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Abstract Recently, a simple and efficient learning algo-

rithm for single hidden layer feedforward networks

(SLFNs) called extreme learning machine (ELM) has been

developed by G.-B. Huang et al. One key strength of ELM

algorithm is that there is only one parameter, the number of

hidden nodes, to be determined while it has the signifi-

cantly low computational time required for training new

classifiers and good generalization performance. However,

there is no effective method for finding the proper and

universal number of hidden nodes. In order to address this

problem, we propose a self-adaptive extreme learning

machine (SELM) algorithm. SELM algorithm determines

self-adaptively the number of hidden nodes and constructs

Gaussian function as activation functions of hidden nodes.

And in this algorithm, rough set theory acts as the pre-

treatment cell to eliminate the redundant attributes of data

sets. Then, affinity propagation clustering (AP Clustering)

is used to self-adaptively determine the number of hidden

nodes, while the centers and widths of AP clustering are

utilized to construct a Gaussian function in the hidden layer

of SLFNs. Empirical study of SELM algorithm on several

commonly used classification benchmark problems shows

that the proposed algorithm can find the proper number of

hidden nodes and construct compact network classifiers,

comparing with traditional ELM algorithm.

Keywords Extreme learning machine � Self-adaptive
extreme learning machine � Rough set theory � AP
clustering

Introduction

Feedforward neural networks have been extensively stud-

ied and used in many applications for their learning capa-

bilities and generalization ability, such as classification [1],

regression [2], pattern recognition [3], machine learning

[4], control [5] and fault diagnosis [6]. However, the con-

ventional learning algorithms for SLFNs have some

inherent drawbacks: lower learning efficiency, being easy

to lose in the local minimum and overfitting. In order to

overcome these drawbacks, Huang et al. [7] proposed a

novel learning algorithm called extreme learning machine

(ELM) for single hidden layer feedforward networks

(SLFNs). In ELM algorithm, the weights linked the input

layer and the hidden layer and the thresholds of hidden

neural nodes are unnecessarily tuned iteratively in the

training process but randomly generated at the beginning of

learning [8]. The unique optimal solution can be obtained

as long as the number of hidden neurons is determined [9].

Recently, many researchers regard ELM as a learning

method for multi-class classification, regression and pattern

clustering [10–12]. ML-ELM proposed by Kasun et al. [13]

stacks extreme learning machine-based autoencoder (ELM-

AE) to create a multilayer neural network. Bai et al. [14]

presented sparse ELM which can reduce storage space and

testing time significantly. Huang et al. [15] also introduced

manifold regularization framework into the ELM model

and proposed semi-supervised ELM (SS-ELM) and unsu-

pervised ELM (US-ELM). And Lin [16] presented the

theoretical analysis of ELM. Compared with other
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conventional training algorithms for neural networks, ELM

algorithm has lots of advantages, such as fast learning

speed and good generalization performance.

However, in the standard ELM algorithm, the number of

hidden neurons must be determined in advance even

though there is no priori knowledge about the classification

problem being solved. To overcome above problems, the

pruned-ELM (P-ELM) and the incremental ELM (I-ELM)

algorithms were proposed as the typical methods. In view

of too few/many hidden nodes employed that would lead to

underfitting/overfitting issues in pattern classification,

Rong et al. [17] presented a pruned-ELM (P-ELM) algo-

rithm as a systematic and automated approach for design-

ing ELM network. P-ELM began with a large initial

number of hidden nodes and then removed the irrelevant or

lowly relevant hidden nodes by considering their relevance

to the class labels during learning. As a result, the archi-

tectural design of ELM can be automated. On the other

hand, Huang et al. [18] proposed an I-ELM algorithm to

construct an incremental feedforward network. I-ELM

randomly added the hidden layer nodes one by one and

froze the output weights of the existing hidden nodes when

a new hidden node was added. I-ELM is not only efficient

for SLFN with continuous activation functions (including

differentiable), but also efficient for SLFNs with piecewise

continuous activation functions (such as the threshold). In

addition, on the basis of I-ELM, the convex I-ELM (CI-

ELM) [19] and enhance I-ELM (EI-ELM) [20] algorithms

were presented. To sum up, P-ELM and I-ELM algorithms

need to adjust continuously the number of hidden neurons

until they find the suitable structure of ELM. However, the

adjustment procedure consumed more time. Moreover,

when applying to different classification problems, the

number of hidden neurons had to adjust again. So, how to

find a method to self-adaptively determine the number of

hidden neurons of ELM is significant and worth

researching.

