next section explains how our proposed

approach exploited biologically inspired MGGP to denoise

mixed impulse noise from biomedical images.

Proposed Bio-inspired Parallel Framework
Approach

Figure 2 shows the basic block diagram of the proposed

bio-inspired parallel-framework based MGGP approach for

denoising biomedical images. Figure 2a demonstrates

robust statistical feature extraction and development of

MGGP classification model for mixed impulse noise

detection and binary noise map generation. Figure 2b

reveals statistical feature extraction and the development of

MGGP-based estimator for noise removal. The given cor-

rupted image D is compared with binary noise map B̂

generated in Fig. 2a to detect noise-free and noisy pixels.

In case the detected pixel is noisy, it is supplied to esti-

mator of Fig. 2b for removal of noise. Noise-free pixel

directly goes to the denoised image F̂.

Noise Detection Stage

The main objective of the noise detection stage is to

determine the locations of corrupted pixels in the noisy

image. This stage generates a binary noise map B [ {0, 1},

where ‘1’ indicates a noisy pixel and ‘0’ as noise-free

pixel, with same resolution as the noisy image D. The first

step in this stage is the extraction of features (informa-

tion) suitable for the discrimination of pixels in the noisy

image. These features must be the good representative of

impulsive behavior in the image. Therefore, we have

selected the most effective rank-ordered and robust sta-

tistical features [11, 12, 19, 20] and combined them in

the parallel framework of biologically inspired multi-

gene classification model to develop the impulse noise

detection stage.

An important characteristic of impulse noise is its sub-

stitutive nature. When a pixel in an image is corrupted by

impulse noise, its value is completely replaced by the

noise. This substitution makes it different from its neigh-

borhood. Therefore, impulse noise is considered as an

outlier highly deviated from the normal trend in the

neighborhood. To detect outliers, robust statistical mea-

sures such as absolute deviation from median, median of

absolute deviation from median etc. can give useful

information [20]. Rank-ordered statistics is another cate-

gory of statistical measures, which can better represent the

impulsive behavior. An example of such statistics is rank-

ordered absolute difference [19].

These statistical features can give relevant information

regarding the discrimination of pixels as noisy or noise-

Fig. 1 A typical representation

of model evolved in the MGGP

process

Cogn Comput (2016) 8:776–793 779

123



free. To address the issue regarding extraction of infor-

mation from noisy images to discriminate pixels, these

statistical features are extracted from noisy images. These

statistical measures were used in earlier impulse noise

detection methods but in isolated mode along with

thresholding methods. To the best of our knowledge,

combining rank-ordered and robust statistical measures

under bio-inspired parallel framework of multiple genes for

impulse noise detectors development with improved

detection performance has not been reported yet. Given the

noisy image d(x, y), we extract these statistical features for

each pixel by scanning from left to right and top to bottom.

For every pixel in the image, a feature vector comprising

these statistical measures is computed. The computation of

eight features [u1, u2, u3, u4, u5, u6, u7, u8] of a feature

vector u is explained below.

Rank-Ordered Absolute Difference (ROAD) Statistics

(u1): The feature u1 represents the statistics of a pixel in a

3 9 3 neighborhood W3 [19]. The absolute difference

between the surrounding pixels and the centered pixel is

L = |W3 - d(x, y)|. To compute the ROAD for the current

centered pixel, L is sorted in ascending order as ls, and then,

its first four important elements are summed as follows:

u1 ¼
X4

i¼1

lsðiÞ ð4Þ

The high value of ROAD statistics corresponds to an

impulse noise, whereas its low value corresponds to noise-

free pixels.

Rank-Ordered Logarithmic Difference (ROLD) Statistics

(u2): In case of uniform impulse noise, there might be the

Fig. 2 Basic block diagram of the proposed MGGP-based bio-inspired parallel framework: a stage-I represents the impulse noise detection and

b stage-II indicates estimator for noise removal

780 Cogn Comput (2016) 8:776–793
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case where absolute difference between surrounding pixels

and the center pixel is not very significant. Therefore,

another rank-ordered statistical measure ROLD is suggested

that is similar to ROAD, but instead of absolute difference,

log of the difference is computed [11]. The feature u2 rep-

resents the ROLD of a current pixel in a 3 9 3 neighborhood

W3. The logarithmic difference between the surrounding

pixels and the centered pixel isK = (log|W3 - d(x, y)|). To

compute ROLD for the current centered pixel,K is sorted in

ascending order (called ks) and u2 is formed by summing

only first four prominent elements as:

u2 ¼
X4

i¼1

ks ið Þ ð5Þ

ROLD also gives better statistics of impulsive behavior

where the absolute difference between pixels and their

neighbors is small, but the pixel is still noisy. High value

corresponds to an impulsive behavior, whereas its low

value corresponds to noise-free pixels.

