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Abstract This paper reviews a project that attempts to

interpret emotion, a complex and multifaceted phe-

nomenon, from a mechanistic point of view, facilitated by

an existing comprehensive computational cognitive archi-

tecture—CLARION. This cognitive architecture consists

of a number of subsystems: the action-centered, non-ac-

tion-centered, motivational, and metacognitive subsystems.

From this perspective, emotion is, first and foremost,

motivationally based. It is also action-oriented. It involves

many other identifiable cognitive functionalities within

these subsystems. Based on these functionalities, we fit the

pieces together mechanistically (computationally) within

the CLARION framework and capture a variety of

important aspects of emotion as documented in the

literature.

Keywords Emotion � Cognitive architecture �
Psychology � Computational

Issues of Emotion

The term ‘‘emotion’’ has come to denote a variety of

somewhat different phenomena. It is also not entirely clear

how one can identify something as an emotional as

opposed to a non-emotional experience. Emotion is, to say

the least, a complex and multifaceted phenomenon. Work

in the fields of psychology and neuroscience has certainly

contributed to a better understanding of aspects of emotion,

but many fundamental issues, especially those concerning

its mechanisms and processes, are yet to be understood.

Computational models have also been developed, but they

tend to be isolated models, not intrinsic to (or fully inte-

grated into) an overall cognitive architecture that is psy-

chologically tested and validated.

Human emotion manifests itself as a complex of expe-

riential, behavioral, cognitive, psychological, and physio-

logical characteristics, with many underlying mechanisms

and processes. For instance, it has been variously charac-

terized as physiological, cognitive, and/or goal-oriented

(see, e.g., [7, 10, 18, 67]). It has also been argued (e.g.,

[51]) that emotion is the collective outcome of operations

throughout a cognitive system. It should not be viewed as a

unitary thing (although in engineering intelligent systems, a

separate ‘‘emotion system’’ is often posited). That is, it is

emergent, resulting from physiological reactions, action

readiness, physical (external) actions, motivational pro-

cesses, appraisal (with implicit and/or explicit processes),

metacognitive processes, as well as decision making and

reasoning of various forms (implicit or explicit).

Therefore, we have argued (see, e.g., [51, 61]) that

human emotion should be computationally captured and

explained by a comprehensive, generic, computational

cognitive architecture [44, 49], with all its psychologically

validated mechanisms and processes. That is, emotion

should be captured and explained based on adequate rep-

resentation of basic action decision making, reasoning,

motivational, metacognitive, and other psychological pro-

cesses, within a generic, comprehensive, computational

model of the mind—a psychologically realistic computa-

tional cognitive architecture. These mechanisms and
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processes can capture the interaction of internally felt

needs and external environmental factors in determining

motivations and actions by individuals (hence emotion).

They can capture the regularities within an individual in

terms of behavioral manifestations at different times and

with regard to different situations (social or physical), as

well as behavioral variability [52].

Given the myriad of mechanisms and processes

involved in emotion (e.g., physiological, cognitive, and

goal-oriented processes), nothing short of a generic (and

psychologically validated) computational cognitive archi-

tecture would be able to provide a comprehensive mecha-

nistic interpretation of emotion. Even though a relatively

small, somewhat standalone computational model may

account for some aspects of emotion, it, by its very nature,

will be limited in scope and thus less than completely

satisfactory. Therefore, it becomes highly desirable that a

model of emotion goes beyond relatively specialized

computational models or those not fully integrated into an

overall cognitive architecture.

Conversely, emotion, if it is a valid psychological con-

struct, should be adequately accounted for by a psycho-

logically realistic cognitive architecture, without any

significant additions or modifications of mechanisms and

processes within the cognitive architecture. A psychologi-

cally realistic cognitive architecture should, by nature, be

comprehensive and include all necessary psychological

mechanisms and processes. It should have all essential

components of the mind (with their mechanisms and pro-

cesses), such as various memory modules, various infer-

ence mechanisms, and various learning mechanisms, as its

integral parts, and should also clearly identify their

respective roles in the overall functioning. Otherwise, it

would amount to a software tool or a programming lan-

guage, which allows one to build whatever models that one

wants to build but does not sufficiently specify the archi-

tectural elements of the mind. Thus, a psychologically

realistic cognitive architecture should, in principle, have all

the requisite mechanisms and processes in place to account

for emotion. Ideally, a psychologically realistic computa-

tional cognitive architecture should be a model of emotion

just by itself.

From this perspective, there are many open questions

concerning emotion and the underlying psychological

mechanisms and processes. How do these various pro-

cesses involved in emotion take place? How do different

mechanisms interact? For example, one might want to

know:

• What role does motivation play in emotion (in detailed,

mechanistic terms)?

• What role does emotion play in behavior (in detailed,

mechanistic terms)?

• What roles do explicit and implicit processes play in

emotion, respectively?

• How do implicit and explicit processes interact in

emotional processing?

• How can emotion be regulated through metacognitive

means?

With a detailed, psychologically realistic computational

cognitive architecture, we have started to address these

questions in a more tangible and better constrained way,

utilizing the mechanisms and processes specified within the

cognitive architecture, which may lead to unique, broad

interpretations of emotion. An overview of this project is

provided in the present article.

Below, first, a comprehensive framework in the form of

a psychologically realistic cognitive architecture is out-

lined. Then, on that basis, a number of key issues con-

cerning emotion are discussed. Based on the discussions, a

model of emotion is outlined, and some details are sket-

ched within the cognitive architecture.

A Comprehensive Framework Capable
of Addressing Emotion

Overview of CLARION

CLARION is a cognitive architecture—a (relatively)

comprehensive model of essential psychological mecha-

nisms and processes, specified computationally. It has been

described, justified, and psychologically validated exten-

sively on the basis of psychological data in Sun [44, 45,

49]; see also Sun et al. [54, 55] and Helie and Sun [12]. For

the sake of subsequent discussions, a quick sketch is pro-

vided below.

CLARION consists of a number of subsystems (see [49]

for detailed arguments regarding the division of subsys-

tems): the action-centered subsystem (the ACS), the non-

action-centered subsystem (the NACS), the motivational

subsystem (the MS), and the metacognitive subsystem (the

MCS). The role of the action-centered subsystem is to

control actions (regardless of whether the actions are for

external physical movements or for internal mental oper-

ations), utilizing procedural knowledge. The role of the

non-action-centered subsystem is to utilize declarative

knowledge for information and inferences of various kinds.

The role of the motivational subsystem is to provide

underlying motivations for perception, action, and cogni-

tion (in terms of providing impetus and feedback). The role

of the metacognitive subsystem is to monitor and regulate

the operations of the other subsystems dynamically [49].