In this paper, we propose an improved algorithm called

self-adaptive extreme learning machine (SELM) which

self-adaptively determines the number of hidden neurons.

In SELM, the number of hidden nodes is self-adaptively

determined by the affinity propagation (AP) clustering

algorithm while the centers and widths of AP clustering are

utilized to construct Gaussian function, which replaces

traditional activation functions (sigmoid, sine and cosine

functions) of the hidden layer in ELM. SELM dramatically

increases the network’s learning speed, successfully avoids

iteration and falling into local minimum and produces good

generation performance, robustness and controllability.

Experimental results indicate that SELM spends less

training time and test time and improves training accuracy

and testing accuracy compared with conventional ELM

algorithm.

This paper is organized as follows. Section ‘‘Review of

ELM’’ provides a brief review of the ELM. The proposed

SELM algorithm is then described in section ‘‘Proposed

ELM.’’ Section ‘‘Experiments and Analyses’’ presents a

quantitative performance comparison of SELM to other

algorithms based on commonly used classification prob-

lems. Finally, the conclusions are summarized in section

‘‘Conclusions.’’

Review of ELM

ELM algorithm is mainly used for training the SLFNs. It

sets the appropriate number of hidden nodes by continuous

testing and randomly assigns the input weights and

thresholds of the hidden layer. As a result, the output of the

hidden layer is calculated by the activation function of

hidden nodes. Then, the weights connecting the hidden

layer and the output layer can be directly obtained through

mathematical transformation. The learning process of ELM

performs only once through this transformation and does

not need any iteration. Therefore, ELM algorithm can learn

significantly faster compared with the traditional back

propagation algorithm (usually more than 10 times).

In the practical applications, the SLFNs needed to be

trained by ELM algorithm firstly. Then, it can be used to

predict the testing patterns. The SLFNs are trained by input

samples including some influencing factors and their

classes. When ELM algorithms are training the SLFNs, its

learning process can be accomplished without any itera-

tion. When the trained SLFNs are used to predict, it is

capable of forecasting similar patterns according to its

learning model.

The basic principle of ELM is outlined as follows.

A SLFN model with N arbitrary distinct samples (xi,

ti) 2 Rn 9 Rm (i = 1, 2, …, N), where ~N represents the

number of hidden nodes. Through activation function f(x),

the output of the hidden layer can be generated as follows.

X~N

i¼1

bifiðxjÞ ¼
X~N

i¼1

bif ðai � xj þ biÞ ¼ tj; j ¼ 1; . . .;N ð1Þ

where ai = [ai1, ai2, ai3,…, aim]
T is the input weight vector

linking the input layer to the ith hidden node; bi denotes the

bias of the ith hidden node; bi = [bi1, bi2, bi3, …, bim]
T is

the output weight vector linking the ith hidden node to the

output layer; and ai � xj denotes the scalar product of ai and
xj. The activation function f(x) is usually chosen from

sigmoid, sine, RBF functions, etc.

Equation (1) can be succinctly written as.

Hb ¼ T ð2Þ

where
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It has been rigorously proved that SLFN is able to

approximate any continuous functions with randomly

assigned input weights and bias of hidden nodes while

maintaining unchanged during training process, as long as

the activation function f(x) is infinitely differentiable in any

interval and the number of hidden nodes is sufficient

(generally ~N � N, in order to ensure the good general-

ization performance of the SLFN) [8].

After the input weights and bias of hidden nodes are

randomly assigned, the output matrix of hidden layer H can

be calculated by the input samples. Therefore, to train the

SLFNs is equivalent to calculating the least-square (LS)

solution of the linear equations.

min
b

Hb� Tk k ð3Þ

The LS solution of the linear Eq. (3) is

bb ¼ HþT ; ð4Þ

where H? is the Moore–Penrose generalized inverse of

output matrix of hidden layer H. Typically, the optimal

solution bb contains the following features:

1. The algorithm can achieve the smallest training error;

2. The minimum paradigm of output connection weights

and the optimal generalization capability of the SLFNs

can be obtained;

3. The uniqueness of bb avoids the networks getting stuck

in the local optimal solution.

