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Abstract Cognitive computing needs to handle large

amounts of data and information. Spectral clustering is a

powerful data mining tool based on algebraic graph theory.

Because of the solid theoretical foundation and good

clustering performance, spectral clustering has aroused

extensive attention of academia in recent years. Spectral

clustering transforms the data clustering problem into the

graph partitioning problem. Cheeger cut is an optimized

graph partitioning criterion. To minimize the objective

function of Cheeger cut, the eigen-decomposition of p-

Laplacian matrix is required. However, the clustering re-

sults are sensitive to the selection of similarity measure-

ment and the parameter p of p-Laplacian matrix. Therefore,

we propose a self-tuning p-spectral clustering algorithm

based on shared nearest neighbors (SNN-PSC). This al-

gorithm uses shared nearest neighbors to measure the

similarities of data couples and then applies fruit fly opti-

mization algorithm to find the optimal parameters p of p-

Laplacian matrix that leads to better data classification.

Experiments show that SNN-PSC algorithm can produce

more balanced clusters and has strong adaptability and

robustness compared to traditional spectral clustering

algorithms.

Keywords Spectral clustering � Cheeger cut �
p-Laplacian � SNN � FOA

Introduction

Different from traditional computing technologies, cogni-

tive computing tries to achieve more natural human–

computer interaction by mimicking the cognitive process

of human [1, 2]. In the future, machines should have the

ability to learn and their intelligence degree will increase as

they are being used. As a representative of the cognitive

computing system, ‘‘Watson’’ computer developed by IBM

can realize autonomous learning like human brain through

real-time computing and analysis on large data [3]. So

cognitive computing centers on data, not on the processor.

How to dig useful information from complex data has

become a new challenge for cognitive computing. Clus-

tering is an effective unsupervised learning technique in

data mining field. According to the characteristics of data

or certain rules, clustering aims to classify data objects into

different sets (or clusters) so that the objects in the same set

have high similarities, while the objects from different sets

have relatively low similarities [4]. Classifying the unla-

beled data objects into different categories will help reveal

the real structure of original haphazard data and provide

assistance for further data analysis. In our daily life, clus-

tering techniques have been widely used in many appli-

cations, such as business customer analysis, biology data

processing, image segmentation, speech recognition and

medical diagnosis. [5].

The application of clustering techniques to cognitive

computing may help solve the imprecise and uncertain is-

sues in biological systems [6, 7]. Traditional clustering

algorithms, such as k-means algorithm, FCM algorithm and
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EM algorithm (Expectation Maximization), are based on

convex data space. When the spatial distribution of points

is not convex, these clustering algorithms may easily fall

into local optima. So they are not suitable for the clustering

problem on arbitrary shaped data space [8]. But in real

applications, many data points are distributed in anomalous

shapes. In order to solve this problem, many academic

researchers began to use spectral method to deal with non-

convex distributed data in recent years [9]. The main idea

of spectral method is converting the clustering problem on

data space into a graph partitioning problem on graph G,

where G is an undirected weighted graph. In graph G,

every point in the data set is as a vertex, and the similarity

value between each couple of points is as the weight of the

edge. Most spectral clustering algorithms have three steps:

firstly, define an affinity matrix to describe the similarities

of pairwise data objects according to the given data set;

secondly, construct Laplacian matrix and calculate its

eigenvalues and eigenvectors; thirdly, select appropriate

eigenvectors to group n data objects into k clusters.

In spectral clustering, the definition of graph cut criteria

is crucial. Graph cut criteria are the principle of how to

divide a weighted graph into several parts to make the

objective function reach the optimal solution. Its ultimate

goal is to maximize the connection weights within each

sub-graph, while minimize the connection weights between

sub-graphs [10]. The selection of graph cut criteria has a

direct impact on the quality of clustering results. Minimum

cut, ratio cut, normalized cut and average cut are classic

graph partition criteria [11]. However, seeking the optimal

solution of graph cut criteria is an NP-hard problem. For-

tunately, spectral method can provide a loose solution

within polynomial time for these optimization problems.

Here, ‘‘loose’’ means relax the discrete optimization

problem to the real number field, and then using some

heuristic approach to re-convert it to a discrete solution

[12]. The essence of graph partitioning can be summarized

as the minimization or maximization problem of matrix

trace. The completion of these minimizing or maximizing

tasks relies on the spectral decomposition of graph Lapla-

cian matrix.