Robust Outlyingness Ratio (ROR) Feature (u3): Robust

outlyingness ratio features are the ratio of distance of the

current pixel from its median to the normalized median of

absolute deviation from the median MADN in the 5 9 5

neighborhood W5 of the current centered pixel d(x, y) [12].

The u3 feature is computed as:

u3 ¼
d x; yð Þ �medðW5Þ½ �

MADNðW5Þ
ð6Þ

where med(�) represents the median value of the window.

This measure gives the likelihood of a pixel to be an

impulse noise. A large value of ROR means it is more

likely that the given pixel is corrupted with impulse noise.

Similarly, in the 5 9 5 neighborhood W5, normalized

median of absolute deviation (MADN) and median of

absolute deviation (MAD) features, u4 and u5, respectively,

are computed as:

u4 ¼
MADðW5Þ
0:6745

ð7Þ

u5 ¼ med d x; yð Þ �medðW5Þj jð Þ ð8Þ

whereas absolute deviation in 5 9 5 window, median of

absolute deviation from the median and absolute deviation

in 3 9 3 window are represented by u6, u7 and u8,

respectively. These features are computed as:

u6 ¼ d x; yð Þ �medðW5Þj jð Þ ð9Þ
u7 ¼ med d x; yð Þ �medðW3Þj jð Þ ð10Þ
u8 ¼ d x; yð Þ �medðW3Þj jð Þ ð11Þ

Absolute deviations give useful information about a

pixel whether it is corrupted by impulse noise or not.

Larger deviations indicate that the pixel may be corrupted,

and smaller deviation means that it could be free from

noise. Median of the absolute deviation from the median is

a robust estimator, which is able to correctly estimate the

local image variance in the presence of impulse noise and

preserves fine details in the image [9, 20, 21].

Each image is corrupted with mixed impulse noise

model against various noise densities, and actual binary

noise maps T are generated. Corresponding to each image

pixel, eight-dimensional feature vectors u = [u1, u2,…,u8]

are formed and the training dataset Strnu ¼ uðnÞ; t
ðnÞ
b

� �n oN trn

n¼1

and testing dataset Ststu ¼ uðnÞ; t
ðnÞ
b

� �n oN tst

n¼1
are constructed,

where Ntrn and Ntst represent the total number of training

and testing samples, respectively. Each feature vector

u and its target tb
(n) are taken from the ground truth noise

map T. The Su
trn dataset is used to develop parallel frame-

work of MGGP detector in classification model, and testing

dataset Su
tst is used for the performance evaluation.

For the MGGP evolutionary process, the terminal set is

defined as the eight elements of the feature vector u along

with few randomly selected constants from the uniform

distribution. These constants help in the application of

mutation operator. The function set is also defined as given

in Table 1. It consists of set of operators and functions

applied on the elements of the terminal set. For a nonlinear

problem, the members of the function set must be repre-

sentative of nonlinear behavior. The selection of the fitness

function is the next important step. This function represents

the nature of the problem. For the development of our

impulse noise detector, we aim to maximize the detection

(classification) accuracy fAcc of the detector. Therefore, it is

used as fitness criterion and computed as:

fAcc ¼
TP þ TN

Tm
ð12Þ

where TP represents the number of positive examples cor-

rectly classified, TN represents the number of negative

examples correctly classified and Tm represents the total

number of samples. The dynamic range of fAcc is between

‘0’ and ‘1’. If fAcc = 0, it means that all the samples are

misclassified. If fAcc = 1, it means that all the samples are

correctly classified, which is an ideal situation.

We selected two termination criteria of either maximum

accuracy or the maximum number of generations is

reached. If the termination criterion is not satisfied, the

individuals with fittest genes are selected from the current

population to apply genetic operators. Then, genetic oper-

ators like crossover and mutation are applied to produce

new offspring, and the cycle continues generation-wise.

Once the evolutionary process is stopped, the best indi-

vidual IdtGPðuÞ ! gdt with maximum fitness is selected as

impulse noise detection model. This individual consists of

Cogn Comput (2016) 8:776–793 781
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multiple genes which provide a parallel framework of

impulse noise detectors because each gene is a detector as

well. To classify a pixel as noisy or noise-free, the binary

output of each gene is combined by applying the majority

voting rule to get the output of an individual IGP
dt . The

advantage of this MGGP-based detection is that the best

multi-gene individual provides a parallel framework for the

multiple detectors to work in a single detection stage

instead of multiple detectors (individuals) in multiple

stages as in [13].

