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Abstract The aim of the study was to examine the

application of a computerized handwriting model for

characterizing complex figure-drawing performance. We

posit that spatial, temporal, and pressure measures that

reflect figure-drawing behavior will differ significantly

under two mental workload conditions, and that both

drawing and handwriting process measures will predict the

quality of what is drawn and/or written. Thirty participants

copied the Rey–Osterrieth Complex Figure Test (ROCFT).

They then reproduced it from memory and finally copied a

paragraph on a digitizer that is part of the Computerized

Penmanship Evaluation Tool (ComPET) system. Results

indicated that certain computerized measures of the

ROCFT copying significantly correlated with those of the

paragraph-copying behavior (r = .38–.75). Significant

differences were found between the spatial and temporal

computerized measures of performance in the ROCFT

copying and drawing-from-memory tasks. Stepwise

regressions indicated that mean pressure predicted 12 % of

the variance of the ROCFT and paragraph-copying quality

scores and 6 % of the ROCFT drawing-from-memory

score. Furthermore, 52 % of the variance of the ROCFT

drawing-from-memory score was predicted by the mean

velocity. The benefits and significance of obtaining

computerized measures of the drawing process for better

insight about human performance characteristics are dis-

cussed, and applications are suggested.

Keywords Drawing � Writing � Computerized measures �
Mental workload � Digitizer � Errors

Introduction

The human cognitive system is of interest to researchers

developing computational applications for various pur-

poses in multidisciplinary fields [1–7]. For more than three

decades, researchers have attempted to understand human

cognitive abilities. However, despite initial promise, there

has been little advance toward profound comprehension

[7]. More specifically, research is still needed in regard to

relationships between the cognitive system and actual

activity [2]. Currently, data are obtained mainly through

sensors [2]. The present study concerns obtaining infor-

mation about a drawing activity by capturing visual

parameters and producing them in spatio-temporal

sequence [8, 9] via an electronic tablet (digitizer). The

digitizer is a noninvasive, unobtrusive tool that detects

behavioral biometrics of perceptual-motor task perfor-

mance [10]. Such insights may be valuable for developing

computational medical evaluations as well as for a variety

of human–computer interactions [11] involving cognitive

abilities.

Multiple studies have demonstrated the advantages of

computerized, objective, spatial, temporal, and pressure

measures supplied by the digitizer, for capturing the

handwriting process (e.g., [12, 13]). These studies have

shown that the non-language-dependent measures (e.g.,

[14]) reflect individual handwriting uniqueness and provide
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good indicators of clinical and applied conditions (e.g.,

mild cognitive impairment or Alzheimer’s disease [15],

depression [16], and low/high cognitive load [17, 18]).The

overall body of research on computerized handwriting

analysis (see Fig. 1) offers evidence that physical, cogni-

tive, clinical, psychological, and situational characteristics

of individuals can be captured through these computerized

outcome measures. Spatial, temporal, and pressure mea-

sures reflect attributes of writing that are sometimes visibly

evident on the written page (such as writing errors, legi-

bility, letter size). The interesting point is that these mea-

sures also capture behavior that occurs above the page (in

the air, between strokes, etc.) that has no visible outcome

on the written page [17, 19].

It seems that these measures reflect individual cognitive

processes that are relevant not only to the writing of words

and numbers. Therefore, the goal of this study was to

examine whether similarities would be found between

computerized measures of the complex figure and the

paragraph copying. In addition, we examined whether

those measures would reflect the level of cognitive demand

and predict the quality of both the drawn figure and the

written product. For these purposes, we employed the Rey–

Osterrieth Complex Figure Test (ROCFT; [20, 21]), a non-

verbal, neuropsychological test widely used in clinical and

research settings for assessing a variety of cognitive abil-

ities [22]. The test comprises two tasks that are graded in

relation to the required cognitive resources, namely copy-

ing a two-dimensional geometric design and reproducing

the design from memory 3 min later, which is more cog-

nitively demanding [22]. The final product of the two tasks

is scored according to the accuracy of the reproduction and

of its constituent elements in relation to form and spatial

position [20].

