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Abstract Text classification often faces the problem of

imbalanced training data. This is true in sentiment analysis

and particularly prominent in emotion classification where

multiple emotion categories are very likely to produce natu-

rally skewed training data. Different sampling methods have

been proposed to improve classification performance by

reducing the imbalance ratio between training classes. How-

ever, data sparseness and the small disjunct problem remain

obstacles in generating new samples for minority classes when

the data are skewed and limited. Methods to produce mean-

ingful samples for smaller classes rather than simple dupli-

cation are essential in overcoming this problem. In this paper,

we present an oversampling method based on word embed-

ding compositionality which produces meaningful balanced

training data. We first use a large corpus to train a continuous

skip-gram model to form a word embedding model main-

taining the syntactic and semantic integrity of the word fea-

tures. Then, a compositional algorithm based on recursive

neural tensor networks is used to construct sentence vectors

based on the word embedding model. Finally, we use the

SMOTE algorithm as an oversampling method to generate

samples for the minority classes and produce a fully balanced

training set. Evaluation results on two quite different tasks

show that the feature composition method and the oversam-

pling method are both important in obtaining improved clas-

sification results. Our method effectively addresses the data

imbalance issue and consequently achieves improved results

for both sentiment and emotion classification.

Keywords Sentiment analysis � Emotion classification �
Imbalanced training � Word embedding � Semantic

compositionality

Introduction

With the growing popularity of media-sharing services in

what is known as Web 2.0, millions of people share their

opinions, sentiments, and emotions over the web. These

data provide valuable information for social analysis,

commercial promotion, and many other applications. This

motivates our research on text-based sentiment and emo-

tion analysis presented here.

The current mainstream algorithms for sentiment and

emotion classification are machine learning based classifi-

cation methods, especially supervised learning algorithms.

However, imbalanced training data are obstacles for

supervised learning. Skewed training data for different

classes lead to class predictions dominated by the larger

groups and increased misclassification for underrepre-

sented classes [29, 43]. Many real-world machine learning

systems are faced with data imbalance, as it naturally

occurs in data. The data imbalance problem is particularly

serious in sentiment and emotion classification. Two

widely used Chinese emotion corpora serve as typical

R. Xu � T. Chen � B. Liu � X. Wang

Shenzhen Engineering Laboratory of Digital Stage Performance

Robot, Harbin Institute of Technology Shenzhen Graduate

School, Shenzhen, Guangdong, China

e-mail: chentao1999@gmail.com

Y. Xia

Research Institute of Information Technology, Tsinghua

University, Beijing, China

e-mail: yqxia@tsinghua.edu.cn

Q. Lu (&)

Department of Computing, The Hong Kong Polytechnic

University, Kowloon, Hong Kong

e-mail: csluqin@comp.polyu.edu.hk

123

Cogn Comput (2015) 7:226–240

DOI 10.1007/s12559-015-9319-y



examples. The Ren-CECps and NLPCC2013 datasets1;2

have eight and seven emotion categories, and the training

samples corresponding to the largest emotion category are

about 10 and 11 times the size of the smallest category,

respectively [18]. A similar imbalance occurs in most

available sentiment corpora. Imbalanced training data are

major obstacles to further improve the performance of

sentiment and emotion classification.

Different methods have been proposed to address this

problem. Generally speaking, these methods can be divided

into three major groups [29]: algorithmic modification [42],

cost-sensitive learning [41], and data sampling [17]. The

algorithmic modification approach uses an adaptive

approach built into the learning methods to address imbal-

ance issues [29]. The cost-sensitive learning approach adds

a training penalty cost for majority classes with respect to

minority classes. The data sampling approach aims to pro-

duce balanced data class distribution by adjusting training

data before training. Thus, this final approach is largely

independent from the learning methods. Typical data sam-

pling methods include under-sampling, oversampling and

hybrid methods [29]. Under-sampling methods eliminate

some instances in the majority classes [29], whereas over-

sampling methods generate new instances for minority

classes. When the training dataset is small (as is typical for

emotion classification), under-sampling methods further

reduce the number of samples, which can be detrimental to

the classification performance. Thus, under-sampling is

inappropriate in emotion classification. The Synthetic

Minority Oversampling TEchnique (SMOTE) [15] is the

most renowned oversampling method. SMOTE has a

number of variants including Borderline-SMOTE [24],

Safe-Level-SMOTE [7], and DBSMOTE [8]. Hybrid

methods make combined use of oversampling and under-

sampling methods [16] which is also not commonly used in

opinion analysis.