In MGGP evolutionary process, each gene of an indi-

vidual is evaluated against fAcc, to maximize accuracy. The

majority voting strategy combines the output of each gene

to give binary output. According to this strategy, the output

of the individual is assigned to that class, which has an

agreement with the output of the majority genes to generate

a binary noise map B̂. In the development of best MGGP

detection model, several setting parameters are required.

These parameters are selected by making various initial

runs and observing the performance for optimal models.

Table 2 provides summary of the best parameters settings

(initialization of control parameters) to get the best mixed

impulse noise detectors.

At the end of MGGP evolutionary process, the best

detection model consists of four genes gdt ¼
½gdt1 ; gdt2 ; gdt3 ; gdt4 �. The developed expressions of each gene

are given in Eqs. (13)–(16). Each gene is composed of the

set and/or subsets of the terminal and function sets. The

outputs of these genes are combined by applying the

majority voting (MV) b̂ ¼ MV gdt1 ; g
dt
2 ; g

dt
3 ; g

dt
4

� �
, where b̂ 2

B̂ is used to classify the pixel as noisy or noise-free. Once

all the pixels in the degraded image D are classified, a

binary noise map B̂ is generated for the next noise removal

stage. To determine detection accuracy, we compared noise

map B̂ with the actual noise map T. Equations (13)–(16)

represent the gene expression developed at the end of GP

simulation, which highlights the structure of the developed

genes in prefix form. Generally, these empirical expres-

sions may not be easily understood by human beings;

however, these machine executable codes can be easily

computed by giving the values of the input features.

Table 1 Function set for mixed

impulse noise detection and

removal stages

Function Arity Description Detection stage Noise removal stage

iflteðu1; u2; u3; u4Þ 4 If u1 B u2, then u3 else u4 Yes No

plusðu1; u2Þ 2 Adds u1 and u2 Yes Yes

minusðu1; u2Þ 2 Subtracts u2 from u1 Yes Yes

timesðu1; u2Þ 2 Multiplies u1 and u2 Yes Yes

rdivideðu1; u2Þ 2 Unprotected division of u1 by u2 No Yes

pdivideðu1; u2Þ 2 Protected division of u1 by u2 Yes Yes

psqrootðu1Þ 1 Protected square root of u1 Yes Yes

plogðu1Þ 1 Protected natural log of u1 No Yes

squareðu1Þ 1 Returns the square of u1 Yes Yes

tanhðu1Þ 1 Returns hyperbolic tangent of u1 No Yes

sinðu1Þ 1 Returns the sine of u1 Yes Yes

cosðu1Þ 1 Returns the cosine of u1 Yes Yes

expðu1Þ 1 Returns the exponential value of u1 Yes Yes

Table 2 MGGP parameters settings for mixed impulse noise detection and removal stages

Parameters Noise detection stage Noise removal stage

Fitness criteria Detection accuracy fAcc Root-mean-squared error fRMSE

Initial population size 150 500

Max generations 300 100

Selection method Tournament Tournament

Multi-gene True True

Maximum no. of genes 6 9

Population initialization method Ramped half and half Ramped half and half

Operator probabilities Variable prob. of crossover/mutation Variable prob. of crossover/mutation

Survival criterion Keep the best individual Keep the best individual

782 Cogn Comput (2016) 8:776–793
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gdt1 ¼ minus u1;minus u4; �0:295391½ �ð Þð Þ ð13Þ

gdt3 ¼ plus cos iflte u5;u6; 6:795888½ �;psqroot sin cos u7ð Þð Þð Þð Þð Þ;u6ð Þ
ð15Þ

gdt4 ¼ plus
plus �0:295391½ �; plus cos cos u6ð Þð Þ; u6ð Þð Þ;
plus cos cos u6ð Þð Þ; u6ð Þ

 !

ð16Þ

Noise Removal Stage

The main objective of noise removal stage is the removal

of corrupted pixels to get the denoised image. In stage-I,

we developed MGGP-based noise detection function for

the generation of binary noise map. Now, we compare the

noisy image D with generated binary noise map B̂ to

classify noisy and noise-free pixels. If the detected pixel is

noisy pixel, then it is fed to noise estimator stage-II for

removal of noise, as shown in Fig. 2b. Noise-free pixels

directly go to the denoised image F̂. The proposed esti-

mator restores the corrupted pixels with a suitable esti-

mated value.