Despite the differences between figure drawing and

handwriting, there are similarities between the mechanisms

required for their production. Both require the translation

of visual input—an internal graphemic pattern maintained

in the working memory—into a grapho-motor code [1].

Such a process involves use of the visuo-spatial sketch pad

which retains and enables recall of the visual memory of

images [23, 24].

Moreover, figure- and paragraph-copying tasks do not

require additional investment of cognitive resources. The

figure to be copied is placed in front of the individual, and

handwriting is considered as an ‘over-learned’ skill that

becomes automatic over time [25], so that it can be per-

formed without conscious effort [26].

Hence, our first hypothesis was that, as a result of the

similarity between the cognitive/working memory resour-

ces required for both figure and paragraph copying, sig-

nificant correlations will be found between the

computerized measures relating to the individual’s mastery

of the drawing/writing device, the actual movement

sequence and automaticity that express individual style,

and the use of visuo-spatial working memory.

The second aspect of the study relates to mental work-

load, which is a central concept in regard to cognitive/

educational psychology. The definition and theoretical

foundations of mental workload are still being discussed

worldwide, but it is often defined as the ratio of the

demands of a task to available human resources [27]. From

a practical perspective, it is the measure of how much of a

person’s mental resources are needed to perform a task

[28].

Previous studies have shown that the computerized

measures of writing under a high workload condition sig-

nificantly differ from those obtained when writing under a

lower mental workload [17, 29]. Furthermore, the com-

puterized measures were shown to be sensitive to many of

the clinically pathological conditions characterized by

cognitive deficits that can cause high mental workload in

writing (e.g., [15]).

From this, we have derived our second hypothesis—that

significant differences are to be found between the spatial,

temporal, pressure, pen tilt, and azimuth measures of the

ROCFT copying and drawing from memory (which is more

cognitively demanding).
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Previous studies have also revealed a strong link

between poor performance and the mental workload of the

participant performing the task (e.g., [30]). We suggest that

higher mental workloads during writing or drawing, as

reflected in the computerized measures, will be predictive

of poorer outcome measures of the drawn/written product.

According to Sheridan [31], human error is defined as an

action that fails to meet some implicit or explicit criterion.

Errors of omission and commission in writing also reflect

the individual’s mental workload [32, 33]. Thus, mental

workload may be reflected in the number of errors made

and in accuracy of performance.

In the context of scores for the drawn product of the

Rey–Osterrieth test, an omission is defined as failing to

copy part of the figure or not including part of the figure

when drawing from memory. Incorrect placing of an ele-

ment, either when copying or drawing from memory, is

also considered an omission. In regard to paragraph

copying, omissions and commissions are manifest in how

the letters are formed. Thus, the number of erasures and of

illegible letters constitutes a measure of automaticity and

efficiency in writing production [34] and might be related

to mental workload and/or visuo-spatial memory.

Consequently, our third hypothesis was that computer-

ized measures of figure copying, drawing from memory,

and paragraph copying will predict the quality of the pro-

duct (i.e., number of omissions as defined by ROCFT

scoring and the mean ratio of erasures and illegible letters

in a copied paragraph).

Methods

Participants

Participants were 30 healthy, recently inducted male Israeli

soldiers, aged 18. Seventy percent of the participants were

born in Israel, 27 % in the former Soviet Union, and 3 % in

Europe.

Procedure

The subjects were new army recruits awaiting placement.

The researchers received official permission to ask soldiers

to volunteer as participants in the study. They were told

that they had the right to refuse to participate, that all the

information would remain absolutely confidential, and that

their participation would not affect their army service in

any way. After signing an informed consent, each soldier

was asked to copy the Rey figure on a blank A4 paper

placed on the digitizer, as part of the ComPET. The figure

was then removed and, after a 3-min pause, participants

were requested to draw it from memory, again on a blank

A4 paper placed on the digitizer in the same manner as the

initial copying task.