Each of these interacting subsystems consists of two

‘‘levels’’ of representations (i.e., a dual-representational
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structure), as theoretically posited in Sun [44]. Generally

speaking, in each subsystem, the ‘‘top level’’ encodes ex-

plicit knowledge with associated explicit processes (using

symbolic/localist representations), while the ‘‘bottom

level’’ encodes implicit knowledge with associated implicit

processes (using connectionist distributed representations;

[36]). The two levels interact, for example, by cooperating

in action decision making through integration of the action

recommendations from the two levels of the ACS,

respectively, as well as by cooperating in learning through

bottom-up and top-down learning processes (in the ACS or

in the NACS; [54, 55]); see Fig. 1 for a sketch of

CLARION.

As has been pointed out before, existing theories tend to

confuse implicit and explicit processes, hence the ‘‘per-

plexing complexity’’ [42]. In contrast, CLARION generally

separates implicit and explicit processes in each of its

subsystems. With this framework, CLARION can provide

explanations of empirical findings in a wide range of

domains (see, e.g., [12, 54, 55, 63]).

Another important characteristic of CLARION is that it

embodies the belief that cognition is activity-based, action-

oriented, and embedded in the world [44, 50]. Therefore,

for example, the principle regarding reasoning in CLAR-

ION is: action first and reasoning in the service of action.

Yet another important characteristic of CLARION is its

focus on the cognition–motivation–environment interaction

[46, 49], as opposed to dealing only with cognition in its

narrow sense.

Below, we will examine each of its subsystems in more

detail, which will illustrate some of these points (see [44,

45, 49] for further details).

Action-Centered Subsystem

The action-centered subsystem (the ACS) captures the

action decision making of an individual when interacting

with the world, involving procedural knowledge [44, 48].

In the ACS, the process for action selection is essentially

the following: Observing the current (observable) state of

the world, the two levels within the ACS (implicit or

explicit) make their action decisions in accordance with

their respective (procedural) knowledge, and their out-

comes are ‘‘integrated.’’ Thus, a final selection of an action

is made and the action is then performed. The action

changes the world in some way. Comparing the changed

state of the world with the previous state somehow, the

person learns. The cycle then repeats itself.

Thus, the overall algorithm for action decision making

may be described as follows:

1. Observe the current input state x (including the current

goal).

2. Compute in the bottom level the ‘‘value’’ of each of the

possible actions (ai’s) associated with the current input

state x: Q(x, a1), Q(x, a2),……,Q(x, an). Stochastically

choose one action according to these values.

3. Find out all the possible actions at the top level (b1, b2,

…, bm), based on the current input state x (which goes

up from the bottom level) and the existing rules in

place at the top level. Stochastically choose one action.

4. Choose an action, by stochastically selecting the

outcome of either the top level or the bottom level.

5. Perform the action and observe the next input state

y and (possibly) the reinforcement r.

6. Update implicit knowledge at the bottom level in

accordance with an appropriate learning algorithm

(e.g., Q-learning; more later), based on the feedback

information.

7. Update explicit knowledge at the top level using an

appropriate learning algorithm (e.g., the RER algo-

rithm; more later).

8. Go back to Step 2.

In this subsystem, the bottom (implicit) level is imple-

mented using neural networks involving distributed repre-

sentations [36], and the top level is implemented using

symbolic/localist representations.

For the bottom level, the input state (x) consists of the

sensory input (environmental or internal), the current goal,

and the working memory. All that information is important

in deciding on an action. The input state is represented as a

set of microfeatures. The output of the bottom level is the

action choice, also represented as a set of microfeatures.

At the top level, ‘‘chunk’’ nodes are used for denoting

concepts. A chunk node connects to its corresponding

microfeatures at the bottom level (represented by a set of

Fig. 1 Subsystems of the CLARION cognitive architecture. The

major information flows are shown with arrows. ACS stands for the

action-centered subsystem. NACS stands for the non-action-centered

subsystem. MS stands for the motivational subsystem. MCS stands

for the metacognitive subsystem. See the text for more explanations
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separate nodes constituting a distributed representation in

the bottom level). At the top level, action rules connect

chunk nodes representing conditions to chunk nodes rep-

resenting actions. If the condition of an action rule is met,

then the corresponding action is recommended.

At the bottom level of the ACS, with neural networks

encoding implicit knowledge, actions are selected based on

their Q values, which are the outputs of the neural net-

works. A Q value is an evaluation of the ‘‘quality’’ of an

action in a given input state: Q(x, a) indicates how desir-

able action a is in state x. At each step, given input state x,

the Q values of all the actions (i.e., Q(x, a) for all a’s) are

computed in parallel. Then the Q values are used to decide

stochastically on an action to be performed, through a

Boltzmann distribution of Q values (i.e., a softmax

function):

pðajxÞ ¼ eQðx;aÞ=s=
X

i

eQðx;aiÞ=s

where s (temperature) controls the degree of randomness of

action decision making and i ranges over all possible

actions. (This is known as Luce’s choice axiom; see [59].)

For learning implicit knowledge at the bottom level (i.e.,

the Q values), the Q-learning algorithm [59], which is a

reinforcement learning algorithm, may be used. Q values

are gradually tuned through successive updating, which

enables reactive sequential behavior to emerge through

trial-and-error interaction with the world [54, 59]. As a

result of such learning, the Q values come to represent,

roughly, the maximum cumulative reinforcement that can

be received from the current point on, where reinforcement

represents the fulfillment of needs and achievement of

goals (as decided by the MS and the MCS; more later).

For learning explicit action rules at the top level with a

bottom-up learning process, the rule–extraction–refinement

(RER) algorithm utilizes information from the bottom level

in learning rules at the top level; see Sun et al. [54] and Sun

[44] for details. On the other hand, top-down learning goes

in the opposite direction [44].

For stochastic selection of the outcomes of the two

levels, at each step, with probability PBL, the outcome of

the bottom level is used. Likewise, with probability PRER,

the outcome from the RER rule set is used. Other com-

ponents, if they exist, may also be included in the

stochastic selection. There exists some psychological evi-

dence for such intermittent use of rules [54].

Non-Action-Centered Subsystem

The non-action-centered subsystem (the NACS) is for

dealing with declarative, or non-action-centered, knowl-

edge [48, 49]. It stores such knowledge in a dual-repre-

sentational form (the same as in the ACS): that is, in the

form of explicit ‘‘associative rules’’ (at the top, level), and

in the form of implicit ‘‘associative memory’’ (at the

bottom level). Its operation is under the control of the

ACS and it is in the service of action decision making

usually.