Recently, an improved version of normalized cut named

Cheeger cut has aroused much attention [13]. Research

shows that Cheeger cut is able to produce more balanced

clusters by calculating the second eigenvector of p-Lapla-

cian matrix [14]. p-Laplacian matrix is a nonlinear gener-

alization form of graph Laplacian matrix. However, during

the clustering process, it is hard to build a high-quality

similarity matrix that can properly describe the intrinsic

relationship between data points; besides, the parameter

p of p-Laplacian matrix is sensitive and often requires

empirical knowledge to determine its value. In order to

solve these problems, this paper defines a novel similarity

measurement that takes advantage of the local density in-

formation embedded in shared nearest neighbors (SNN),

then uses fruit fly optimization algorithm (FOA) to auto-

matically determine the optimum value of parameter p, and

proposes a self-tuning p-spectral clustering algorithm based

on shared nearest neighbors (SNN-PSC).

This paper is organized as follows: Section 2 reviews

typical graph cut criteria and describes the concepts about

p-Laplacian matrix and then analyzes the relationship be-

tween p-Laplacian and Cheeger cut; Section 3 introduces

SNN similarity measure and fruit fly optimization method

to improve the performance of p-spectral clustering and

presents the specific scheme of SNN-PSC algorithm; Sec-

tion 4 verifies the effectiveness of SNN-PSC algorithm

through the experiments on both artificial data sets and

real-world data sets; the final part is a summary of this

paper and discusses some future research prospects.

Materials

Graph Cut Criteria

The idea of spectral clustering comes from spectral graph

partition theory. Donath and Hoffman established a link

between graph partitioning problem and the eigenvectors

of similarity matrix. Fiedler proved that the bipartition of a

graph is closely related to the second eigenvector of

Laplacian matrix [15]. According to Rayleigh–Ritz theory,

we can use the eigenvectors of Laplacian matrix to ap-

proximate the optimal solution of graph cuts [16].

The definition of graph cut criteria aims to find an op-

timal partition that the similarities within a cluster are as

large as possible and the similarities between clusters are as

small as possible. Given a data set, we can construct an

undirected weighted graph G = (V, E), where V is the set

of vertices represented by data points, E is the set of edges

weighted by the similarities between the edge’s two ver-

tices. Then the simplest graph partitioning problem based

on graph G is described as follows:

cut A1; . . .;Akð Þ ¼
Xk

i¼1

cut Ai; �Aið Þ ð1Þ

where cut A;Bð Þ ¼
P

i2A;j2B

wij, �Ai ¼ fvpjvp 2 V and vp 62 Aig
is the complementary set of sub-graph Ai. A good graph

partition is to minimize objective function (1), but this ob-

jective function only considers the external connections of

clusters, neglecting the density distribution within each

cluster. In addition, it is sensitive to the impact of outliers in

the data set, which will result in unbalanced data partition.

In order to get more balanced clusters, Hagen and

Kahng presented radio cut criterion, denoted as Rcut [17]:
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Rcut A1; . . .;Akð Þ ¼
Xk

i¼1

cut Ai; �Aið Þ
Aij j ð2Þ

Rcut objective function introduces cluster size as a

balancing item to minimize the similarity between clusters,

which can avoid unbalanced partition to some extent. But

more vertices are not a necessary and sufficient condition

of large similarity within clusters, so Shi and Malik pro-

posed normalized cut, denoted as Ncut [18]:

Ncut A1; . . .;Akð Þ ¼
Xk

i¼1

cut Ai; �Aið Þ
vol Aið Þ ð3Þ

where volðAiÞ ¼
P

p2Ai;q2V
wpq. Minimizing the objective

function means minimizing the total weights between sub-

graphs and maximizing the inner weights of each sub-

graph at the same time, so it is able to generate better

classification results. However, as a nonlinear function of

the projection matrix, this objective function may fall into

local minimum.

Cheeger et al. [19] improved normalized cut and pro-

posed Cheeger cut, denoted as Ccut:

CcutðA1; . . .;AkÞ ¼
Xk

i¼1

cut Ai; �Aið Þ
min Aið Þ ð4Þ

The objective function of Ccut wants to make the

data within the cluster be more compact, which means

that the correlation between the cluster size (the num-

ber of data points in a cluster) and the total cut weight

of the cluster is as small as possible after clustering.