Materials

The ROCFT: Performance Scores

The ROCFT is a test of visual–spatial organization whose

reliability and validity are well established (e.g., [22, 35]).

The subject is required to copy a figure and to then draw it

from memory 3 min later. During the 3-min interval, the

evaluator had a small chat with the subject. Both the

copying and drawing from memory were manually scored

by two research assistants according to the Waber and

Holmes scoring system [36, 37]. The scoring takes into

account the number of parts reproduced without errors

(accuracy) [22], the degree to which the parts are organized

in relation to one another (organization), and the style in

which the figure is reproduced (part-oriented or configu-

rationally) [38]. The figure includes 18 elements. Each

element that is reproduced both accurately and in proper

spatial orientation earns a score of two points. Maximum

score = 36. To prevent comparing of scores, one research

assistant scored all the copied figures, and the other scored

all figures drawn from memory.

Computerized Measures of Drawing and Writing

Performance

Objective spatial, temporal, and pressure measures were

provided by the Computerized Penmanship Evaluation

Tool (ComPET), developed by Rosenblum et al. [39]. This

system enables collection and analysis of spatial, temporal,

and pressure handwriting data when the subject writes upon

a paper affixed to a WACOM Intuos2 (model GD

0912-12X18) x–y digitizing tablet. The participant writes

with a wire-less electronic pen with a pressure-sensitive tip

(Model GP-110). Displacement, pressure, and pen-tip

angle are sampled at 100 Hz by means of a 1300 MHz

Pentium (R) M laptop computer.

The following measures were used to compare strokes

performed in the figure copying/drawing from memory and

the paragraph copy:

1. Temporal measures (in seconds):

2:1 Mean and standard deviations of on-paper stroke

duration.

2:2 Mean and standard deviations of in-air stroke

duration (when the pen is raised above the paper)

The mean velocity of the entire task as measured in

cm/sec’ was obtained and analyzed.

3. Spatial measures:
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3:1 Mean and standard deviations of total stroke path

length in millimeters—from starting point to

finishing point of each written stroke.

3:2 Mean and standard deviations of stroke height (Y

axis) in millimeters—i.e., the direct distance from

the lowest to the highest point of the stroke.

3:3 Mean and standard deviations of stroke width (X

axis) in millimeters—i.e., the direct distance from

left to right of the stroke.

Measures obtained for each total task included:

4. Pressure—mean and standard deviations of pressure

applied to the writing surface throughout the task,

measured in non-scaled units from 0 to 1024 (for

further details, see [4]).

5. Pen tilt and standard deviation from 0 to 90 degrees

throughout the task. Tilt refers to the angle between the

pen and the tablet surface (i.e., between the pen and its

projection on the tablet) (see Fig. 2).

6. Pen azimuth and standard deviation of azimuth from 0

to 360 degrees throughout the task. The azimuth is the

angle between the ‘North’ line—the reference line for

0� (and for 360�)—and the pen’s projection on the

tablet (see Fig. 2).

The standard deviation of each measure reflects its

variability during performance.

Written-Product Measures

The mean number of erasures and of illegible letters (letters

that could not be recognized due to the poor quality of

letter closure, rounding of letters, or reversals) in the

written product was manually counted and computed as a

measure of the formal quality of the written text. An

illegible letter that also included erasures was counted as 1.

The criteria for the quality score of letter formation were

taken from the standardized handwriting tool, the Hebrew

Handwriting Evaluation (HHE, [40]).

Data Analysis

Descriptive statistics of the dependent variables were tab-

ulated and examined. Paired t tests were conducted in order

to compare the number of strokes drawn while copying and

drawing from memory, and for the ROCFT scores of these

tasks. Multivariate analysis of variance (MANOVA) was

performed for each of the two tasks in order to compare

differences between the means and standard deviations of

the computerized temporal spatial, pressure, pen tilt, and

azimuth measures.