At the bottom level of the NACS, associative memory

networks encode implicit declarative knowledge. Associ-

ations are formed by mapping an input to an output (e.g.,

[36]).

At the top level of the NACS, explicit declarative

knowledge is stored. As in the ACS, chunk nodes (de-

noting concepts) at the top level are linked to microfea-

tures represented at the bottom level. Additionally, at the

top level, links between chunk nodes encode explicit

associative rules (which may be learned in a variety of

ways; [45, 49]).

As in the ACS, top-down or bottom-up learning may

take place in the NACS, either to extract explicit knowl-

edge at the top level from the implicit knowledge in the

bottom level, or to assimilate the explicit knowledge of the

top level into the implicit knowledge at the bottom level.

With the interaction of the two levels, the NACS carries

out rule-based, similarity-based, and constraint-satisfac-

tion-based reasoning. The overall operation of the NACS is

as follows:

1. A directive is received by the NACS to initiate

reasoning on a specified input.

2. Bottom-up and top-down activation propagate input

activations to both levels of the NACS.

3. Associative reasoning is performed simultaneously at

both levels:

3:a. Associative memory networks propagate activa-

tions at the bottom level.

3:b. Associative rules activate chunks at the top level.

4. Activations of the two levels are integrated at the top

level.

5. At a set time limit or when no further conclusions can

be inferred, the NACS returns chunks that were

inferred. Otherwise, the process is reiterated (e.g.,

using the results of the previous iteration as inputs).

Details of the NACS will not be covered here because

they are not needed in this paper (details can be found in,

e.g., [12] or [49]).

Motivational Subsystem

The motivational subsystem (the MS) is concerned with

why an individual does what he/she does [46]. The rele-

vance of the MS to the ACS lies primarily in the fact that it

provides the context in which goals and reinforcements for

4 Cogn Comput (2016) 8:1–14

123



the ACS are determined. It therefore influences the work-

ing of the ACS (and by extension, the working of the

NACS).

A dual motivational representation is in place in the MS.

The explicit goals (such as ‘‘find food’’), which are

essential to the working of the ACS as explained before,

may be generated based on implicit drives (e.g., ‘‘hunger

for food’’). The explicit goals derive from, and hinge upon,

implicit drives. For psychological justifications, see Sun

[46, 49]; in this regard, see also Tolman [57], Maslow [25],

and Wright and Sloman [66].

Among drives, primary drives are essential, most likely

built-in (hard-wired) to a significant extent to begin with.

Some sample low-level primary drives include food, water,

and reproduction. Beyond those concerning mostly physi-

ological needs, there are also high-level primary drives, for

example, dominance, fairness, and deference, [30, 35, 46].

The primary drives (both low level and high level) are

listed in Table 1. This set of primary drives has been

extensively justified [46].1

Note that some of these primary drives are approach-

oriented, while others are avoidance-oriented. This dis-

tinction has been argued by many before (e.g., [4, 42]). The

approach system is sensitive to cues signaling rewards and

results in active approach. The avoidance system is sensi-

tive to cues of punishment and results in avoidance, char-

acterized by anxiety or fear. The division between

approach-oriented and avoidance-oriented drives provides

an underlying structure for the approach and avoidance

systems.

The processing of the drives involves a number of

modules. In particular, the core module determines drive

strengths (using a neural network) based on:

dsd ¼ gainu � gains � gaind � stimulusd � deficitd
þ baselined

where dsd is the strength of drive d, gaind is the individual

gain for drive d, gainu is the universal gain affecting all

drives, gains is the gain affecting all the drives of one type

(e.g., the approach or the avoidance type), stimulusd is a

value representing how pertinent the current situation is to

drive d, deficitd indicates the perceived deficit in relation to

drive d (which represents an individual’s intrinsic sensi-

tivity and inclination toward activating drive d), and

baselined is the baseline strength of drive d. The justifica-

tions for this mapping may be found in a variety of studies

(e.g., [46, 56]). In particular, the multiplicative combina-

tion of stimulusd and deficitd has been argued for [46, 58].

Metacognitive Subsystem

The existence of the large number of drives and the goals

resulting from them leads to the need for metacognitive con-

trol and regulation [9, 33]. In CLARION, the metacognitive

subsystem (the MCS) is closely tied to the MS. The MCS

monitors, controls, and regulates cognitive processes. Control

and regulation may be in the forms of setting goals (which are

then used by the ACS) on the basis of drives, generating

reinforcement signals for the ACS for learning (on the basis of

drives and goals), interrupting and changing ongoing pro-

cesses in the ACS and the NACS, setting essential parameters

of the ACS and the NACS, and so on [49].

Structurally, this subsystem may be divided into a

number of functional modules, including among others:

• the goal module,

• the reinforcement module,

• the processing mode module,

• the input filtering module,

• the output filtering module,

• the parameter setting module.

Let us look into one module as an example. The goal

module, in order to select a new goal, first determines goal

strengths for all possible goals, based on information from

the MS (e.g., the drive strengths) and the current sensory

input. In the simplest case, the following calculation is

performed:

gsg ¼
Xn

d¼1

relevanced;s!g � dsd

Table 1 Primary drives,

including approach-oriented and

avoidance-oriented drives

Approach drives Avoidance drives Both

Food Sleep Affiliation and belongingness

Water Avoiding danger Similance

Reproduction Avoiding unpleasant stimuli Deference

Nurturance Honor Autonomy

Curiosity Conservation Fairness

Dominance and power

Recognition and achievement

1 Briefly, this set of hypothesized primary drives bears close

relationships to Murray’s needs [30] and Reiss’s motives [35]. The

prior justifications of these frameworks may be applied, to a

significant extent, to this set of drives as well [25, 30, 35, 46].
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where gsg is the strength of goal g, relevanced,s?g is a

measure of how relevant drive d is to goal g with regard to

the current situation s (which represents the support that

drive d provides to goal g), and dsd is the strength of drive

d as generated by the MS. Once calculated, the goal

strengths are turned into a Boltzmann distribution and the

new goal is chosen stochastically from that distribution.

Arguments in support of goal setting on the basis of

implicit motives (i.e., drives) may be found in, for exam-

ple, Tolman [57], Wright and Sloman [66], and Sun [46].

Simulations Using CLARION

CLARION has been successfully applied to simulating,

accounting for, and explaining a wide variety of psycho-

logical data. For example, a number of well-known skill

learning tasks have been simulated and explained using

CLARION that span the spectrum ranging from simple

reactive skills to complex cognitive skills. Among them,

some are typical implicit learning tasks (mainly involving

implicit processes), while some others are high-level cog-

nitive skill acquisition tasks (with significant presence of

explicit processes). Simulations have also been done with

reasoning tasks, metacognitive tasks, and motivational

tasks. While accounting for various psychological data,

CLARION provides explanations that shed new light on

underlying processes (see, e.g., [12, 52, 54, 55]).