But according to the Rayleigh quotient principle, cal-

culating the optimal Cheeger cut is an NP-hard prob-

lem. Next we will try to get an approximate solution of

Cheeger cut by introducing p-Laplacian into spectral

clustering.

Graph p-Laplacian

Spectral graph theory is inextricably linked with graph

Laplacian matrix. Rayleigh quotient principle indicates that

the optimization of graph cut problem is equivalent to

calculating the eigenvalues of Laplacian matrix, which

provides a relaxed solution of the theoretically optimal

graph partition. Hein et al. [20] defined the inner product

form of standard graph Laplacian D2 as follows:

f ;D2fh ii ¼
1

2

Xn

i;j¼1

wijðfi � fjÞ2 ð5Þ

where f is the eigenvector of Laplacian matrix. Assuming

the Laplacian operator is generalized to Dp, where p [ (1,

2], then Dp can be denoted as:

f ;Dpf
� �

i
¼ 1

2

Xn

i;j¼1

wijðfi � fjÞp ð6Þ

Laplacian matrix L has un-normalized form and nor-

malized form. Un-normalized Laplacian matrix is repre-

sented as L = D - W, and the normalized form is

represented as L = I - D-1 W, where W is the affinity

matrix, D is a diagonal matrix. It is not difficult to derive

the corresponding un-normalized and normalized form of

p-Laplacian matrix:

ðDðuÞ
p f Þi ¼

X

j2V
wijupðfi � fjÞ ð7Þ

ðDðnÞ
p f Þi ¼

1

di

X

j2V
wijupðfi � fjÞ ð8Þ

where di =
P

j=1
n wij is the degree function of graph, up

(x) = |x|p-1sign(x), and when p = 2, u2ðxÞ ¼ x. Taking

un-normalized p-Laplacian matrix, for example, next we

give the definition of p-Laplacian’s eigenvalue kp.

Definition 1 If there is a real number kp satisfying formula

(9), kp is the corresponding eigenvalue of eigenvector f.

DðuÞ
p f

� �

i
¼ kpup fið Þ; 8i ¼ 1; . . .; n ð9Þ

In matrix operation, the eigenvector corresponding to

the smallest eigenvalue is expected to contain important

discrimination information. This property is also play an

important role for clustering algorithm. Related studies

have shown that [21], in linear operation, if k is the

smallest eigenvalue of an operator D, k should satisfy

formula (10) to reach the lower bound.

k ¼ argmin
f2Rn

f ;Dfh i
fk k2

ð10Þ

where fk k2¼
Pn

i¼1

fij j2. Definition 2 applies this feature to

nonlinear p-Laplacian operator.

Definition 2 If kp is the smallest eigenvalue of p-Lapla-

cian operator Dp, kp should satisfy formula (11) to reach the

lower bound.

kp ¼ argmin
f2Rn

f ;Dpf
� �

fk kp ð11Þ

According to formula (11), the objective function of un-

normalized p-Laplacian operator is constructed as:

Fpðf Þ ¼
f ;DðuÞ

p f
D E

fk kp ¼

1
2

Pn

i;j¼1

wij fi � fj
�� ��p

fk kp ð12Þ

624 Cogn Comput (2015) 7:622–632

123



The above analysis indicates that the lower bound value

of Fp(f) is related to the eigenvalues and eigenvectors of Dp.

As the category information of data points is implicit in the

eigenvectors of p-Laplacian matrix, the eigen-decomposi-

tion of p-Laplacian matrix is an essential part for spectral

clustering. Similarly, the objective function of normalized p-

Laplacian matrix can be obtained in the same way.

The Relationship Between p-Laplacian and Cheeger

Cut

Cheeger cut can enhance the relationships within clusters

and weaken the relationships between clusters, so it is able

to produce more balanced sub-graphs. Since seeking the

optimal solution of Cheeger cut is an NP-hard problem, we

introduce p-Laplacian operator to make the original problem

be solved in polynomial time. Related researches give evi-

dence that the graph can be recursively divided into two

parts using the second eigenvector vp
(2) of p-Laplacian matrix

until the number of sub-graphs meets the requirements.