In this stage, we proposed a novel biologically inspired

MGGP-based estimation model for the removal of mixed

impulse noise. The proposed estimator is a function of

noise-free pixels statistics in local neighborhood of a

detected noisy pixel. We adopted the most commonly used

statistical features of mean, median and standard deviation

of noise-free pixels in the neighborhood of a detected noisy

pixel. The output of estimator represents the restored

intensity value of the pixel in the range 0–255 for 8-bit

image. The noise-free pixels in the noisy image are left

unchanged. For noisy pixel, to form a feature vector

v = [v1, v2,…,v6], the statistical features from the noisy

image are extracted using local neighborhood of sizes

3 9 3 and 5 9 5. The values of v1, v2 and v3 representing

the mean, median and standard deviation of noise-free

pixels are computed in 5 9 5 windows. However, in a

3 9 3 window, the features v4, v5 and v6 are computed to

represent the values of mean, median and standard devia-

tion of noise-free pixels.

Similar to detection stage, for the development of the

proposed estimator, we have training and testing phases.

The training dataset is prepared by first locating the noisy

pixels in D from T and calculating the vector v for all noisy

pixels. The six components of v are used as the terminal

set. The corresponding pixels in the original image F form

the desired target value for the training phase. In this way,

the impulse noise estimator is developed on training dataset

of M samples, Strnv ¼ vðmÞ; t
ðmÞ
f

� �n oMtrn

m¼1
, where v(m) repre-

sents the mth feature vector correspond to target t
ðmÞ
f 2 F,

and its performance is assessed using testing dataset

Ststv ¼ vðmÞ; t
ðmÞ
f

� �n oMtst

m¼1
. Here, Mtrn and Mtst represent the

total number of training and testing samples, respectively.

We have used MGGP estimation model for the removal of

noisy pixels. We choose root-mean-squared error (RMSE)

as fitness function, and its value is computed as:

fRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

tf � f̂
� �2

M

s

ð17Þ

where f̂ is the estimated pixel value and tf is the target pixel

value.

For the evolutionary process of the proposed estimator,

the function set and the control parameters of MGGP are

given in Tables 1 and 2, respectively. Note that these

parameters are different than those used for noise detector.

At the end of MGGP process, the best numerical function

(individual) with fittest genes, represented IesGPðvÞ ! ges, in

the population is developed and selected as estimator for

noise removal stage. For removal stage, the individuals

with best genes are developed using v1, v2, v3, v4, v5 and v6
features. These function genes in the prefix form are given

as follows:

gdt2 ¼ sin iflte

iflte u4; u4; 6:795888½ �; u5ð Þ;
pdivide exp exp u4ð Þð Þ; u4ð Þ;

psqroot plus
psqroot u6ð Þ;

square u1ð Þ

 ! !

;

exp pdivide
minus u3; u3ð Þ;

iflte u2; u1; �7:595979½ �; 1:441850½ �ð Þ

 ! !

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

ð14Þ
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ges1 ¼ ðtimesðv6; ðtanhðv4ÞÞÞ
ges2 ¼ ðtimesðv1; ðsquareðtanhðtanhðpsqrootðtanhðv3ÞÞÞÞÞÞÞÞ
ges3 ¼ ðtimesðv6; ðtanhðv2 þ psqrootðtanhðv3ÞÞÞÞÞÞ
ges4 ¼ ðtimesðpsqrootðtimesðv6; tanhðv4ÞÞ; ðv1 � v2ÞÞÞ
ges5 ¼ ðtanhðpsqrootðtanhðtanhðpsqrootðtanhðv2ÞÞÞÞÞÞÞ
ges6 ¼ v6; ges7 ¼ v3; ges8 ¼ v2; ges9 ¼ v1

ð18Þ

It is interesting to note that v5 is not present in the gene

structures of the estimator. It is because of the evolutionary

learning process of MGGP which is based on the principle of

natural selection, i.e., only those individuals in the population

will survive which are fittest and have fittest genes. The best

estimator for noise removal, in the form of above mentioned

best nine genes, for mixed impulse noise is given below.

f̂ ¼ 61:75� 0:5395ges1 � 2:522ges2 þ 0:3997ges3
� 0:1096ges4 � 93:04ges5
þ 0:2074ges6 þ 0:3997ges7 þ 0:5456ges8 þ 1:091ges9

ð19Þ

Performance Metrics

The denoising capability of the proposed approach is

assessed in terms of peak signal-to-noise ratio (PSNR) [22]

and Structural Similarity Index Measure (SSIM) [23].