CLARION similarly provides explanations of, and

clarifications to, issues related to emotion. To explore this

aspect, we first need to address a number of foundational

issues concerning emotion and then we will fit all the

necessary pieces together to form a model of emotion.

Addressing Issues of Emotion
within the Framework

Below, on the basis of the general CLARION framework

briefly sketched above, we examine a number of issues

fundamental to understanding emotion, before putting

together a complete model. But two points should be

emphasized first.

First, as mentioned earlier, there are reasons to believe

that, psychologically, emotion is the collective outcome of

operations throughout a cognitive system. It is emergent,

resulting from mechanisms and processes associated with

physiological reactions, action readiness, physical (exter-

nal) actions, motivational processes, appraisal processes,

metacognitive processes, as well as decision making and

reasoning of various forms. Human emotion is the sum

total of all of the above in particular circumstances [6, 16,

51]. Thus, in CLARION, emotion involves, for example,

the ACS for actions, the NACS for reasoning, the MS for

motivation, and the MCS for metacognitive regulation.

Second, a number of basic emotions have been identi-

fied by various researchers (e.g., [7]), for dealing with

‘‘fundamental life tasks.’’ Different researchers may have

identified somewhat different sets of basic emotions, but

they usually include commonly discussed emotions such as

anger and elation. These basic emotions need to be

accounted for in particular in a mechanistic interpretation

of emotion.

Emotion and Motivation

One natural hypothesis based on the CLARION frame-

work, which is motivationally based, is that emotion is

rooted in basic human motives or needs (i.e., drives) and

their possible fulfillment [51]. In this regard, some other

researchers, for example, Smillie et al. [42], Carver and

Scheier [3], and Ortony et al. [31], also stressed the

importance of motivation and expectation in emotion.

Relatedly, Reisenzein [34] viewed emotions as proposi-

tional objects directed at states of affairs.

Thus, within the CLARION framework, emotions

should be analyzed in terms of their motivational under-

pinnings. For example, it may be hypothesized within the

CLARION framework that the emotion of elation is related

to positive reward (including unexpected positive reward)

and also, to a lesser extent, ‘‘expectation’’ of positive

reward [13, 26, 51]. The intensity of elation may be (in

part) related to the strengths of approach-oriented drives

within the MS of CLARION (as discussed in section ‘‘A

Comprehensive Framework Capable of Addressing

Emotion’’).

For another example, the emotion of anxiety can be

related to ‘‘expectation’’ of negative reward. The intensity

of anxiety may be (in part) a function of the strengths of

avoidance-oriented drives within the MS (see section ‘‘A

Comprehensive Framework Capable of Addressing Emo-

tion’’). Smillie et al. [42] specifically identified the link

between the avoidance system and anxiety. Carver and

Sheier [3] and a number of others also made related points.

Furthermore, the emotion of fear may be due to ‘‘ex-

pectation’’ of more intense negative reward. The intensity

of fear can be determined in a similar way as anxiety—(in

part) as a function of avoidance-oriented drive strengths

within the MS. In clinical psychology and psychophysiol-

ogy research, generally speaking, there has been a lack of

clear distinction between anxiety and fear [42]. Some

demonstrated that what was constructed to represent ‘‘pure

fear’’ situations was also a predictor of trait anxiety.

6 Cogn Comput (2016) 8:1–14
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For yet another example, the emotion anger can be

attributed to a mismatch between the ‘‘expectation’’ of a

behavior from others and the actual behavior [26] when the

actual behavior leads to more negative reward or less

positive reward compared with the expectation. Computa-

tionally, the difference leads to high drive strengths within

the MS for some avoidance-oriented and approach-oriented

drives (e.g., the fairness drive).

Similar descriptions, on the basis of the CLARION

framework, can be applied to other basic emotions as have

been identified by various researchers (e.g., [7]). However,

there may be some differences between colloquial usages

of emotion terms (and the folk psychology behind them)

and the interpretation here. Reinterpretation and clarifica-

tion are necessary.

Emotion and the Implicit–Explicit Distinction

We need to examine the relationship between the implicit–

explicit distinction and emotion. Psychological and neu-

roscience research suggested that emotional processes

represented a more primitive mechanism (e.g., [20]).

Experimental work indicated that emotional processing

tended to quickly identify stimuli that were highly dan-

gerous or beneficial (e.g., to an individual’s survival).

Emotions were often associated with hardwired and

specific responses [7, 67]. Scherer (e.g., [39]) claims that

emotion is complex, has multiple components, and often

cannot be described by verbal labels. Lewis [22] claims

that emotion emerges from a dynamic system.

Psychological and neuroscience research on implicit

memory and implicit learning indicated the existence of

distinct systems with distinct characteristics [8, 32], as

embodied by CLARION (discussed earlier), some of which

were analogous to the characteristics of emotion-process-

ing mechanisms identified above. In particular, it was

commonly believed that the emotion system was often

faster and less differentiated, while the other, non-emotion

system was slower and more deliberative [5, 67]. This

distinction was similar to what was described as the dis-

tinction between explicit and implicit processes in general

by, for example, Schacter [37], Reber [32], Sun [44], and

Evans and Frankish [8]. Thus, this distinction with regard

to emotion is consistent with the CLARION framework.

However, the separation of the emotional and the non-

emotional processes is certainly limited. For instance,

researchers have described a variety of appraisal processes,

which rely, to some extent at least, on explicit processes [7,

10]. Appraisal is important in that it is involved in inducing

an emotional state in reaction to a particular state of the

world as perceived by an individual [10, 43]. This situation

is somewhat analogous to similarly complex interaction

between explicit and implicit processes, as studied, for

example, by Sun et al. [55]; see also Sun [44] in this regard.

Such separation and interaction, with regard to emotion

or with regard to implicit–explicit processes in general, are

consistent with the CLARION framework as reviewed

earlier. Therefore, the mechanisms and processes specified

in CLARION, at both the top and the bottom level, may

help to understand emotional processing. Emotional pro-

cessing is mostly implicit (i.e., at the bottom level of

CLARION), although not all implicit processes are emo-

tional [5, 20, 67]. In CLARION, emotional processes

involve various subsystems, as alluded to earlier. Emo-

tional processing mainly occurs in the bottom levels of

these subsystems [51]. However, explicit processes (at the

top level) have a role too, for example, through performing

cognitive appraisal (e.g., within the NACS; [10, 43]), or

through affecting implicit processes in other ways [54, 55].