Theorem 1 For a segmentation problem ðAi; �AiÞ, if the

objective function of Cheeger cut is CcutðA1; . . .;AkÞ ¼

Pk

i¼1

cut Ai; �Aið Þ
min Aið Þ and the objective function of p-Laplacian matrix

is Fp(f), then the solution of Fp(f) is approximate to the

relaxed solution of Cheeger cut.

Proof First define an associated partition (f, Ai), ex-

pressed as:

ðf ;AiÞ ¼

1

Aij jp�1
i 2 Ai; p 2 ð1; 2�

1

�Aij jp�1
i 2 �Ai; p 2 ð1; 2�

8
>><

>>:
ð13Þ

In order to obtain the minimum eigenvalue of objective

function, we use formula (13) to transform formula (12)

into the following expression:

Fpðf ;AiÞ ¼

P
ij

wij
1

Aij jp�1 � 1
�Aij jp�1

���
���
p

f ;Ak kpp
ð14Þ

where f ;Ak kpp¼
P
i

fi;Aj jp ¼ 1

Aij jp�1 � 1
�Aij jp�1, then formula

(14) can be converted to

Fpðf ;AiÞ ¼

P
ij

wij
1

Aij jp�1 � 1
�Aij jp�1

���
���
p

1

Aij jp�1 � 1
�Aij jp�1

���
���

¼
X

ij

wij

1

Aij jp�1
� 1

�Aij jp�1

�����

�����

p�1

�
X

ij

wij

2

min Aij j; �Aij jf g

����

����
p�1

¼ 2p�1 cut Ai; �Aið Þ
min Aij j; �Aij jf g

Comparing the above inequality with the objective

function of Cheeger cut, we can see that

lim
p!1

Fpðf ;AiÞ ¼ Ccut Ai; �Aið Þ ð15Þ

So the solution of Fp(f) is a relaxed approximate solution of

Cheeger cut. Thus the optimal minimized objective func-

tion can be expressed as:

kp ¼ argmin
p!1

Fpðf Þ ð16Þ

where kp is the eigenvalue corresponding to eigenvector f.

The foregoing analysis shows that the problem of

Cheeger cut can be solved by constructing p-Laplacian

matrix and calculating its eigenvectors. Specifically, the

second eigenvector vp
(2) of p-Laplacian matrix will lead to a

bipartition of the graph by setting an appropriate threshold

[8]. The optimal threshold value should minimize its cor-

responding Cheeger cut.

Un-normalized graph p-Laplacian matrix Dp
(u) corre-

sponds to ratio Cheeger cut RCCðC; �CÞ ¼ cut C; �Cð Þ
min Cj j; �Cj jf g,

whose second eigenvector vp
(2) should satisfy formula (17):

argmin
At¼ i2Vjvð2Þp ðiÞ [ tf g

RCC At; �Atð Þ ð17Þ

Normalized graph p-Laplacian matrix Dp
(n) corresponds

to normalized Cheeger cut NCC C; �Cð Þ ¼
cut C; �Cð Þ

min volðCÞ;volð �CÞf g, whose second eigenvector vp
(2) should

satisfy formula (18):

argmin
At¼ i2Vjvð2Þp ðiÞ [ tf g

NCCðAt; �AtÞ ð18Þ

Methods

How to select a proper distance measurement that can truly

describe the internal structure of data set is a critical factor to

p-spectral clustering. Data points in the same group should

have high similarity and space consistency. The quality of

similarity matrix will make a great influence on the per-

formance of spectral clustering [22]. The most common

method of measuring the similarities between data points is

Gaussian kernel function. However, in Gaussian kernel, the

scale parameter r is usually fixed, so the pairwise data

similarity only depend on their Euclidean distance, lacking

adaptability to their surrounding points [23]. When dealing

with complex multi-scale data sets, the similarity simply

based on Euclidean distance cannot accurately reflect the

distribution of data, which would significantly reduce the

performance of spectral clustering, resulting in poor clus-

tering partition.
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Shared-Nearest-Neighbors Similarity Measure

This paper presents a novel similarity measure, which can

adaptively adjust the similarities between data points ac-

cording to their local density. Researchers found that if two

points belong to the same cluster, they should locate in the

same area with a relatively high density. And between

these two points, there will be many intermediate points to

bond them together. In order to reflect the glue effect be-

tween two points, we define ‘‘shared nearest neighbors’’

(SNN) and use it to extend the self-tuning Gaussian kernel

to enlarge the similarities within a cluster.