These metrics represent the quality of the denoised image

with reference to the original noise-free image. PSNR

represents the quality of the denoised image as an

approximation to human perception. A high PSNR value

represents high-quality image, which is computed as:

PSNR ¼ 10 log10
L2

MSE

� �

MSE ¼ 1

mn

Xm�1

x¼0

Xn�1

y¼0

f ðx; yÞ � f̂ ðx; yÞ
	 


2 ð20Þ

where L is the peak value in the F, of spatial resolution

m 9 n. f(x, y) [ F and f̂ ðx; yÞ 2 F̂ represent the pixel of

original and denoised images, respectively. MSE indicates

the mean squared error between the original and denoised

images.

PSNR is a global quality measure. It does not measure

the similarity of the local structures between the original

image and the denoised image. For this purpose, SSIM is

employed to assess the denoising performance, which is

computed between the blocks of F and F̂ as:

SSIMðfb; f̂ bÞ ¼
2lfblf̂ b þ k1

� �
2rfbf̂ b þ k2

� �

l2fb þ l2
f̂ b
þ k1

� �
r2fb þ r2

f̂ b
þ k2

� � ð21Þ

where lfb; lf̂ b represents the mean and r2fb; r
2
f̂ b

represents

the variance of the respective blocks. rfbf̂ b is the covariance

of block fb and f̂ b. k1 and k2 are two variables to stabilize

the weak denominator and their most common values

k1 = 6.50 and k2 = 58.52 are selected. It is to be noted

that this measure requires a noise-free original image to

give information about the preservation of local structures

in the image and its similarity with the original image. Its

value ranges between -1 and 1. Values near to 1 mean it is

more likely that the two compared images have identical

structures and vice versa.

Results and Discussions

In this section, we have reported the experimental results

obtained by our proposed approach for the removal of

mixed impulse noises from biomedical images corrupted

with different noise levels. The proposed method is

developed in MATLAB 7.12 [24] with GPTIPS Toolbox

for multi-gene genetic programming [18]. The develop-

ment of the proposed approach and its performance eval-

uation is carried out using PC with 2.4 GHz Intel Core-i7

processor with 12 GB RAM and Microsoft Windows 8.1

64 bit operating system.

Dataset Description

For the development of the proposed approach, first, we

prepare the training dataset. In this regard, images of flu-

ocel, muscle and nematodo, each of size 256 9 256, are

selected from CVG-UGR database [25]. These images are

corrupted with mixed impulse noise densities of 10, 20, 30,

40 and 50 %. The ground truth noise map of each image is

generated by comparing the original and noisy images.

Further, for detection and estimation stages, we generated

two separate training datasets from these images. Cur-

rently, for detection stage, we used dataset of 983,040

(256 9 256 9 5 9 3) samples of noisy and noise-free

pixels. Here, 5 and 3 represent the variants of noisy image

and total number of training images, respectively. How-

ever, for estimation stage, only noisy pixels of 294,912

(98,304 9 3) samples are used to form the training dataset.

Here, 98,304 and 3 represent the total number of noisy

pixels in each noisy variant of a training image and total

number of training images, respectively. This type of

dataset is prepared by comparing the pixels in the previ-

ously corrupted images of mixed impulse noise densities of

10 % (6554 noisy pixels), 20 % (13,107), 30 % (19,661),

40 % (26,214) and 50 % (32,768) with the ground truth

noise map.
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Several experiments are performed to determine the

optimal settings of noise detector and estimator models as

well as to compare the proposed approach to related state-

of-the-art approaches. We analyzed the experimental

results of the proposed approach using biomedical images

of Algae, C05c, Celulas, Crm04280, Crm05210, Nemacb1,

Nemacl2 and Heart from CVG-UGR database [25]. These

biomedical test images are shown in Fig. 3. Additionally,

the robustness of the proposed method is also evaluated

using the real microscopic images of fungal spores

acquired at National Institute of Lasers and Optronics

(NILOP). In the following subsections, the performance of

the proposed denoising method is discussed. We also

compare the proposed approach with other conventional

and bio-inspired benchmark approaches.

Denoising Performance

To validate the proposed denoising approach, a set of

experiments is carried out on images corrupted with mixed

impulse noise. We compared the noise removal perfor-

mance of the proposed approach with other relevant

approaches of SMF [5], AMF [6], UINFGP [13], INFGP

[14], ROR-NLM [12] and INDE-GP [15]. Figure 4a, b

highlights the comparison, in terms of PSNR, of the pro-

posed approach with other approaches of SMF, AMF,

UINFGP, INFGP, ROR-NLM and INDE-GP for (a) C05c

and (b) Algae biomedical images.