Among existing solutions to address data imbalance,

data sampling is the most practical and applicable to a

wider range of applications. However, for many natural

language text-based classification tasks, especially for text

sentiment and emotion classification, the performance

improvement from using oversampling is minimal when

features are based on surface forms such as the Bag-of-

Words (BOW) representation. This is because BOW can

generate thousands of unigram and/or bigram features and

the resulting high-dimensional feature space may be sparse

and have small disjuncts [27, 41]. Data sparseness is a

major hindrance to machine learning classification [5].

Small disjuncts lead to more specific decision regions

following oversampling which can lead to over-fitting [8].

Unlike the BOW representation, word embedding is a

distributed representation of words [5]. It uses learning

vector representations based on a neural probabilistic lan-

guage model [32]. Word embedding and its compositional

extensions to sentences and documents are expected to

alleviate data sparseness and the small disjunct problem

since the resulting data are low dimensional, dense, and

continuous. In this paper, we propose a novel method based

on Word Embedding Compositionality with Minority

Oversampling TEchnique (WEC-MOTE), which uses an

oversampling approach based on word embedding com-

positionality to address data imbalance in sentiment and

emotion classification. We first use a large corpus to train a

continuous skip-gram model [30] to construct word

embedding maps. Skip-grams contain word sequence

information and can thus better capture semantic informa-

tion contained in longer lexical units than isolated words.

Next, sentence vectors are constructed by a compositional

algorithm based on recursive neural tensor network

(RNTN) [39]. This models the training sentences using

word embedding as features. The resulting sentence vectors

are lower in dimension, and thus dense, and consequently

are better representing the semantic information of the

original sentences. This is particularly significant for cap-

turing sentiment and emotion information. Sentence vectors

are then used as the input for oversampling. New sentence

vectors corresponding to minority classes are iteratively

generated using the SMOTE algorithm. The algorithm takes

the size of the largest majority class as a parameter to

produces a fully balanced training dataset for all classes.

The proposed WEC-MOTE algorithm is evaluated on

two datasets. The first dataset is generated from the Stan-

ford sentiment treebank containing only polarity labels at

the sentence level. We purposely selected an imbalanced

subset to evaluate our proposed approach. The second set is

the NLPCC2013 Chinese micro-blog data with seven dis-

crete emotion labels at the sentence level. The machine

learning algorithms we experimented with are the Naive

Bayes method and the support vector machine (SVM)

method. The baseline system uses BOW as features with no

sampling. We also test linear word embedding and com-

positional word embedding using different oversampling

methods. Our proposed method shows a significant

improvement over the baseline system. The combined use

of word embedding compositionality and SMOTE over-

sampling is the most effective.

The rest of this paper is organized as follows. ‘‘Related

Work’’ section reviews related work. ‘‘Word Embedding

Compositionality-Based Oversampling’’ section presents

the WEC-MOTE algorithm. ‘‘Performance Evaluation’’

section provides the evaluation results and discussion.

‘‘Conclusion and Future Directions’’ section provides the

conclusion and future research directions.

1 http://tcci.ccf.org.cn/conference/2013/dldoc/evsam02.zip.
2 http://tcci.ccf.org.cn/conference/2013/dldoc/evdata02.zip.
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Related Work

Sentiment and Emotion Classification

Cambria et al. divide current sentiment and emotion clas-

sification techniques into four major categories: keyword

spotting, lexical affinity, concept-based, and statistic and

machine learning [14].

Keyword spotting classifies text by sentiment categories

based on the presence of unambiguous sentiment words. It

relies heavily on surface form of word features and is not

fully robust when handling negated expressions.

Lexical affinity also detects keywords but goes beyond the

aforementioned method by assigning arbitrary words a

probable ‘‘affinity’’ to a particular sentiment or emotion. The

affinity value and the unambiguous sentiment words are used

for classification. The main drawback of this method is that it

is domain dependent and thus not typically reusable.

The concept-based approach uses web ontology or

semantic networks (e.g., SenticNet [13]) as the knowledge

base to analyze the conceptual and affective information

associated with opinions in text [20, 22]. The concept-

based approach relies on the depth and breadth of the

knowledge bases used. Cambria et al. [12] built a knowl-

edge base called SenticSpace which merges commonsense

knowledge and affective knowledge to obtain a multi-

dimensional vector space. The concept-based approach

incorporates commonsense reasoning, which significantly

enhanced the emotional intelligence of computer systems

[11]. Cambria et al. [10] provided an overview of the past,

present, and future efforts of the AI community to endow

computers with the capacity for commonsense reasoning.