However, they are not the main locus of the experience of

emotion according to CLARION.

Effects of Emotion

It has been observed that emotion involves (and has various

effects on) perception, action, and cognition. We need to

examine their involvement in emotion.

First, emotion is closely tied to action. On the basis of

motivation, emotion leads to action usually. In fact, emo-

tion manifests, to a significant extent, through actions. This

means that, within CLARION, on the basis of the MS,

emotion usually leads to actions by the ACS, involving

both implicit and explicit processes of the ACS, with

implicit processes being more fundamental (as discussed

earlier [51]).

Furthermore, beyond being just related to action, emo-

tion is fundamentally action-oriented. For example, Frijda

[10], among others, indicated the importance of ‘‘action

readiness’’ in emotional experience. As pointed out before,

emotion involves physiological reactions, action readiness,

physical (external) actions, motivational processes,

appraisal processes, metacognitive processes, as well as

decision making and reasoning of various forms. But,

fundamentally, it involves first physiological reactions for

the sake of action readiness and consequently physical

(external) actions when circumstances permit them. Such

actions, among other types, include external emotional

expressions (such as facial expressions; [7]). Zajonc [67]

and others argued for the physiological nature of emotion.

Second, emotion has various effects on perception. This

phenomenon has been observed experimentally. For

example, when in a state of anxiety, attention is heightened

with regard to threatening stimuli. When in a state of

positive affect, stimuli are more elaborately processed

(e.g., [2, 27]).
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Research has also shown the effects that emotion has on

cognition [19, 39, 41]. Emotion may help to make the mind

more adaptive. With emotion in place, one has at one’s

disposal both simple reflexive (i.e., fast emotional)

responses (e.g., action readiness) and complex, elaborate

cognitive processing, as well as their combination and

interaction. Research has suggested that emotion involves

and affects all functionalities of cognition, including

attention, memory, learning, reasoning, and decision

making. This means that, within CLARION, emotion

involves and affects the ACS, the NACS, and the MCS, in

addition to involving the MS as discussed earlier. Emotion

involves both implicit and explicit processes in these sub-

systems, with implicit processes being more fundamental

(as discussed earlier [51]).

The question is through exactly what mechanisms and

processes emotion involves and affects these different

functionalities such as attention, memory, learning, and

reasoning. To address this question, a variety of compu-

tational models were proposed in the past, ranging from

earlier ones such as Wright and Sloman [66] to more

recent ones such as Marsella and Gratch [24]. However,

most of these computational models are not psychologi-

cally validated through detailed comparisons with quan-

titative human data. Many of them espoused rather

explicit processing (but with some exceptions); as such,

they dealt with mostly a limited kind of emotion, which

was not necessarily the most fundamental kind (as dis-

cussed before). Many of these models were also often

standalone models (to a large extent at least, but with

some exceptions), and as such, they were not fully inte-

grated into the overall cognitive architecture in a psy-

chologically realistic way. Thus, it appears that

CLARION can potentially provide a more comprehensive,

more integrative, more unified, and more psychologically

realistic account through its generic mechanisms and

processes resulting from, and compatible with, modeling

various other cognitive–psychological functionalities (as

will be examined later [51]).

Emotion Generation and Regulation

Emotion generation is accomplished through motivation,

appraisal, and action [61]. Among these processes, moti-

vation and action were addressed earlier, so we now look

into appraisal.

For emotion generation, besides motivation and action,

appraisal is important. A principle tenet of appraisal theory

was that emotion was a result of ‘‘cognitive appraisal’’

(e.g., [10]). The model of Marsella and Gratch [24], for

instance, implemented a form of appraisal theory. It sug-

gested that, to adequately capture emotion, appraisal

processes needed to rely on declarative knowledge and

reasoning. Another model by Reisenzein [34], however,

assumed that emotion arose when discrepancies were

detected by continuously running, rapid, and automatic

appraisal processes.

Within CLARION, both types of ‘‘appraisal’’ are

included. The automatic ‘‘appraisal’’ process is simple and

usually fast, mainly involving implicit processes [7]. The

deliberative appraisal process is more explicit and usually

slower. These appraisal processes are carried out by a

combination of the ACS, the NACS, the MCS, and the MS

within CLARION. Among these subsystems, the NACS, as

discussed in section ‘‘A Comprehensive Framework Cap-

able of Addressing Emotion,’’ is mainly responsible for

reasoning (implicit or explicit), including when reasoning

is carried out for deliberative appraisal. The MS, the MCS,

and the ACS, especially their implicit processes, are

responsible for the fast, automatic ‘‘appraisal’’ (gut reac-

tions) as discussed above. We term this fast process ‘‘re-

active affect,’’ in order to distinguish it from deliberative

appraisal. However, with reactive affect, the MCS or the

ACS may trigger deliberative appraisal.

With the generation of emotion (based on different kinds

of appraisal), there is the need for action or coping. Coping

of emotion as identified by, for example, Lazarus and

Folkman [19] can be carried out in CLARION through the

ACS and the NACS. Among them, coping by the ACS is

obviously action-oriented, but the actions may be either

internally or externally oriented (as indicated in section ‘‘A

Comprehensive Framework Capable of Addressing Emo-

tion’’), while coping by the NACS may be centered on

reasoning (implicit or explicit) for the sake of, for example,

re-evaluating the situations.

There are also other, more subtle types of emotion

regulation (see e.g., [11]). In general, in CLARION, reg-

ulation of emotion may be accomplished in a number of

ways at different phases of processing: for example, (1) at

the perceptual phase (e.g., by preventing the perception of

threatening stimuli), (2) at the motivational phase (e.g., by

setting or changing priorities), (3) at the appraisal phase

(e.g., by directing or re-directing appraisal), or (4) at the

action phase (e.g., by suppressing or enabling certain types

of actions). So emotion regulation can be carried out

through suppression, enabling, re-evaluation, or other rel-

evant means. It can be done either implicitly or explicitly

(or in both ways). For instance, Scherer [39] identified

automatic unconscious regulation, which involves (im-

plicit) information filtering, task switching, or other gen-

erally rapid reactions, as well as controlled conscious

regulation. There is a need to bridge emotion regulation

and emotion generation. When emotion generation and

appraisal are incorporated into detailed computational

models, these models need to incorporate sophisticated
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regulatory mechanisms also (which are often absent in

existing models, beside simple forms of coping).