Pearson correlations were calculated in order to inves-

tigate the association between computerized measures of

paragraph copying and those of the ROCFT copying and

drawing from memory.

Stepwise regression analysis was conducted to find:

1. Variance of predictability of traditional ROCFT final

copying and drawing-from-memory scores from the

computerized measures of the ROCFT tasks,

2. Variance of predictability of mean written-product

formation scores from computerized measures of

paragraph-copying performance.

Results

Hypothesis 1 suggested that similarities would be found

between objective measures of drawing and writing.

This was supported by the significant correlations,

ranging from .37 to .75, between figure-copying and

paragraph-copying data for several temporal, spatial,

pressure, pen tilt, and azimuth measures, as presented in

Table 1.

Hypothesis 2 suggested that the computerized measures

of the ROCFT drawing-from-memory process (which

demands more cognitive resources than copying) would

differ from those of the ROCFT copying process.

As a preliminary examination, we compared the tradi-

tional scores of the ROCFT copying and drawing-from-

memory performance. The significant differences found

indicate that participants were indeed more successful in

ROCFT copying than in drawing from memory

(M = 35.34 ± 1.29; M = 22.26 ± 8.47, t(25) = 8.39,

p\ .001).

To compare the computerized measures of the task

products, a paired t test analysis was conducted. Results

indicated significant differences between ROCFT copying

and drawing-from-memory, relating to the number ofFig. 2 Pen azimuth and tilt
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strokes drawn (copying: M = 113.00 ± 20.07; drawing

from memory: M = 79.59 ± 27.46 t(33) = 6.97,

p\ .001).

The difference between these findings was then calcu-

lated (number of strokes for figure copying—number of

strokes for figure drawing from memory) for each partici-

pant (d-stroke) and used as a covariate in the subsequent

MANOVA with repeated-measures analyses.

1. MANOVA results with repeated-measures analyses

for means and standard deviations of the temporal mea-

sures indicated significant differences between copying and

drawing from memory (F(4,28) = 13.49, p\ .001

2g = .66). A post hoc ANOVA indicated that, in figure

drawing from memory, participants spent significantly less

time per stroke on-paper and in-air, and that their standard

deviation per stroke on-paper was significantly lower than

that of figure copying. Means and standard deviations are

presented in Table 2.

Table 3 presents the results for means and standard devi-

ations of spatial measures. MANOVA with repeated mea-

sures conducted indicated significant differences between

copying and drawing from memory (F(6,26) = 3.44,

p = .012 ES 2g = .44). As expected, a post hoc ANOVA

indicated that, in the figure drawn frommemory, strokes were

significantly shorter and narrower, and standard deviation of

stroke height was significantly higher, whereas stroke width

was significantly lower.

MANOVA results with repeated-measures analyses of

means and standard deviations of pressure measures indi-

cated significant differences between copying and figure-

drawing from memory (F(2,30) = 4.86, p = .015

2g = .24). Post hoc ANOVA indicated that, as expected,

standard deviation of applied pressure was significantly

higher in drawing from memory as compared to figure

copying, reflecting greater performance variability. Means

and standard deviations (SD) are presented in Table 4.

MANOVA with repeated-measures analysis of means

and standard deviations of pen tilt and azimuth revealed no

significant differences between copying and drawing from

memory (F(4, 28) = .68, p = .61 2g = .89).

Hypothesis 3 suggested that computerized measures of

the drawing and writing process would predict the formal

quality of the final production. This was supported by the

results of the stepwise regression analysis, indicating that:

3A:1 The SD of mean stroke height in the ROCFT

copying task predicted 14 % of the ROCFT tradi-

tional scores (F(1,30) = 4.85, b = .38, p = .036);

mean pressure predicted an additional 12 %

(F(2,30) = 4.97, p = .014). Together, these two

computerized measures accounted for 26 % of the

variance in traditional ROCFT copying scores.