In summary, the ELM algorithm for the SLFNs with

training samples (xi, ti) 2 Rn 9 Rm (i = 1, 2, …, N), ~N
hidden nodes and the activation function f(x) is divided into

three steps as follows.

Step 1: Determine the number ~N of hidden nodes and

randomly assign the input weight vector ai and the bias

bi of hidden nodes (i = 1, 2, …, N).

Step 2: Calculate the output matrix Hof the hidden layer.

Step 3: Calculate the output weights bb according to

Eq. (4).

In conclusion, ELM is an extraordinary simple and fast

learning algorithm which needs only one iteration during

the learning processing. Compared with the traditional BP

algorithm, ELM is capable of initializing randomly the

input connection weights and thresholds of hidden nodes.

Besides, the number of hidden nodes is the only parameter

which needs to be adjusted in ELM algorithm, and it can be

determined by constantly updating in practical applica-

tions. Substantial experiment on the standard UCI date sets

indicates that the ELM algorithm learns fast and provides

better generalization performance than the traditional BP

algorithm and the model of support vector machine.

Proposed SELM

In this section, firstly, in order to simplify data sets and

improve the generalization ability of SELM algorithm,

rough set theory (RST) acts as the pre-treatment cell of

SELM algorithm to eliminate the redundant attributes of

data sets. Then, AP clustering is used to determine the

number of hidden nodes and construct Gaussian function as

activation functions of hidden nodes, which are transferred

to ELM algorithm to improve its self-adaptive ability.

Attribute Reduction of Data Sets

In most of data sets, there are some attributes which do not

influence the classification results. So, these attributes can

be removed from the data sets. But, how to find these

attributes? Fortunately, RST is a useful way. RST intro-

duced by Pawlak [21] is a mathematical tool to deal with

vagueness and uncertainty of information. It has proved to

be a powerful tool for uncertainty, and it has been applied

to data reduction, rule extraction, data mining and granu-

larity computation [22]. RST applies the unclear relation

and data pattern comparison based on the concept of an

information system with indiscernible data, where the data

are uncertain or inconsistent [23].

In RST, redundancy attributes are reduced through the

algorithm of attribute reduction (AR). The procedure of AR

is as the follows. Firstly, the attributes of data sets are

divided into two parts: condition attributes and decision

attributes. Then, for each attribute of condition attributes,

mark it when it does not influence the classification of data

sets according to the condition attributes except it and

decision attributes. After that, eliminate all of the marked

condition attributes. Finally, the rest attributes and decision

attributions compose the reduced data sets.

Determine the Number of Hidden Nodes

In ELM algorithm, the number of hidden nodes is usually

determined randomly or artificially, which leads that ELM

algorithm cannot develop its greatest ability. So, how to

automatically determine the number of hidden nodes is

very important. Similar to radial basis function neural
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network (RBFNN), the performance of ELM algorithm

critically replies on the selection of the number of hidden

nodes. In RBFNN, K-means clustering, fuzzy K-means

clustering and hierarchical clustering are the conventional

strategies to determine the RBF centers of neurons in

hidden layer. In our early work [1], AP clustering was used

to determine the number, centers and their widths of RBF

units which proved to be a more powerful method than

above clustering methods. So, in this paper, AP clustering

is adopted again to determine the number of hidden nodes

in SELM algorithm.

AP clustering, proposed by Frey and Dueck [24], is an

efficient approach based on message passing and has been

successfully applied to various areas such as clustering

images of faces, detecting genes and searching optimal

airlines. AP clustering does not require priori knowledge. It

simultaneously considers all sample points as potential

clustering centers in the beginning, which are called cluster

representatives or ‘‘exemplars’’ in the algorithm. AP carries

out clustering according to the similarity between N sam-

ples and typically takes Euclidean distance as the mea-

surement of similarity between any pair of sample points,

which is set as a negative square of the distance. The

similarity between any pair of N data points forms N 9 N

similarity matrix. For the data point xi and xj, the similarity

s(i, k) is calculated as Eq. (5):

sði; jÞ ¼ � xi � xj
�� ��2 ð5Þ

AP clustering utilizes s(i, k) to indicate how well the data

point xj is suited to be the exemplar for the date point xi. Each

value of s(k, k) on the diagonal of similarity matrix S, called

preference p, denotes the evidence for how well suited the

date point xk is to serve as the exemplar. The raise of the value

of p will increase the possibility that point xk becomes an

exemplar. Preference p should be initially set equivalent to

each other since AP considers that all data points have

identical possibilities to be an exemplar. As is well known,

preference p influences directly the number of clustering.