SNN(a, b) is the number of data points in the intersec-

tion of the e-neighborhood of point a, b. The e-neighbor-
hood of a point is a spherical region with this point as the

sphere center and e as the radius. SNN(a, b) reflects the

local density of point a and point b, helping to distinguish

the points in the same cluster or in different clusters. For

example, in Fig. 1, point a, b has more common neighbors

than point a, c, so SNN(a, b)[ SNN(a, c). According to

this fact, SNN can guide the algorithm to find the right

cluster members.

As SNN is adaptive to the local density of data, it can be

used to improve the pairwise similarity of data points, and

the mathematical expression is given as follows:

wLðxi; xjÞ ¼ exp � dðxi; xjÞ2

rirjðSNNðxi; xjÞ þ 1Þ

 !
i 6¼ j

0 i ¼ j

8
><

>:

ð19Þ

where ri and rj are, respectively, the Euclidean distance

from point xi , xj to their m-th nearest neighbors. ri and rj
can automatically and timely adjust themselves according

to the sparse or dense distribution of data points within the

neighborhoods of point i , j. When two points are located in

a relatively sparse cluster, we may enlarge their similarity

appropriately by adjusting the scale parameter r. In this

way, the points of sparse cluster will have more chance to

be grouped together.

This density adaptive similarity measurement has the

following features:

1. If d(xi, xj) C 2e, then SNN(xi, xj) = 0, wL(xi, xj) =

exp (-d(xi, xj)
2/rirj), which means that the threshold e

is a local parameter and will not affect distant data

points.

2. For two pairs of points xi, xj and xm, xn, assume d(xi,

xj) = d(xm, xn)\ 2e, but in fact, xi, xj are in the same

dense region, while xm, xn are in different dense

regions, then there is a great possibility wL(xi, xj)[
wL(xm, xn). For example, in Fig. 1, wL(a, b)[wL(a, c).

It can be seen from feature (2) that this measurement is

density sensitive. It can enlarge the data similarities within

the same cluster and weaken the similarities between dif-

ferent clusters. Since clusters are a few dense regions of

data set, the SNN-based similarity measurement is able to

reflect the distribution of data points in a better way.

Fruit Fly Optimization Method

Although using p-Laplacian operator is able to get an ap-

proximate solution of Cheeger cut, it is not easy to deter-

mine the parameter p of p-Laplacian matrix. If p’s value is

improper, the algorithm would be misled and produce poor

clustering results. In order to solve this problem and improve

the clustering accuracy, this paper introduces fruit fly opti-

mization method to find the optimal parameters p. Fruit fly

optimization algorithm [24] is a novel global optimization

method deduced from the foraging behavior of drosophila.

Drosophila’s sensory perception is superior to other species,

especially in the sense of smell and vision. The olfactory

organ of fruit fly can well collect various smells floating in

the air. When flying near to food, fruit flies will lock the

food position by their sharp sense of sight and fly to the

direction where their companions are gathered.

Compared with other swarm intelligence algorithms,

FOA is simple and easy to understand (for example, the

objective function of particle swarm optimization is a

second-order differential equation [25], while that of FOA

is a first-order differential equation). FOA is also an effi-

cient algorithm and may spend less running time to find the

optimal solution. Besides, FOA only has four parameters,

but other swarm intelligence algorithms need to adjust at

least seven or eight parameters. In these algorithms, the

complex relationships and interactions between parameters

are difficult to study clearly, and improper parameter val-

ues will seriously affect the performance of algorithm,

resulting in large calculation errors. According to the

characteristics of drosophila searching for food, the specific

steps of FOA are shown as Algorithm 1.Fig. 1 Common neighbors on Two-Moon data set

626 Cogn Comput (2015) 7:622–632

123



Algorithm 1 Fruit fly optimization algorithm

Input: population size Sizepop, maximum iteration

number Maxgen

Output: the optimal value of fitness function, the optimal

parameter p

Step 1: Randomly initialize fruit flies’ population

location X_axis, Y_axis.