Statistical and machine learning based approaches pre-

vail in sentiment and emotion classification. They make

use of features such as unigrams, bigrams, parts of speech,

affect words, information gain (IG), term frequency–

inverse document frequency (TF-IDF), mutual information

(MI), and the Chi-square statistic (CHI). Classifiers such as

support vector machines (SVM) [35], conditional random

fields (CRF), hidden Markov models (HMM), Gaussian

mixture models (GMM) [37], and neural networks [40] are

used for sentiment and emotion classification for text of

different forms (e.g., blogs, news, movie reviews, and

social media). Generally speaking, statistical methods only

work well when sufficient and balanced training data are

provided [14]. Furthermore, they are not ideal for semantic

representations or text containing implicit sentiment or

emotion information.

Data Sampling for Imbalanced Training

Data sampling for imbalanced training data has attracted

considerable research interest because its adjustments to

the data are largely independent of the machine learning

algorithms used and can be applied to a wide variety of

domains. Typical data sampling methods include under-

sampling, oversampling, and hybrid methods [29].

Under-sampling the majority classes can produce bal-

anced data such that minority classes are not underrepre-

sented [15]. However, it is not commonly used in opinion

analysis and emotion classification because the training

data are relatively small. Discarding some of this annotated

data further reduces available training data, potentially

degrading the classification performance.

The simplest oversampling method, random duplication

of the minority class samples, is very easy to implement but

is generally ineffective [15]. Chawla et al. [15] proposed a

synthetic oversampling method, referred to as SMOTE,

which generates synthetic samples along a line segment

joining an existing sample to its nearest neighbor. Border-

line-SMOTE and Safe-Level-SMOTE are two varieties of

SMOTE. Borderline-SMOTE only generates new samples

among the borderline instances of a minority class [24],

whereas Safe-Level-SMOTE only generates new samples

for the central instances of a minority class [7]. Since all

SMOTE methods use the k-nearest neighbor (kNN) algo-

rithm to find the k-nearest data points in the creation of a

new sample, the time complexity of SMOTE is much higher

than that of random duplication.

DBSMOTE [8] is a density-based clustering method

based on SMOTE. It combines the DBSCAN clustering

algorithm [21] and SMOTE to generate a density-reachable

graph before performing oversampling [8]. Majority

Weighted Minority Oversampling TEchnique (MWMOTE)

identifies and weights the hard-to-learn informative minority

class samples according to their Euclidean distance to the

nearest majority class samples before oversampling [2].

Adaptive synthetic sampling approach for imbalanced

learning (ADASYN) [25] uses a weighted distribution for

different minority class examples according to their learning

difficulty. This adaptively shifts the classification decision

boundary toward difficult examples [16].

As an ad hoc method, Nitesh et al. proposed a wrapper-

based algorithm to define the best ratio to perform both

under-sampling and oversampling [16]. Cai et al. [9] pro-

posed a hybrid learning model using a modified self-

organizing maps algorithm. This method assigns a winner

neuron based on an energy function minimizing local error

in the competitive learning phase.

Learning Distributed Word Representations

and Sentence Vector

The distributed representation proposed by Hinton et al.

[26] is a low-dimensional float vector for text representa-

tion. Distributed representation for words is often referred

228 Cogn Comput (2015) 7:226–240
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to as word representation or word embedding. This kind of

representation is effective for capturing a large number of

precise syntactic and semantic word relationships [30].

Word embedding is typically induced by neural lan-

guage models, which use neural networks as the underlying

predictive model [3]. Bengio et al. [4] proposed a feed-

forward neural network with a linear projection layer and a

nonlinear hidden layer to construct a neural language

model. This model predicts the current word when the

previous n� 1 words are given. Experimental results show

that word embedding decreases ambiguity by 10–20 %

compared with smoothed trigram models. The Collobert

and Weston (C&W) model [19] is another neural language

model based on the syntactic context of words. It substi-

tutes the center word of a sentence by a random word to

generate a corrupted sentence as a negative sample. The

training objective is to minimize the loss function so that

the original sentence can obtain a higher score than the

corrupted sentence.

The main drawback of neural probabilistic language

models is that both training and testing are time consum-

ing. The hierarchical log-bilinear model introduced by

Mnih and Hinton is a fast hierarchical language model

which uses a simple feature-based algorithm to automati-

cally construct word trees from the data [33]. In feed-for-

ward networks, the context of a word is limited to a

window of n words. Mikolov et al. proposed a recurrent

neural network-based language model (RNNLM) [31] in

which the context of a word is represented by neurons with

recurrent connections such that there is no limit on the

context window.