Within CLARION, more sophisticated emotion regula-

tion can be accomplished through the MCS (as its name

suggests). The MCS regulates in response to sensory

inputs, motivational states, and appraisal. Regulation by the

MCS takes the form of input filtering, goal setting, action

output filtering, and the like (see section ‘‘A Comprehen-

sive Framework Capable of Addressing Emotion’’; [45,

49]), corresponding to these phases identified earlier.

Emotion regulation may thus directly affect action and

reasoning within the ACS and the NACS. At a deeper

level, drive activations within the MS may also be adjusted

as a form of emotion regulation, through the MCS (e.g., by

adjusting the gain parameters within the MS); thus action

and reasoning (within the ACS and the NACS) change as a

result.

In this regard, note that a clear distinction between

emotion generation (e.g., through motivation, appraisal,

and action) and emotion regulation (e.g., of inputs, of

action outputs, of reasoning, and of motivation) is

unnecessary.

A Model of Emotion within CLARION

From the discussions thus far, a mechanistic (computa-

tional) model of emotion is ready to emerge within the

CLARION framework. Let us put the pieces together.

Below, a conceptual-level model of emotion is outlined

within the CLARION framework. Its mechanistic (com-

putational) underpinning within the CLARION cognitive

architecture is then sketched (for further technical details,

see [51, 61]).

Outline of the Model

A general outline of our model of emotion is as follows.

We divide emotion roughly into three aspects: reactive

affect, deliberative appraisal, and coping/action, as identi-

fied in section ‘‘Addressing Issues of Emotion within the

Framework’’ above (see also [61, 62]). These aspects will

be discussed below one by one.

First, look into reactive affect. The notion of affect is

generally poorly defined, and it tends to refer to many

different things. However, in relation to emotion, in our

model, we view affect as a fast, reactive component that

precedes other, slower components of emotion, as alluded

to earlier in section ‘‘Addressing Issues of Emotion within

the Framework’’ [51, 67]. Emotion-evoking stimuli may

impact an individual before (or without) conscious

awareness. Empirical findings suggest that there is an

independent mechanism that drives unconscious

experiences of emotion [29, 65]. Processes surrounding

unconscious emotional experiences are separate from

slower, more deliberative processes. They are fast, reac-

tive, and implicit (as is consistent with the CLARION

framework). Reactive affect may be either positive or

negative in valence, and to different degrees of intensity

(i.e., arousal; [60]).

Next, look into deliberative appraisal, as identified in

section ‘‘Addressing Issues of Emotion within the Frame-

work.’’ Such appraisal is the evaluation of the significance

of an event or a situation [18, 39] on the basis of various

inputs including reactive affect. Scherer et al. [40] postu-

lated that emotion resulted from the assessment of a situ-

ation according to criteria such as relevancy, implications,

coping potential, and normative significance. Other rele-

vant dimensions of assessment that have been proposed

include cause, desirability, and likelihood.2 For instance, if

Mary desires for her preferred candidate to win an election

and believes that he/she will win, then she may experience

the (potentially conscious) emotion of elation. Elation in

this situation is associated with high values for ‘‘likeli-

hood’’ and ‘‘desirability’’ (see section ‘‘Emotion and

Motivation’’). Emotions are shaped by cognitive evaluation

(deliberative appraisal) of situations and events in our

model. Deliberative appraisal also determines how emo-

tions are consciously registered and reported (i.e., emotion

terms/labels), and recommends possible goals and actions

to pursue, according to our model.

In particular, emotion terms or labels are the outcomes

of this process [40]. Much research has been focused on the

structural relationship between appraisal variables and

specific emotion labels. Various researchers have defined

categories and sub-categories of these emotion labels [17,

43], although disagreement does exist.

Turn now to consider how outcomes of deliberative

appraisal are applied. The evaluation of an event or situa-

tion may lead to specific action tendencies [40]. Existing

theories suggest that outcomes of appraisal may lead to

specific physiological, behavioral, or motivational changes,

or to specific requirements for further information pro-

cessing. The relationship between appraisal variables and

various forms of responses has been explored (see, e.g.,

[24, 39]). Moreover, appraisal can trigger cognitive and

behavioral responses, which in turn can become inputs into

further appraisal, thus creating a continuous cycle of

appraisal and reappraisal [17].

2 Some of the appraisal dimensions might contain sub-dimensions.

Some of the dimensions may also represent intermediate processing

steps. For example, the ‘‘cause’’ dimension might require a process

that can associate environmental factors with beliefs about the

cause(s) of those factors.
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Reactive affect and deliberative appraisal considered

together, it seems reasonable to view appraisal in general,

in a broad sense, as made up of both conscious (explicit)

and subconscious (implicit) processes that use various

sources of inputs to generate beliefs, goals, affect, and

emotion labels, which can subsequently guide action

decision making as well as regulatory processes (as iden-

tified in section ‘‘Addressing Issues of Emotion within the

Framework’’; more later).

Third, we examine coping and action. Coping is defined

as cognitive and behavioral efforts at managing specific

external and/or internal demands. Coping often follows

appraisal [17, 19]. In order to cope with a situation, one

must ascertain the meanings of the situation, which include

one’s reactive affect about a situation, what one believes

the likely outcome of that situation may be (e.g., from

deliberative appraisal), and so on. Once meanings are

ascertained, selection of a coping strategy is made and a

pattern of behavior initiated.

A fundamental reason why behaviors are performed is the

pursuit of basic needs [15], but a direct link between basic

needs and specific behaviors may not be realistic. Needs may

be implicit and thus inaccessible [15, 25, 46, 56]. More

specific mental constructs are needed to capture the means by

which needs are attended to. These constructs are goals: that

is, a well-defined target state that is actively pursued [31].

Thus, the link between appraisal and behavior is established

via goals (as posited in CLARION, discussed in section ‘‘A

Comprehensive Framework Capable of Addressing Emo-

tion’’; see [46, 49]).

Goals can be used to capture more internally oriented

coping (a form of self-regulation), in addition to purely

externally oriented behaviors. Using an election example, a

goal to prevent one’s preferred candidate from losing the

election may lead to more problem-focused (externally ori-

ented) behaviors (e.g., give money or volunteer), while the

goal to reduce the effects of the anxiety-inducing stimulus

may result in more emotion-focused (internally oriented)

behaviors (e.g., turn off the TV or stop thinking about it).

Goals may also lead to re-appraisal (as discussed earlier).

Considered in total, according to CLARION, behaviors

are determined by goals, which are selected based on input

state information, drives, reactive affect, deliberative

appraisal, and other factors. Goal setting orients an indi-

vidual toward certain types of actions. Coping consists of

both internally and externally oriented actions. Beyond that,

there may also be other forms of self-regulation (e.g., aimed

at altering motivation or affect, or at filtering perception).