Step 2: Set a random direction and distance for each

fruit fly searching food with its olfactory; RandomValue is

the search distance:

Xi ¼ X axisþ RandomValue

Yi ¼ Y axisþ RandomValue

�
ð20Þ

Step 3: As not knowing the exact location of food, first

estimate the distance Disti between the new position and

the origin and then calculate the determine value Si of

smell concentration on the new position, which is the

reciprocal of the distance:

Disti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i þ Y2

i

q
ð21Þ

Si ¼ 1=Disti ð22Þ

Step 4: Bring the determine value Si into smell

consistence decision function (or called fitness function)

to calculate the smell concentration Smelli relative to the

position of fruit fly:

Smelli ¼ FunctionðSiÞ ð23Þ

Step 5: Identify the Drosophila that having the best

smell concentration (best individual) in fruit fly population:

½bestSmell bestindex� ¼ minðSmelliÞ ð24Þ

Step 6: Record and retain the best smell concentration

value bestSmell and its X, Y coordinates, and then the

Drosophila groups will fly to this position using their visual

sense:

Smellbest ¼ bestSmell

X axis ¼ XðbestindexÞ
Y axis ¼ YðbestindexÞ

8
<

: ð25Þ

Step 7: Enter the iterative refinement process, repeat

from Step 2 to Step 5, and determine whether the best smell

concentration is better than the previous value. Meanwhile,

make sure the current iteration time is less than the

maximum iteration number Maxgen, otherwise jump to

Step 6.

Self-Tuning p-Spectral Clustering Algorithm Based

on Shared Nearest Neighbors

In order to improve the performance of p-spectral cluster-

ing algorithm, this paper introduces SNN similarity mea-

sure and fruit fly optimization method and proposes a self-

tuning p-spectral clustering algorithm based on shared

nearest neighbors (SNN-PSC). Its main idea is as follows:

first, measure the similarity of pairwise points according to

their shared neighbors’ number to construct similarity

matrix; recursively divide the sub-graph into two parts and

calculate the eigenvalues and eigenvectors of p-Laplacian

matrix; use fruit fly optimization method to determine the

optimum value of parameter p; minimize the graph cut

criterion; and finally obtain high quality clustering results.

The detailed steps of SNN-PSC algorithm are given in

Algorithm 2, and its flowchart is shown in Fig. 2.

Algorithm 2 Self-tuning p-spectral clustering algorithm

based on shared nearest neighbors

Input: data set X = {x1, x2, …, xn}, the number of

clusters k

Output: k divided clusters

Step 1: According to formula (19), calculate the

similarities between data points based on ‘‘shared near-

est-neighbors’’ and create the similarity matrix W 2 Rn9n.

Step 2: Initialize the first cluster A1 = V and set the

cluster number s = 1.

Step 3: Repeat from Step 3 to Step 7.

Step 4: Construct p-Laplacian matrix according to

formula (7) or (8); then treat the objective function Fp(f) as

FOA’s fitness function and use FOA algorithm to find the

optimal parameter p to minimize the fitness function.

Step 5: Calculate the second eigenvector vp
(2) of un-

normalized p-Laplacian matrix Dp
(u) (or normalized p-

Laplacian matrix Dp
(n)) and search an appropriate threshold

value that satisfies formula (17) (or formula (18)].

Step 6: Use vp
(2) to split each cluster Ai(i = 1, 2,…, s) and

minimize the overall cut criterion [ratio cut (2) corresponds to

Dp
(u), normalized cut (3) corresponds to Dp

(n)].

Step 7: s ( s ? 1.

Step 8: When the number of clusters s = = k, stop the

loop and output the clustering results.

Discussion

In order to analyze the clustering performance of proposed

SNN-PSC algorithm, we conduct the experiments on both

artificial data sets and UCI real-world data sets, and com-

pare SNN-PSC algorithm with the standard spectral clus-

tering algorithm (denoted as SSC) [26], p-spectral

clustering algorithm (denoted as PSC) [14]. In the ex-

periments, SNN-PSC algorithm’s population size Size-

pop = 50, maximum iterations Maxgen = 100; SSC

algorithm’s scale parameter r = 1.2. On artificial data sets,

PSC algorithm’s Laplace parameter p = 1.5; on UCI data

sets, the value of p is 1.8, 1.6, 1.4, 1.2, respectively. The

experimental environments of computer are as follows:

Cogn Comput (2015) 7:622–632 627
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Pentium dual-core 2.60 GHz CPU, 2 GB RAM, MATLAB

2013a programming platform.