For C05c image, our approach achieved the best PSNR

values in the range 40.80–32.57 dB using 10–50 % noise

densities. Similar results are obtained for Algae image. The

best PSNR values are attained from 38.20 to 30.34 dB

using 10–50 % noise densities. It is observed that at higher

noise densities the proposed approach has better denoising

performance over other approaches. While removing 50 %

noise from C05c, the proposed approach yielded 10.44,

10.86, 26.58, 40.27, 104.78 and 60.91 % improvement than

INDE-GP, ROR-NLM, INFGP, UINFGP, AMF and SMF,

respectively. From Fig. 4a, b, overall, it is observed that

PSNR performance of the proposed approach is better than

SMF, AMF, UINFGP, INFGP, ROR-NLM and INDE-GP

denoising approaches.

The higher PSNR values against different noise densi-

ties highlighted the effectiveness of the proposed denoising

method for the removal of mixed impulse noise from

corrupted images. Further, we inferred that whatever the

noise level, our parallel-framework based denoising

approach always preserves details than the previous

approaches.

Figure 5a, b depicts the SSIM-based performance of the

proposed approach using test images of C05c and Algae.

For C05c image, our approach achieved the best SSIM

values in the range 0.9792–0.8720 using 10–50 % noise

densities. Again for Algae image, the best SSIM values are

attained from 0.9689 to 0.8326 using 10–50 % noise den-

sities. For these images, it is noticed that at higher noise

Fig. 3 Biomedical test images. a Algae, b C05c, c Celulas, d Crm04280, e Crm05210, f Nemacb1, g Nemacl2 and h Heart

Cogn Comput (2016) 8:776–793 785
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densities the proposed approach has better denoising over

previous approaches. While removal of 50 % noise from

C05c, the SSIM improvement by our approach is 11.51,

9.71, 37.37, 32.50, 759.96 and 135.23 % more than INDE-

GP, ROR-NLM, INFGP, UINFGP, AMF and SMF,

respectively. From Fig. 5a, b, overall it is observed that

SSIM of the proposed approach at higher noise density is

always higher than other denoising approaches. The pro-

posed approach is very effective in preserving the local

structures in the denoised images as compared to other

approaches.

In Table 3, we carried out a performance comparison, in

terms of PSNR and SSIM measures, of the proposed

approach with previous approaches for denoising of mixed

impulse noise of different test images. The proposed

approach has yielded an improved overall average PSNR of

33.00 (dB). We observed that our MGGP approach has an

improved average PSNR of 61.45, 20.70, 14.99, 13.40,

12.02 and 5.00 % than other approaches AMF, SMF,

UINFGP, ROR-NLM, INFGP and INDE-GP, respectively.

On the other hand, the proposed approach has achieved an

improved overall average SSIM value of 0.9192. As a result,

in terms of overall average SSIM, our approach has provided

145.45, 37.77, 16.37, 9.16, 9.10 and 4.37 % higher than

other approaches AMF, SMF, ROR-NLM,UINFGP, INFGP

and INDE-GP, respectively. Overall, Table 3 showed that

the proposed bio-inspired parallel-framework based

approach has demonstrated better results over existing

serial-framework based and conventional approaches.

Actually, the main advantage of the proposed approach is

that, during evolution, it develops multiple noise detectors

and estimators simultaneously to find the optimal solution;

consequently, we obtained improved denoising perfor-

mance. We summarized that the proposed approach is very

effective for the removal of mixed impulse noise.

Figures 6, 7 and 8 highlight the subjective visual quality

of the denoised images of Celulas, Crm05210 and C05c

corrupted by selected mixed impulse noises of 30, 40 and

50 %, respectively. These corrupted images are processed

using the proposed SMF, AMF, UINFGP, INFGP, ROR-

NLM and INDE-GP approaches. For Celulas image, the

approach has achieved the best visual quality performance

Fig. 4 Comparative analysis of proposed approach with other benchmark approaches in terms of PSNR: a C05c and b Algae

Fig. 5 Comparative analysis of the proposed bio-inspired approach with other benchmark approaches in terms of SSIM: a C05c and b Algae
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Fig. 6 Visual comparison of mixed impulse noise removal: a Celulas
image, b 30 % corrupted image (PSNR = 12.17 dB, SSIM = 0.0677),

c proposed approach (PSNR = 31.82 dB, SSIM = 0.9277), d ROR-

NLM (PSNR = 27.74 dB, SSIM = 0.7594), e UINFGP (PSNR =

27.65 dB, SSIM = 0.8283), f INFGP (PSNR = 28.97 dB, SSIM =

0.9000) and g INDE-GP (PSNR = 30.39 dB, SSIM = 0.8886)