CLARION Specifics

Let us explore further these three aspects within the

CLARION computational cognitive architecture

specifically. In a nutshell, according to the cognitive

architecture, both reactive affect and coping/action are

captured by the dynamics among the mechanisms of the

MS, the ACS, and the MCS, and deliberative appraisal is

captured by the mechanisms within the NACS.

First, look into reactive affect. In CLARION, reactive

affect may be determined based on motivation as well as

potentials for action [61]. According to the literature, it

may have a lot to do with the relationship between situa-

tions/events and an individual’s desires and intentions (i.e.,

drives and goals; [34]). The MS of CLARION contains

drives (at the bottom level) and goals (at the top level) and

collectively captures the processes by which an individual

is compelled to act, as outlined in section ‘‘A Compre-

hensive Framework Capable of Addressing Emotion’’ [46].

Therefore, the MS can appropriately capture the role of

motivation in reactive affect.3

On the other hand, within CLARION, the bottom (im-

plicit) level of the ACS contains neural networks (see

section ‘‘A Comprehensive Framework Capable of

Addressing Emotion’’; [44, 49]). These networks propagate

activation from input nodes representing input state infor-

mation to output nodes representing actions.4 Before the

final action decision is made, the activations of the output

nodes really just represent potentials to act, or ‘‘action

potentials.’’ These activations capture the degree and

likelihood that the actions will lead to a desirable outcome

(see section ‘‘A Comprehensive Framework Capable of

Addressing Emotion’’ regarding Q values). Fundamentally,

actions are chosen based on their ability to satisfy needs

[25]. Thus, the ‘‘action potential’’ represents the expected

degree to which a set of actions (that can be started in the

current state) will be successful in attending to the needs of

an individual.5

Within the CLARION framework, we may look at

various combinations of drive activation and action

potential and relate these combinations to experiences of

positive and negative reactive affect:

• When some drives are highly activated (i.e., some

needs must be attended to), but action potentials are

also high (i.e., those needs are likely to be met), then

affect could not be very negative—it could range from

highly positive to slightly negative. For instance, if the

highly activated is an avoidance-oriented drive (e.g.,

3 The MS has been justified extensively elsewhere [46, 49]. It has

been used to capture many motivationally based phenomena (e.g.,

[50, 52, 63]).
4 The ACS may recommend actions using a combination of the top

(explicit) and the bottom (implicit) level, but the bottom level is

always activated as part of the decision-making process [44, 49].
5 Note that for calculating action potentials, inputs to the neural

networks might include drive activations but not goals (because it

might be done before goal setting).
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‘‘avoiding danger’’; see section ‘‘A Comprehensive

Framework Capable of Addressing Emotion’’), affect

should be only slightly negative (which may lead to,

e.g., slight anxiety; see section ‘‘Emotion and Motiva-

tion’’). If the highly activated is an approach-oriented

drive (e.g., ‘‘recognition and achievement’’), affect

should be positive (which may lead to, e.g., elation; see

section ‘‘Emotion and Motivation’’).

• When some drives are highly activated (i.e., some

needs are high) and action potentials are low (i.e., those

needs will likely not be met), affect could range from

slightly negative to very negative. For instance, if some

avoidance-oriented drives (e.g., ‘‘avoiding danger’’) are

highly activated in this case, affect should be very

negative (leading likely to high anxiety or fear).

• When drive activations are low (i.e., needs are being

met) and action potentials are high (i.e., needs will

likely continue to be met), affect should be somewhere

in the positive range.

• When drive activations are low (i.e., needs are being

met) and action potentials are low (i.e., needs may not

continue to be met), affect should not be very positive

(but should not be very negative either).

The exact magnitude of the affect in each of these cir-

cumstances above is drive specific (and may also be con-

text dependent to some degree). Thus, they need to be

specified on a case-by-case basis. (They will not be enu-

merated here; but see, e.g., [61].)

Reactive affect generated in this way can influence

certain implicit processes. For instance, one regulatory

process is the orientation toward certain types of motiva-

tion, approach- or avoidance-oriented, on the basis of either

positive or negative affect [49]. This adjustment is carried

out within CLARION through adjusting the gain parame-

ters (i.e., gains; see section ‘‘A Comprehensive Framework

Capable of Addressing Emotion’’). In addition, a positive

affective state can serve as a positive stimulus and a neg-

ative affective state as a negative stimulus (by treating the

reactive affect as part of the input state). Beyond such fast,

reactive and implicit application, reactive affect is also an

important contributor to the slower deliberative appraisal.

In CLARION, the NACS is for storing and utilizing

declarative knowledge in various forms [49]. It contains

mechanisms by which knowledge can be compared, asso-

ciated, and otherwise reasoned over [12, 49].6 As demon-

strated in Wilson [61], the NACS provides the

representational and mechanistic means by which various

aspects of deliberative appraisal may be actualized.

For example, the following explicit appraisal dimen-

sions (as discussed earlier) may be assessed through rea-

soning within the NACS:

• Relevance—the direction (i.e., being positive or nega-

tive) and the intensity of the situation (in part based on

reactive affect, but also based on declarative

knowledge)

• Implications—the likelihood, unexpectedness, and

changeability of the situation as well as goal congru-

ence (in part based on action potentials)

• Coping potential—the subjective sense of control over

the event (in part based on action potentials)

• Normative significance—the attribution of cause to the

situation

Specifically, these appraisal dimensions, as well as goals

and emotion terms, are represented in CLARION as chunks

(as described in section ‘‘A Comprehensive Framework

Capable of Addressing Emotion’’). To assess these, prior

knowledge and beliefs are used within the NACS (when

triggered by current situations). Chunks can be naturally

inferred using the reasoning processes existing in the

NACS at the top level and/or the bottom level (see section

‘‘A Comprehensive Framework Capable of Addressing

Emotion,’’ as well as [49]). Beliefs concerning appraisal

dimensions, goals, and emotion terms can be inferred in the

form of chunk activation. As shown by Wilson [61], the

NACS reasoning mechanisms provide the necessary med-

ium for deliberative appraisal, and capture several existing

theories of appraisal.

The outcomes of deliberative appraisal may affect

motivation in two different ways: (1) the outcomes may be

used to decide on an appropriate goal to satisfy activated

drives (needs), which can be done by the MCS (or the

ACS); (2) the outcomes of appraisal may affect drive

activations (e.g., through treating the outcomes as part of

the input state, or through adjusting the approach/avoid-

ance orientation by the MCS). The outcomes of delibera-

tive appraisal may also affect action decision making

within the ACS through treating the outcomes as part of the

input state for the ACS.7

Consciously recognized emotion is the outcome of

deliberative appraisal. For instance, as discussed earlier, it

has been hypothesized within CLARION that the emotion

of elation is related to positive reward or ‘‘expectation’’ of

positive reward. Specifically, first, the corresponding

reactive affect may be, computationally, the result of high

6 Previous research has shown that the NACS captures many aspects

of human reasoning, including similarity-based reasoning, rule-based

reasoning, analogical reasoning, incubation, insight, and creativity

[12, 53].