Smaller value of p results in a smaller number of clusters.

And contrarily, larger value of that results in a larger number

of clusters. In practical application, the value of p is ordi-

narily set as themedian of the similaritymatrix, which results

in a moderate number of clusters.

The algorithm determining the number of hidden nodes

based on AP clustering is as the follows.

Step 1: Initialization. Initialize the similarity matrix

S according to the similarity between data points and set

the value of p as the median of S. Define the maximum

number of iterations MaxN and set the iteration variable

t as zero.

Step 2: Calculate for every data point k(k = 1, 2 …,

N) according to the procedures of steps 3–5.

Step 3: Calculate the responsibility and availability of

data points according to the following equations:

Rði; kÞ ¼ Sði; kÞ �max
j

Aði; jÞ þ Sði; jÞf g

j ¼ 1; 2; . . .;N but j 6¼ i; k
ð6Þ

Aði; kÞ ¼ min 0;Rðk; kÞ þ
X

j

maxð0;Rðj; kÞÞ
( )

j ¼ 1; 2; . . .;N but j 6¼ i; k

ð7Þ

Rðk; kÞ ¼ PðkÞ �max
j

Aðk; jÞ þ Sðk; jÞf g

j ¼ 1; 2; . . .;N but j 6¼ k
ð8Þ

Step 4: Evaluation. Judge if point k is the center of

clustering, using the Eq. (9):

Rðk; kÞ þ Aðk; kÞ[ 0 ð9Þ

Step 5: Iteratively update R(i, k) and A(i, k) as follows:

Rðiþ 1; kÞ ¼ ð1� lamÞ � Rði; kÞ þ lam � Rði� 1; kÞ
ð10Þ

Aðiþ 1; kÞ ¼ ð1� lamÞ � Aði; kÞ þ lam � Aði� 1; kÞ
ð11Þ

where lam is the damping factor of AP clustering, whose

value is 0.5.

Step 6: Refresh t as t ? 1. If the value of t reaches the

maximum number of iterations or terminal conditions

are satisfied, output the number of clusters h, the centers

ci(i = 1, 2, …, h) of clusters and their widths ri(i = 1,

2, …, h). Otherwise, it is turned to Step 2.

Activation Function of Hidden Nodes

In ELM algorithm, activation functions mainly include

sigmoid function, sine function, signum function and radial

basis function, which are expressed by Eqs. (12)–(15),

respectively [8].

f ðxÞ ¼ 1

1þ e�x
ð12Þ

f ðxÞ ¼ sinðxÞ ð13Þ

f ðxÞ ¼ 1 x� 0

0 x\0

�
ð14Þ

f ðxÞ ¼ e�x2 ð15Þ

These functions guarantee the effective operations of ELM

algorithm. However, they do not utilize some hidden

information of data sets. According to the results of AP

clustering, in SELM algorithm, Gaussian basis function is

constructed and adopted as activation functions of hidden

nodes, which is as follows.
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/iðxÞ ¼ exp � x� cik k2

2r2i

 !
i ¼ 1; 2; . . .; h ð16Þ

where kx - cik is the Euclidean distance between the input

vector x and the center ci which is one of the outputs of AP

clustering and ri represents the width of the ith node in the

hidden layer. Gaussian function, which has the property of

noise suppression, is bounded, strictly positive and con-

tinuous [1].

Description of SELM Algorithm

The algorithm of SELM is as follows:

Step 1: Attribute reduction. Utilize the attribute reduc-

tion algorithm to reduce data sets, so as to remove their

redundant attributes.

Step 2: AP clustering. Cluster the training samples with

AP algorithm and calculate the centers and widths of

clustering, which are used to be the centers and widths of

the activation function in the hidden layer in SLFNs.

Step 3: Calculate the number of clusters and determine

automatically the number of hidden node ~N in SLFNs

according to it. Randomly assign hidden node bias

biði ¼ 1; 2; . . .; ~NÞ.
Step 4: Construct Gaussian function with the centers and

widths of clustering and consider it as the activation

function in hidden layer. Evaluate the hidden layer

output matrix H with reduced training samples.

Step 5: Compute the output weight b according to

Eq. (4).

Step 6: Calculate the testing error and accuracy of

trained SLFNs with testing samples.