Experiments on Artificial Data Sets

There are two kinds of artificial data sets used in the ex-

periments, namely Two-Moon data set and Two-Gaussian

data set. Each data set has two types ‘‘Balanced’’ and

‘‘Unbalanced’’. Every type of data set contains 1000 data

points embedded in a 10-dimensional space. And Gaussian

noise N(0, r2) is added in these data sets; the noise variance
r2 = 0.01. The characteristics of different data sets are

given in Table 1.

Figure 3 shows the clustering results of three algorithms

on Two-Gaussian data sets. The first row is SSC algorithm,

the second row is PSC algorithm, and the third row is SNN-

PSC algorithm. It can be seen from the figure that the

clustering performance of these three algorithms is quite

Begin

Input: Dataset X
Cluster number k

Create the similarity matrix W
based on SNN

Output: k clusters

End

Calculate the similarities between 
data points

Use FOA to find the optimal 
parameter p to minimize

Construct p-Laplacian matrix

Clustering initialization:

Yes

No

Calculate the second eigenvector
of , meeting the optimal 

segmentation threshold

Divide each cluster       with
so that cut criterion minimum

Fig. 2 Flowchart of SNN-PSC

algorithm
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well on balanced Two-Gaussian data set. When the data set

is unbalanced, PSC algorithms and SNN-PSC algorithm

can still effectively classify the data points into two groups,

but for SSC algorithm, partial points of sparse cluster are

erroneously assigned into the dense cluster and the clus-

tering result is not satisfactory.

Figure 4 shows the clustering results of three algorithms

on Two-Moon data sets. The first row is SSC algorithm, the

second row is PSC algorithm, and the third row is SNN-

PSC algorithm. It can be seen from the figure that SSC

algorithm performs badly on both balanced data set and

unbalanced data set; PSC algorithm can effectively handle

balanced Two-Moon data set, but may produce error par-

titions for unbalanced data set; only SNN-PSC algorithm

has strong adaptive capacity and can obtain better clus-

tering results on the two types of data sets.

Experiments on Real-World Data Sets

To further verify the effectiveness of SNN-PSC algorithm,

we select five real data sets from UCI machine learning

database. Their data characteristics are shown in Table 2.

Table 1 Characteristics of artificial data sets

Data set Data set type Number of data points

Class 1 Class 2

Two-Gaussian Balanced 483 517

Unbalanced 199 801

Two-Moon Balanced 512 488

Unbalanced 195 805
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Fig. 3 Clustering results on Two-Gaussian data sets. a SSC algo-

rithm (Balanced dataset), b SSC algorithm (Unbalanced dataset),

c PSC algorithm (Balanced dataset), d PSC algorithm (Unbalanced

dataset), e SNN-PSC algorithm (Balanced dataset), f SNN-PSC

algorithm (Unbalanced dataset)
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Clustering error rate (CE) is a commonly used method to

evaluate the performance of clustering [27]. After obtain-

ing the clustering results, we need to build a permutation

mapping function to find corresponding relationship

between the cluster label and the actual class label. Clus-

tering error rate is based on this mapping relationship, and

its calculation formula is as follows:

CE ¼ 1� 1

n

Xn

i¼1

dðyi;mapðciÞÞ ð26Þ

where yi is the true class label, ci is the serial number of

clusters obtained by clustering algorithm, dðx; yÞ ¼

1 x ¼ y

0 x 6¼ y

�
is a discriminant function. Among all possible

corresponding relations, clustering error rate is determined

by the case that the number of misclassified data points is

the minimum. The smaller the clustering error rate, the

better the performance of clustering algorithm.
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Fig. 4 Clustering results on Two-Moon data sets. a SSC algorithm

(Balanced dataset), b SSC algorithm (Unbalanced dataset), c PSC

algorithm (Balanced dataset), d PSC algorithm (Unbalanced dataset),

e SNN-PSC algorithm (Balanced dataset), f SNN-PSC algorithm

(Unbalanced dataset)