Fig. 7 Visual comparison of mixed impulse noise removal: a Crm05210
image, b 40 % corrupted image (PSNR = 11.09 dB, SSIM = 0.0468),

c proposed approach (PSNR = 31.80 dB, SSIM = 0.9404), d ROR-

NLM (PSNR = 26.34 dB, SSIM = 0.7693), e UINFGP (PSNR =

25.80 dB, SSIM = 0.8540), f INFGP (PSNR = 28.03 dB, SSIM =

0.8482) and g INDE-GP (PSNR = 29.27 dB, SSIM = 0.9059)
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of PSNR 31.82 dB and SSIM 0.9277. INDE-GP approach

followed our approach and attained PSNR 30.39 dB and

SSIM 0.8886. For Crm05210 image, our approach

achieved the best PSNR and SSIM values of 31.80 dB and

0.9404, respectively. For C05c image, our approach yiel-

ded the best visual quality performance with PSNR

32.57 dB and 0.8720 SSIM values. INDE-GP approach

followed by our approach and achieved the values of PSNR

29.49 dB and SSIM 0.7825. It is observed from restoration

results of Figs. 7, 8 and 9 that for different noise densities

our proposed evolutionary approach suppresses the noise

impulses effectively. This analysis highlighted the

improved performance of the proposed approach using

PSNR and SSIM visual qualities while diligent image

details adequately for a range of noise densities. This

analysis highlights the effectiveness of the proposed

approach for the removal of mixed impulse noise from the

corrupted images. Hence, it is concluded that proposed

approach, in terms of PSNR and SSIM, outperforms over

all other approaches.

It is observed that the quality of a denoised image is

mostly dependent on the improved performance of the

detection stage and the estimation stage of the proposed

approach. This improvement in both detection and esti-

mation stages is due to the use of parallel-framework based

MGGP approach, which effectively search for possible

solutions in the problem space and to exploits the local

statistics of the noisy images.

To further validate the robustness of the proposed

approach, we applied it on the corrupted biomedical ima-

ges. Mixed impulse noise removal is vital in biomedical

imaging applications to improve and regain fine details that

could be unseen in the data. We assessed the improved

performance of our approach on several biomedical ima-

ges. However, in Fig. 9, we report the selected results for

MRI, X-ray, Heart and Algae images. In addition, the

proposed method is also applied to obtain clean micro-

scopic images of fungal spores causing wheat rust in wheat

plants. The visual results confirmed the robust performance

of our proposed approach.

The original biomedical images of MRI, X-ray, Heart

and Algae are shown in Fig. 9a, d, g, j, respectively. Fig-

ure 9b, e shows the medical images of MRI and X-ray

corrupted with low noise densities of 15 and 20 %,

respectively. Whereas, Fig. 9h, k shows the noisy images

of Heart and Algae images highly corrupted with 65 and

60 % of mixed impulse noise, respectively. Due to noise,

Fig. 8 Visual comparison of mixed impulse noise removal: a C05c

image, b 50 % corrupted image (PSNR = 10.02 dB, SSIM =

0.0178), c proposed approach (PSNR = 32.57 dB, SSIM = 0.8720),

d ROR-NLM (PSNR = 29.38 dB, SSIM = 0.7948), e UINFGP

(PSNR = 23.22 dB, SSIM = 0.6581), f INFGP (PSNR = 25.73 dB,

SSIM = 0.6348) and g INDE-GP (PSNR = 29.49 dB, SSIM =

0.7825)

cFig. 9 Biomedical images corrupted by mixed impulse noise: a MRI

image; b 15 % corrupted Image; c proposed approach; d X-ray

image; e 20 % corrupted image; f proposed approach; g Heart image;

h 65 % corrupted image; i proposed approach; j Algae image; k 60 %

corrupted image; and l Proposed approach
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the quality of the original biomedical images is degraded as

depicted by low PSNR values of 12.51 dB (SSIM: 0.0802),

12.15 dB (SSIM: 0.1709), 7.25 dB (SSIM: 0.0017) and

9.83 dB (SSIM: 0.0159) for MRI, X-ray, Heart and Algae

images, respectively. It is to be noted that in these cor-

rupted images the subject is difficult to visualize due to

distortion in the local structures caused by the presence of

low- and high-density noise.

Figure 9c demonstrates the denoising performance of

our method for the degraded MRI image. In the restored

image, the subject of the image is clearly visible and details

are well preserved. Our method has effectively suppressed

the noise by yielding improved value of PSNR from

12.51 dB (SSIM: 0.1709) to 39.12 dB (SSIM: 0.9825).