3A:2 Mean velocity of the ROCFT drawing-from-memory

task predicted 52 % of the traditional score

(F(1,26) = 27.69, b = .72, p\ .0001), while mean

pressure predicted an additional 6 % (F(2,26) =

18.80, p\ .0001). Together, these two computerized

measures accounted for 58 % of variance of the

traditional ROCFT drawing-from-memory score.

3B Mean pressure applied in paragraph copying pre-

dicted 12 % of the mean score for formal quality of

the written product (F(1,34) = 4.56, b = .-35,

p\ .040).

Discussion

The aim of this study was to explore whether computerized

measures of complex figure-drawing and paragraph-copy-

ing tasks can reveal more about the processes involved in

their production. We also predicted that these measures

would capture the mental workload required for perform-

ing these tasks and thus predict their respective perfor-

mance outcomes.

Table 1 Correlations between figure copying and paragraph copying

for identical computerized measures

ROCFT—copying Paragraph copying

Temporal measures

Mean stroke duration on-paper .16

Stroke duration on-paper SD .15

Mean stroke duration in-air .27

Stroke duration in-air SD -.05

Mean velocity .38*

Mean velocity SD .68**

Spatial measures

Mean stroke length -.06

Mean stroke length SD .48**

Mean stroke width -.05

Mean stroke width SD .75**

Mean stroke height -.14

Mean stroke height SD .75**

Pressure

Mean pressure .60**

Pressure SD .50**

Pen tilt and azimuth

Mean pen tilt .58**

Pen tilt SD .37**

Mean pen azimuth .65**

Pen azimuth SD .40**

* p\ .05; ** p\ .01
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As hypothesized, several measures of the ROCFT

copying were significantly correlated with the paragraph-

copying measures. Pressure on the writing/drawing surface

and the pen’s tilt and azimuth reflect the individual’s

mastery over the tool. Significant correlations were found

between mean velocity, standard deviation of mean

velocity, and standard deviation of the spatial measures

(stroke height, width, and length). We suggest that these

measures may reflect the actual movement sequence and

level of automaticity that could be expressions of individ-

ual style and the way in which the writer utilizes the visuo-

spatial WM sketch pad.

The next stage was to examine whether the level of

cognitive demand could be detected by means of comput-

erized measures. Analogous to the results of previous

studies, the conventional scores of the ROCFT drawing-

from-memory task were significantly lower than those of

figure copying (e.g., [22, 41]). To draw a figure from

memory, the individual uses visual–spatial working mem-

ory and attention in order to maintain its visual–spatial

image in mind [42].

It is important to note that, despite the higher cognitive

demands needed to draw the figure from memory as

compared to copying the figure, no significant differences

were found in the measures of pen tilt, pen azimuth, and

mean pressure. As previously mentioned, significant

moderate correlations were found for these measures in the

figure- and paragraph-copying tasks (r = .57–.65).The

current findings thus reinforce the hypothesis that the

measures reflect the individual’s mastery over the pen,

independent of the kind of task being performed.

Contrary to our expectations based on the reported lit-

erature, and despite the more cognitively challenging

demands of drawing a figure from memory, this task was

completed in significantly less time (in-air and on-paper)

than the figure-copying task. Furthermore, when drawing

from memory, individuals drew with significantly shorter

and narrower strokes. The less time spent in drawing from

memory as well as the shorter and narrower pen strokes

may be explained by the participants’ attempts to draw as

quickly as possible in order to decrease both the time

needed to maintain the memory of the image and the

cognitive demand on working memory [12, 24, 43]. While

mean temporal and spatial measures were lower, standard

deviations of stroke height and applied pressure on the

paper were significantly higher. This seems to reflect

greater variability in the ROCFT drawing-from-memory

performance.