Experiments and Analyses

Description and Reduction of Data Sets

The selected data sets from UCI machine learning reposi-

tory include Iris, Wine, Zoo, Heart Disease, Ionosphere,

Cleveland, Wisconsin Breast Cancer Diagnostic (abbrevi-

ated to WBCD) and Pima Indian Diabetes (abbreviated to

Pima) data sets. The basic characteristics of those data sets

and the number of reduced attributes are given in Table 1.

Experiments for Determining the Number of Hidden

Nodes

In this section, the experiments for determining the number

of hidden nodes of SLFNs are presented. When ELM

algorithm is applied, the number of hidden nodes is the

only parameter required to be artificially designed. Gen-

erally, the number of hidden nodes is gradually increased

in a relatively large range in order to evaluate the gener-

alization performance of the networks, and finally the

nearly optimal numbers of hidden nodes for each different

data set are selected. Figures 1 and 2 present the classifi-

cation accuracy of the trained networks when the number

of hidden nodes varies from 1 to 50.

As given in Table 2, the nearly optimal numbers of

hidden nodes for each data set are selected in accordance

with Figs. 1 and 2 when the curves of the classification

accuracy are relatively stable.

On the other hand, we cluster the reduced training

samples through AP clustering. The numbers of clusters

with different values of P are presented in Table 3. From

the comparison of Tables 2 and 3, we can find that the

numbers of clusters through AP clustering are quite close

to their manually selected numbers of hidden nodes given

in Table 2 if the preference P is set as median(s)/2 for the

sizes of the first four data sets are relatively small. For

numbers of clusters of the latter four data sets given in

Table 3, however, for the sizes of them being relatively

large, the numbers of clusters are near to their manually

selected numbers of hidden nodes given in Table 2 if the

preference P is set as median(s). The above conclusions

will be verified further in our subsequent experiments.

Experimental Results of ELM Algorithm and SELM

algorithms

In this section, to each data set, we utilize ELM algorithm

to train and test the SLFNs with the corresponding selected

numbers of hidden nodes shown in section ‘‘Experiments

for Determining the Number of Hidden Nodes.’’ The

activation functions of ELM and SELM are all Gaussian

function. For ease of comparison, we compare the ELM

and SELM algorithms in the aspects of time expenditure

and classification accuracy in order to evaluate the feasi-

bility and reliability of SELM algorithm. The experimental

results of ELM and SELM algorithms for the eight data

sets are presented in Tables 4 and 5, respectively.

Table 4 shows that there is little difference between

training and testing time of the two algorithms while they

have the same number of nodes in the hidden layer. The

ELM algorithm spends time slightly less than SELM

algorithm for the AR algorithm in the SELM algorithm has

little time consumption.

From Table 5, we find that the training accuracy of the

SELM algorithm is higher than that of the ELM algorithm

on most data sets except the Wine and Heart data sets and

that all testing accuracy of the SELM algorithm is also

higher than that of ELM algorithm except the Wine data

sets. Those results indicate that SELM algorithm provides

724 Cogn Comput (2016) 8:720–728
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better generalization performance and higher reliability

than ELM algorithm.

Experimental Results of SELM Algorithm

For ease of comparison and analysis, the data sets

employed in previous experiments are still utilized in the

experiments in this section. After AP clustering, we can

calculate the number, centers and widths of clusters and

use these parameters to set the number of hidden nodes and

the centers and widths of activation functions in the SELM

algorithm. Next, we compute the hidden layer output

matrix H of all training samples through the Gaussian

activation functions, train the networks with the SELM

algorithm and evaluate the connection weights connecting

the hidden layer and the output layer. Finally, we test the

trained network using reduced testing samples. The results

of training and testing in SELM algorithm are given in

Tables 6 and 7, respectively.

Table 6 shows the comparison of training and testing

time of SELM algorithm using different values of

P. Overall, Table 6 indicates that SELM algorithm spends

little training and testing time under any circumstance. The

number of clustering centers through AP clustering will

increase along with the increment of the value of P, and the

large values result in a bit more training time than the small

values do, while the testing time differs little. Comparing

the training and testing time of ELM algorithm in Table 4,

we can find that there is little difference between the

training and testing time of the ELM algorithm and the

SELM algorithm.