Given a dictionary of word embedding v ¼ ðvw1
;

vw2
; . . .; vwn

Þ, there are typically two ways to learn the sen-

tence vectors: linear combination and semantic composi-

tionality. Linear combination, as described in [18], sums all

selected word embedding combinations to construct sentence

vectors. Since linear combination is concise and efficient, it is

used in many applications. However, it cannot capture the

generally recursive structure and word order in natural lan-

guage text.

Semantic compositionality is a linguistic concept. The

principle of semantic compositionality is that the meaning

of an expression is a function of the meanings of its parts

together with a method by which those parts are combined

[1]. Compositionality has been extremely influential

throughout the history of formal semantics. In fact, recent

studies related to cognitive science use compositionality as

a guiding principle [36].Various semantic compositionality

models have been proposed to use word meanings acquired

using co-occurrence statistics of a word and its neighboring

words to obtain vectors for longer phrases [6]. One of these

models, referred to as the RNTN by Socher et al. [39], is

based on neural networks. The RNTN model for semantic

compositionality over a sentiment Treebank improved

sentence-based polarity classification from 80 to 85.4 %.

Word Embedding Compositionality-Based

Oversampling

System Framework Design

In this work, we investigate a data sampling approach using

word embedding compositionality to form sentence vec-

tors. As discussed before, the available annotated sentiment

and emotion training data are small and under-sampling the

majority classes will further reduce training data. We are

thus inclined to use oversampling since it increases the

training data for the minority classes. In contrast to most

existing research on oversampling, which directly gener-

ates new samples based on existing samples using a BOW

representation, we generate new samples based on word

embedding compositionality. Sentence vectors produced

through word embedding compositionality are expected to

overcome the data sparseness and small disjunct problems

encountered when using imbalanced training data with the

BOW representation.

The system framework has three main components as

shown in Fig. 1. The first component, the word embedding

construction module, takes a large collection of raw text to

train the word embedding model and produce word

embedding list. Based on this list, the second component,

the word embedding compositionality algorithm, takes the

training data (presumably imbalanced) to construct the

corresponding sentence vectors based on the RNTN model.

The third component, the WEC-MOTE algorithm, gener-

ates a balanced training dataset. The machine learning

based classifier for either sentiment or emotion classifica-

tion can be trained accordingly.

Normally, a sentence vector based on BOW will form a

binary feature space (e.g., ½0; 1; . . .; 0; 1; 1; 0; . . .; 0; 0�). Let

N be the size of the vocabulary. The dimension of BOW

using unigrams is linear with respect to N. The dimension of

BOW using bigrams is proportional to N2. Most of the values

in the vector are zero rendering the data extremely sparse. In

contrast, a word embedding-based sentence vector forms a

real-valued feature space (e.g., ½0:022506;�0:077435; . . .;

0:014368;�0:185020�). The dimension of the sentence

vectors depends on the application (and is controllable) and

is typically between 25 and 300, and zeros are not expected

for any of the features, making this data much denser. The

use of word embedding also captures more semantic infor-

mation from a sentence compared with the BOW

representation.
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RNTN-Based Word Embedding Composition

Algorithm for Sentence Vector Construction

Mikolov et al. [30] introduced the continuous skip-gram

model to learn vector representations capturing a large

number of syntactic and semantic word relationships from

unstructured text data. The training objective is to find

word representations to predict the surrounding words in a

sentence or a document. Given a sequence of training

words w1;w2;w3. . .wT , the training objective is to maxi-

mize the average log probability

1

T

XT

t¼1

X

�c� i� c;i 6¼0

log pðwtþijwtÞ ð1Þ

where c is the size of the training context, wt is the center

word, and log pðwtþijwcÞ is the conditional log probability

of wtþi given the center word wt. The hierarchical softmax

process is used to reduce computational complexity. It uses

a binary tree representation of the output layer with the

words as leaves. Accordingly, pðwtþijwtÞ is defined as:

p wtþijwtð Þ ¼
QL wtþið Þ�1

j¼1

r k n wtþi; jþ 1ð Þ ¼ ch n wtþi; jð Þð Þð

k t0n wtþi;jð Þ
twt

�
ð2Þ

where r xð Þ ¼ 1
1þe�x, k x k¼ 1; if x is true

�1; else

�
. nðw; jÞ is the

jth node on the path from the root to w. LðwÞ is the length

of this path. chðnÞ is an arbitrary fixed child of n. t0n is the

representation of inner node n. vw is the representation of

word w.