7 The outcomes of deliberative appraisal from the NACS may be

filtered by the MCS. This allows the MCS to select only the

knowledge that is relevant to the situation. Filtering could be done

based on the current input state and its relevant microfeatures (see

section ‘‘A Comprehensive Framework Capable of Addressing

Emotion’’).
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activation of an approach-oriented drive and a high action

potential, which indicates the expectation of related reward

(or the result of high activation of an approach-oriented

drive and high reward). Deliberative appraisal occurring

within the NACS then assesses the situation and produces a

label for the felt affect, among other things.

For another instance, it has also been hypothesized that

the emotion of anxiety can be related to ‘‘expectation’’ of

negative reward. Computationally, the corresponding reac-

tive affect is the result of high activation of an avoidance-

oriented drive and a relatively low action potential, which

indicates a low probability of avoiding negative reward. The

intensity of anxiety is a function of avoidance-oriented drive

activations and action potentials. Compared with activation

of an approach-oriented drive, here the role of the action

potential is less significant—an avoidance-oriented drive

arouses a certain degree of anxiety or fear regardless of levels

of action potentials. Deliberative appraisal occurring within

the NACS then assesses the situation and produces a label for

the felt affect.

Coping/action follows. As outlined earlier, results from

deliberative appraisal (represented by chunks) may be

applied to (1) directly impact action decision making as

inputs, (2) set goals to initiate behavior through either

externally oriented (i.e., problem-focused) or internally

oriented (i.e., emotion-focused) goals, and (3) initiate

regulatory processes. The MCS captures many of such

regulatory functions.8

In particular, action decision making within the ACS may

be facilitated by the outcomes of deliberative appraisal. Just

like declarative knowledge in general, chunks concluded by

the NACS may becomes available as inputs to the ACS for

action decision making (see section ‘‘A Comprehensive

Framework Capable of Addressing Emotion’’).

Goals are important with regard to coping. Recom-

mended goals may be generated from deliberative appraisal

by processes within the NACS. Goals can then be set by the

MCS using a context-dependent method. Specifically, in

the MCS, to take account of deliberative appraisal in set-

ting goals, goal strengths are determined by both drive

activations and the outcomes of deliberative appraisal. In

other words, goals are set based not only on their relevance

(as in the goal strength equation of section ‘‘A Compre-

hensive Framework Capable of Addressing Emotion’’), but

also on appraisal regarding their feasibility and benefits to

the individual (see [61] for the extended equation).9

Once goals are selected, those behaviors that best

facilitate goal achievement are likely to be selected by the

ACS.10 The action selection mechanisms are well defined

in CLARION (as briefly reviewed in section ‘‘A Compre-

hensive Framework Capable of Addressing Emotion’’

earlier).

Simulations, Comparisons, and Summary

Several simulations have been carried out within CLAR-

ION. For instance, Wilson and Sun [62] show how

CLARION may be used to capture the emotional dynamics

of victims of school bullying. It provides a unique mech-

anistic interpretation of the appraisal process and the cop-

ing strategy selection by the victims of school bullying. It

also demonstrates how such processes can be precisely

expressed computationally and therefore simulated within

CLARION. A number of other examples were also dealt

with (see, e.g., [61–64]).

In the past, a variety of computational models of emo-

tion were proposed in the literature. Existing computational

models of emotion include: [14, 21, 24, 28, 34, 38], and

many others. Some of them bear some similarities to the

present model. For example, [23] integrated cognition,

emotion, and learning to some extent in an AI model.

Marsella and Gratch [24] instantiated their model of

appraisal and coping within Soar (although not psycho-

logically validated). Bach [1] did include motivation in

addressing emotion (but the model was not extensively

validated against psychological data).

Some distinguishing features of the present work

include: (1) The present model is based on the foundation

of a generic but detailed, psychologically realistic cogni-

tive architecture (which has undergone development and

psychological validation for over two decades based on a

wide variety of psychological data), and thus based on a

more comprehensive and better grounded view of the

architecture of the mind. (2) The same cognitive architec-

ture has led to unified explanations of a wide range of

psychological phenomena, in addition to and together with

emotional phenomena; hence it is broad and integrative. (3)

The present model includes a motivational subsystem that

synthesized well developed theories on motivational pro-

cesses (e.g., [30, 35, 46, 47]), which is not commonly

found among psychologically validated cognitive models.

(4) The present model captures emotion, in a unique way,

based on drives, goals, and actions, whereby drives serve as8 In CLARION, the MCS is responsible for many regulatory

processes [49], including, among others, goal setting, parameter

changing, and input and output filtering. In previous work, the MCS

has been shown to capture a variety of psychological phenomena (see,

e.g., [63]).
9 Prior research has extensively explored goal setting using the MCS

[46, 52].

10 These CLARION details outlined above address the processes by

which coping strategies are chosen. They also suggest a possible

origin for how the appraisal dimensions might be formed, that is,

possibly for the sake of facilitating goal setting.
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the basis for setting goals and consequently for reasoning

and for action, along with metacognitive regulation.

In CLARION, emotion involves a range of subsystems:

the ACS (for action), the NACS (for reasoning), the MS

(for motivation), and the MCS (for metacognitive regula-

tion). Complex interactions occur among these different

subsystems and among many components within. So the

present model is a complex dynamic system. But it is a

complex dynamic system with clearly structured compo-

nents (each with specific knowledge, mechanisms, and

processes) interacting with each other.

This overview article has so far shown that, although

admittedly still preliminary, CLARION has the potential for

providing unique, broad, and integrative mechanistic inter-

pretations of issues surrounding emotion. Exploring emotion

within a comprehensive computational cognitive architecture

enables its theorizing and modeling to make contact with

detailed, established psychological mechanisms and pro-

cesses. As a result, the study of emotion is naturally and

seamlessly linked to other psychological processes and

mechanisms such as memory, decision making, reasoning,

motivation, and metacognitive regulation, defined generi-

cally within a cognitive architecture [51, 61]. The result is a

broad, psychologically realistic model that provides psy-

chologically well-grounded interpretations. The present

article has tried to provide an overview of this project, pulling

all the (previously devised and tested) pieces together.
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