Table 7 presents the training and testing accuracy of the

SELM algorithm using different values of P. From

Table 7, we find that when the sizes of data sets (the first

Table 1 Characteristics of data sets

Data sets Number of samples Number of condition

attributes

Number of decision

attributes

Number of reduced

attributes
Training

samples

Testing

samples

Iris 75 75 5 1 4

Wine 89 89 13 1 2

Heart 135 135 13 1 4

Zoo 107 107 16 1 6

Ionosphere 175 176 34 1 3

Cleveland 151 152 13 1 4

WBCD 234 235 30 1 2

Pima 384 384 8 1 3
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Fig. 1 Classification results of ELM with different numbers of

hidden nodes based on the first four data sets
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Fig. 2 Classification results of ELM with different numbers of

hidden nodes based on the last four data sets
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four data sets) are a bit small, the training accuracy and

testing accuracy of SELM algorithm are relatively high if

the value of P is set as median(s)/2. The reason may be that

fewer sizes of data sets may lead to fewer sample instances

with similar patterns. It is more appropriate to select more

clustering centers to represent the original data sets.

However, when the sizes of data sets (the latter four data

sets) are a bit large, the training accuracy and testing

accuracy of the SELM algorithm are relatively high if the

value of P is set as median(s). The reason may be that

larger sizes of data set will lead to relatively more sample

instances with similar patterns. It is more appropriate to

choose moderate number of clustering centers to represent

the original data sets. However, overly small number of

clustering centers will affect the classification performance

of the SLFNs.

The above results validate the previous analysis in

section ‘‘Experiments for Determining the Number of

Hidden Nodes.’’ The number of clustering centers auto-

matically obtained through AP clustering in our experi-

ments is basically equivalent to the nearly optimal number

of hidden nodes obtained through manually testing in

section ‘‘Experiments for Determining the Number of

Hidden Nodes,’’ which also confirms the feasibility and

Table 2 Numbers of hidden

nodes for eight data sets after

testing

Data sets Iris Wine Heart Zoo Ionosphere Cleveland WBCD Pima

Numbers of hidden nodes 12 15 15 10 47 15 12 15

Table 3 Numbers of clusters through AP clustering using different

values of P

Data sets P = median(s)/2 P = median(s) P = median(s) * 2

Iris 10 7 5

Wine 15 9 7

Heart 16 8 7

Zoo 11 8 8

Ionosphere 80 43 10

Cleveland 34 15 12

WBCD 49 30 15

Pima 43 29 20

Table 4 Comparison of

training and testing time of

ELM and SELM

Data sets ELM SELM

Training time Testing time Training time Testing time

Iris 0.0625 0.0313 0.0625 0.0313

Wine 0.0938 0.0156 0.0938 0.0156

Heart 0.0938 0.0313 0.0469 0.0156

Zoo 0.0625 0.0313 0.0625 0.0313

Ionosphere 0.0938 0.0313 0.0625 0.0313

Cleveland 0.0625 0.0313 0.0625 0.0313

WBCD 0.0781 0.0313 0.0469 0.0313

Pima 0.0938 0.0313 0.0625 0.0156

Table 5 Comparison of

training and testing accuracy of

ELM and SELM

Data sets ELM SELM

Training accuracy Testing accuracy Training accuracy Testing accuracy

Iris 96 94.67 97.33 97.33

Wine 100 94.38 88.76 91.01

Heart 83.7 75.56 80.74 76.3

Zoo 90 82 96 90

Ionosphere 86.86 86.29 96 94.15

Cleveland 82.12 77.48 83.44 80.79

WBCD 95.42 92.61 95.42 94.72

Pima 78.125 77.08 80.45 77.34
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reliability of AP clustering when it is applied to optimize

ELM algorithm.

Conclusions

In this paper, an improved ELM algorithm called the

SELM algorithm self-adaptively determines the number of

the hidden nodes during learning by AP clustering to find

the optimal architecture of network. A performance com-

parison of the SELM with the traditional ELM has been

carried out on some typical benchmark classification data

sets from UCI machine learning repository. To be precise,

the SELM algorithm achieves competitive testing accuracy

at significantly lower training time on the benchmark

classification data sets. Further, we also test and verify the

availability of attribute reduction and the influences on the

SELM algorithm when three different values of P were

adopted in AP clustering. In future work, we will improve

the accuracy of the SELM algorithm by regularization

methods and statistical learning theory. Additionally, more

practical applications will be also studied to verify the

availability of the SELM algorithm.
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