Figure 9f highlights the denoising performance for the

corrupted X-ray image. In the restored image, the smooth

regions and boundaries of the subject are well preserved.

The proposed method has suppressed the noise by giving

improved PSNR value from 12.15 dB (SSIM: 0.1709) to

26.92 dB (SSIM: 0.9315). Figure 9i demonstrates the

denoising performance of the proposed MGGP for highly

corrupted Heart image. In the restored image, the veins and

arteries of the heart are clearly visible. Our method has

effectively suppressed high-density noise by yielding

improved value of PSNR from 7.25 dB (SSIM: 0.0017) to

25.88 dB (SSIM: 0.6400). Similarly, in Fig. 9l the cor-

rupted Algae image is denoised effectively. It can be

observed that the proposed method has preserved minute

edges and fine details in the restored Algae image. The

noise is reduced, and the value of PSNR measure is

improved from 9.83 dB (SSIM: 0.0159) to 28.33 dB

(SSIM: 0.7350). In summary, the proposed method is

capable of removing low- and high-density mixed impulse

noise effectively while preserving the fine image details

and has shown consistent results. Our bio-inspired

approach obtained better results, because it automatically

creates wider search space to find the near-optimum solu-

tion for solving denoising problem.

Further, experimentation is carried out to denoise the

real-world microscopic images of fungal spores

Fig. 10 a–c Noisy microscopic images obtained while germination of fungal spores for wheat rust detection. d–f Denoised microscopic images

by the proposed approach
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germination provided by National Institute of Lasers and

Optronics (NILOP). Figure 10a–c highlights these noisy

microscopic images in which the subject of the image is not

very clear. When these images were processed by our bio-

inspired denoising method, the subject of these images has

become clearly visible as shown in Fig. 10d–f. Figure 10d

shows the presence of fungal spores. Figure 10e shows a

single fungal spore. In Fig. 10f, the germination tube

between two fungal spores is clearly visible, which was not

visible in its noisy image. These results show the effec-

tiveness of the proposed approach for different biomedical

images. In summary, the improved performance of our

approach is due to the enhanced noise detection and

removal stages developed by exploiting the parallel-

framework of multi-gene genetic programming. The pro-

posed parallel-framework based MGGP approach has

ability to search automatically for all possible solutions in

the defined problem space and converges to near-optimum

solution for solving denoising problem. Moreover, during

evolution process it uses progressively natural selection,

crossover, mutation, genes copies/deletion and specific

procedures of developmental biology.

Conclusion

In this paper, we explored the capabilities of bio-inspired

parallel-framework based MGGP approach to denoise

biomedical images. Our biologically inspired approach has

achieved an improved denoising performance by exploiting

the parallel framework of multiple genes modeling capa-

bility in noise detection and removal stages. In the detection

stage, we developed MGGP-based noise detector using

rank-ordered and robust statistical features to effectively

locate the corrupted pixels and generate noise map. In the

noise removal stage, the detected noisy pixels are denoised

by developing a bio-inspired MGGP-based estimator using

statistical features of only noise-free pixels in their neigh-

borhood. The experimental results highlighted that the

proposed approach has produced high-quality denoised

images as compared to well-known benchmark approaches

of SMF [5], AMF [6], UINFGP [13], INFGP [14], ROR-

NLM [12] and INDE-GP [15]. The significant feature of the

proposed approach is that it does not require an image-de-

pendent threshold. However, various conventional denois-

ing approaches need to select image dependent manually

adjustable thresholds. The comparative results have

demonstrated that our approach has effectively preserved

the subject’s fine details in the image corrupted with high-

density noise. We evaluated the performance of the pro-

posed approach for several benchmark biomedical images of

Algae, C05c, Celulas, Crm04280, Crm05210, Nemacb1,

Nemacl2, MRI, X-ray, Heart and microscopic images of

fungal spores causing wheat rust. The parallel-framework

based learning approach has highlighted an improved per-

formance over several existing benchmark approaches.

We have also demonstrated the effectiveness of the

proposed approach by denoising fungal spores germination

images that are used in the wheat rust detection application.

These denoised microscopic images would play vital role

in understanding the germination of fungal spores and,

hence, improved the wheat rust detection performance. In

future, we intend to cooperate with medical centers and

laboratories to deploy the proposed approach-based

denoising system to improve the quality of biomedical

images. This system would be useful for disease diagnosis

and treatment. It is anticipated that our approach would be

useful for the denoising of medical images from other

modalities as well.
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