Table 2 Characteristics of UCI data sets

Data set Number of

samples

Number of

attributes

Number of

classes

Dermatology 366 34 6

Heart 270 14 2

WDBC 569 30 2

Wine 178 13 3

Zoo 101 16 7
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We first test the clustering performance of PSC algo-

rithm on UCI real-world data sets. The clustering results

are shown in Fig. 5. In Fig. 5, the horizontal coordinate is

the parameter p of p-Laplacian matrix with different values

and the vertical coordinate is the CE rates of algorithm on

different data sets. From Fig. 5, we can see that with the

changes in p’s value, the clustering performance of PSC

algorithm also swings up or down. The fluctuation of the

curves indicates that PSC algorithm is easily affected by

parameter p. For different data sets, in order to give full

play to the performance of PSC algorithm, the selection of

proper parameters is crucial. So we use FOA algorithm to

automatically find the optimal parameter p to improve the

clustering performance. Table 3 shows the concrete com-

parison of the CE rates and clustering time of SSC algo-

rithm, PSC algorithm, FOA-PSC algorithm and SNN-PSC

algorithm on UCI data sets. FOA-PSC algorithm served as

a control uses FOA directly on the parameter selection for

PSC, without introducing the SNN measure.

From the experimental data, we can see that the clus-

tering time of SSC algorithm on each data set is the

shortest, but its clustering performance is not as good as

PSC algorithm, FOA-PSC algorithm and SNN-PSC algo-

rithm. PSC algorithm is sensitive to the value of parameter

p; when p is set with different values, the clustering time

will make a great difference. As shown in Table 3, with p’s

value gets close to one, it will cost much more time for

PSC algorithm to converge. FOA-PSC algorithm performs

much better than PSC algorithm as its parameter p is op-

timized and its clustering error rate is the lowest on Der-

matology data set. But for the rest of data sets, the CE rates

of SNN-PSC algorithm are much lower than the others,

which demonstrates that SNN-PSC can provide better

clustering results. Because in SNN-PSC algorithm, the

similarity matrix is constructed by SNN method, which can

well describe the intrinsic link between data points, and

FOA algorithm is used to adaptively search the optimum

value of parameter p, avoiding the blindness of parameter

selection, so the clustering accuracy is improved to some

extent.

Conclusion

In spectral clustering, an undirected weighted graph made

up of data points will be separated into a series of sub-

graphs. And each sub-graph represents a cluster in the final

clustering results. Cheeger cut criterion can produce bal-

anced clusters, but according to algebraic graph theory,

calculating the global optimal solution of Cheeger cut is an

NP-hard problem. An approximate solution is relaxing the

Fig. 5 Clustering performance of PSC with different parameter p

Table 3 The clustering

performance of different

algorithms on UCI data sets

Data set SSC PSC FOA-PSC SNN-PSC

p = 1.8 p = 1.6 p = 1.4 p = 1.2

Dermatology

CE 0.3786 0.4185 0.3741 0.3995 0.3851 0.3672 0.3750

Time (s) 0.59 9.25 23.51 15.06 45.18 17.33 18.62

Heart

CE 0.3281 0.3161 0.3227 0.3256 0.3185 0.3153 0.3074

Time (s) 0.31 8.87 13.52 32.94 58.11 23.18 21.85

WDBC

CE 0.1567 0.1523 0.1594 0.1477 0.1612 0.1477 0.1459

Time (s) 1.81 11.62 16.67 53.69 106.23 55.62 57.91

Wine

CE 0.3206 0.2738 0.3056 0.2941 0.2509 0.2487 0.2326

Time (s) 0.13 20.43 17.03 12.91 74.73 35.46 40.28

Zoo

CE 0.3162 0.2595 0.2743 0.2845 0.2637 0.2595 0.2574

Time (s) 0.51 4.37 3.99 9.32 25.04 6.57 8.36
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discrete optimization problem to the real number field by

the eigen-decomposition of p-Laplacian matrix. As the

similarity measurement plays an important role in p-spec-

tral clustering, this paper develops a density adaptive

similarity measurement based on shared nearest neighbors,

which takes into account the neighborhood condition of

each data point and may reveal the local density informa-

tion of data structure. Then we present a SNN-based self-

tuning p-spectral clustering algorithm called SNN-PSC. In

order to avoid the negative influence of parameter selec-

tion, FOA method is used to determine the optimal pa-

rameter p of p-Laplacian operator. Comprehensive

experiments on both artificial and real-world data sets

demonstrate that SNN-PSC algorithm is robust to the noise

around data points. The performance of SNN-PSC is much

better than that of the standard spectral clustering algorithm

and p-spectral clustering algorithm. Next we will study

how to reduce the computational complexity of SNN-PSC

algorithm and improve its operating efficiency.
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