Ultimately, these results indicate that kinematic tem-

poral, spatial, and pressure measures reflect the difference

Table 2 Comparison of

temporal measures (stroke

duration on-paper and in-air)

with means and standard

deviations (SD) for copying and

drawing from memory

Temporal measures Copying

n = 33

Mean (SD)

Drawing form memory

n = 33

Mean (SD)

F(4,28) p ES 2g

Mean stroke duration on-paper .94 (.27) .82 (.33) .35 .001 .32

Mean stroke duration in-air 1.77 (.57) 1.61 (.71) 11.41 .002 .27

Stroke duration on-paper SD .86 (.42) .79 (.46) 4.38 .045 .12

Stroke duration in-air SD 1.73 (.61) 2.61 (1.53) .011 N.S .00

Table 3 Comparison of spatial

measures (stroke length, width,

and height)—means and

standard deviations (SD) for

figure copying and drawing

from memory

Spatial measures Copying

n = 33

Mean (SD)

Drawing from memory

n = 33

Mean (SD)

F(6,29) p ES 2g

Mean stroke length 2.17 (.45) 2.16 (.52) 8.85 .006 .22

Mean stroke width 1.07 (.23) 1.01 (.26) 22.03 \.001 .41

Mean stroke height 1.16 (.25) 1.20 (.29) 1.92 N.S .06

SD of stroke length 2.07 (.56) 2.30 (.76) .09 N.S .003

SD of stroke width 1.29 (.32) 1.28 (.35) 8.56 .006 .21

SD of stroke height 1.52 (.37) 1.63 (.39) .003 N.S .00

Table 4 Comparison of

pressure means and standard

deviations for copying and

drawing from memory

Pressure measures Copying

n = 33

Mean (SD)

Drawing from memory

n = 33

Mean (SD)

F(2,30) p ES 2g

Mean pressure 862.10 (107.37) 851.00 (113.64) .36 N.S .01

Pressure SD 202.47 (32.45) 216.28 (39.24) 9.63 .004 .23
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in cognitive/mental load demands of each of the tasks

throughout their actual performance. The figure lines

drawn from memory demonstrated greater variability than

the copied lines, although the figures to be drawn were

identical. Variability in drawing from memory may be

because this task requires maintaining a visual represen-

tation of the figure within the memory while drawing.

From a developmental point of view vis-à-vis hand-

writing research, greater variability signifies lower levels of

automaticity and control during performance. The more

skilled and automatic the handwriting act, the less vari-

ability there will be in temporal (performance time), spatial

(length, height, width), and pressure (applied on or toward

a surface) measures, and greater consistency will be evi-

dent [44].

This study extends the findings of two previous studies

analyzing the influence of cognitive demands on real-life

task performance. In the first study, participants were asked

to write about true and false autobiographical events, based

on the assumption that false writing necessitates higher

cognitive demands [29]. In the second study, participants

were asked to write three numerical progressions with

different gaps and grades of difficulty [17]. Examination of

the combined results of the three studies reveals that tem-

poral measures reflected the change in cognitive load only

for current and numerical studies. On the other hand, in all

three studies, the change in cognitive load was reflected in

changes in the spatial measures, of which the tendency of

the measures was slightly different across the three studies.

Stroke length decreased and standard deviation of stroke

height increased in the current and the numerical studies. In

the true/false study, stroke length and standard deviation of

stroke width increased in the more cognitively demanding

task (false writing).

Concerning analysis of activity, in order to draw a figure

from memory or complete a series of numbers, the visual

representation of the figure or the gap between one number

and the next must be retained in working memory

throughout the performance. Conversely, when writing a

false story in which the narrative is created during the

writing process, there is no need to retain any specific

morphological or numerical information in visual memory.

Previous studies have indicated that, in contrast to tasks

with spatial demands, verbal tasks require other cognitive

resources such as attention and working memory (e.g.,

[45]). Park et al. [46] indicated that visuo-spatial and verbal

working memories are different processes manifested

through the processing speed and performance character-

istics of various tasks. It is possible that the amount of

active representation and actual cognitive processing

required in these tasks influences both the temporal and the

spatial measures. Specifically, whereas drawing from

memory requires active visual representation, the

numerical task is more time-consuming since an arith-

metical calculation is also involved, whereas in order to

write a fictional story, verbal representation is required.

When examining the combined results of these three

studies, the computerized system—including the spatial

and temporal measures—is evidently sensitive to changes

in cognitive demands and thus captures the ‘lived’ aspects

of the human mind [47].

Further support of the sensitivity of the computerized

measures to cognitive load was the finding that the quality

of the final product could be predicted from the comput-

erized measures of the actual performance; i.e., mean

pressure consistently predicted percentage of variance in

the product scores of the three tasks (ROCFT copying,

drawing from memory, and paragraph copying). This

finding relates to the finding in the current study that no

significant difference in pressure was found when com-

paring figure and paragraph copying, or figure copying and

drawing from memory, despite the higher cognitive

demands entailed.

With respect to mental workload, interaction exists

between the individual’s resources and the task demands

[27]. Mean pressure applied by the pen on the writing

surface was previously found to be sensitive to individual

performance capacity. For example, the pressure measure

differentiates between people with and without depression

or psychomotor slowness [16], as well as between children

with typical development and those who are clumsy (de-

velopmental coordination disorder [DCD]; [48]). Pressure

is one of the most commonly used dynamic features for

developing techniques for recognizing handwriting patterns

(e.g., [49]), such as for online signature verification (e.g.,

[50]). Similarly, velocity is also considered to be unique to

the individual and a basis of dynamic biometric signature

verification (e.g., [51, 52]). In the current study, mean

velocity predicted a high percentage (52 %) of variance of

the traditional ROCFT drawing-from-memory score. These

results are in line with previous findings, indicating that

pressure and velocity reflect the individual’s degree of

control of psychomotor actions required for accurate task

performance (e.g., [13]). Further studies with graded levels

of writing/drawing complexity are required in order to find

whether these two measures do indeed reflect the individ-

ual’s available cognitive resources in performing such

tasks.

In sum, we found that the objective computerized pro-

cess measures are both effective in describing the drawing

process and simple to obtain. The system is extremely user-

friendly, so that training the research assistant to collect

data with this device took less than 1 h. The system con-

tinuously detects changes in angle, distance, size, and

orientation during performance [9]. Furthermore, it enables

glancing into the unconscious aspects of the drawing
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process such as time ‘in-air’ and amount or variability of

pressure [53].

Thus, applying this system with varied drawing tasks

can be a practical aid in evaluation of neurological diseases

which cause cognitive deterioration such as Alzheimer’s or

Parkinson’s [10]. Nowadays there are other clinical eval-

uations such as the mini-mental-state Examination

(MMSE) [54] and clock drawing that are not computerized,

even though previous research has indicated the benefits of

computerizing the process [55–57].

The insights revealed in this study may be the first step

toward achieving automatic activity recognition [2] and

contribute to acquisition of more information about the

learning and reasoning processes [58] related to individual

visual-motor parameters and toward computational appli-

cations [9] such as evaluation (and even cognitive robots)

[58]. Our results also call for interdisciplinary research

with other methods of analysis such as signal processing,

machine learning, or biometric analysis (e.g., [9, 10, 59,

60]).

The study has certain limitations, among them the rel-

atively small sample size and the analysis methodology.

Future studies of a larger, more heterogeneous (in terms of

gender, age, and degree of education) random sampling of

participants are recommended, in order to increase gener-

alizability of the results. Additionally, a more advanced

analysis method such as a logistic regression-based neural

network model [61, 62] is also recommended.
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