Since a Chinese word having different part of speech

(POS) tags serve different lexical functions, we use the

word/POS pair as the basic lexical unit in word embedding.

For English word embedding, many pre-trained word

embedding resources are already available. Collobert and

Weston embedding are provided by senna3 and several

kinds of word embedding are provided on the word2vec

Web site. Thus, there is no need to generate the data by

ourselves. The large free text used to obtain the Chinese

word embedding is a large-scale micro-blogging corpus in

Chinese. The word2vec4 toolkit accessible from Google is

use to build the skip-grams. The dimension of each word

vector is a system parameter set for specific applications

and ranges from tens to thousands in previous work [30].

We use the X-d notation where X denotes the dimension

size (200-d means a dimensionality of 200).

The RNTN proposed by Socher et al. [39] takes a sen-

tence as input. It represents a sentence through word

embedding and a parse tree. The vectors for higher nodes

in the parse tree are computed by using the same tensor-

based composition function.

As shown in Fig. 2, when a sentence is fed to the RNTN

model, it is parsed into a binary tree where each leaf node is

a word embedding corresponding to a word in the sentence.

Let us assume the dimension of a vector, denoted by d, is

fixed. Then vw1
; vw2

; vw3
; vw4

should be represented by d-

dimensional vectors using word embedding. The RNTN

model computes parent vectors yi from the bottom up using

compositionality functions f . Here, the tangent function f ¼
tanh is used a common choice for element-wise nonlin-

earity. yi has the same dimension d. ½vwi
; vwj
� is the con-

catenation of two leaf node word embeddings. W 2 Rd�2d

Fig. 1 Framework of our

approach

3 http://ml.nec-labs.com/senna/.
4 https://code.google.com/p/word2vec/.

230 Cogn Comput (2015) 7:226–240

123

http://ml.nec-labs.com/senna/
https://code.google.com/p/word2vec/


is the main parameter for the neural network to learn. Here,

the tensor product h 2 Rd is defined as follows:

hk ¼ ½vwi
; vwj
�T V ½1:d�½vwi

; vwj
� ð3Þ

where V ½1:d� 2 R2d�2d�d is the tensor that defines multiple

bilinear forms. RNTN uses the following equation to

compute y1:

y1 ¼ f ðW ½vw3
; vw4� þ ½vw3

; vw4
�T V ½1:d�½vw3

; vw4
�Þ ð4Þ

The next parent vector y2 is then computed as follows:

y2 ¼ f ðW ½vw2
; y1� þ ½vw2

; y1�T V ½1:d�½vw2
; y1�Þ ð5Þ

Each node in the binary tree is computed recursively until

the root node vector representing the meaning of the given

sentence is obtained.

A softmax classifier is trained on each of the RNTN

node vectors to predict a given target vector. The back-

propagation algorithm is used to train the RNTN model.

Each node’s error is back-propagated to the recursively

used weights V and W [39]. The full derivative for V and

W is the sum of the derivatives at each of the nodes.

The sentence vectors for a training corpus are con-

structed by using a RNTN-based composition algorithm.

The results using real data show that word embedding-

based sentence vectors reduce data sparseness, cluster

better between classes, and have fewer small disjuncts

within classes when compared to the BOW representation.

Figures 3 and 4 show the two-dimensional principal

components analysis (PCA) projection of the word

embedding sentence-vector distributions and the BOW

distributions using 10 % random sampling, respectively.

The training set is the Stanford sentiment treebank [39].

Figure 3 shows a fairly even spread of the data points across

the projection space. Data points from different classes are

partitioned naturally such that the negative class (circles) is

mainly distributed in the left part of the projection space, the

positive class (stars) largely in the right part, and the neutral

class (dash) mainly in the center. In contrast, the BOW

projection in Fig. 4 results in clusters rather than even

spreading. Furthermore, the clusters are not aligned well to

the different clusters. Figure 5 gives a micro-view of the top

left part of Fig. 4. It shows that the negative samples,

positive samples, and neutral samples are all mixed toge-

ther. This entails that most of the nearest neighbors for any

sample may belong to different classes when using BOW.

WEC-MOTE for Sentiment and Emotion Classification

Our WEC-MOTE algorithm is derived from the SMOTE

method to generate new samples for the training data for

minority classes. The main idea of WEC-MOTE is to

interpolate several nearby minority class instances to create

new examples for minority classes [29] producing a fully

balanced training set across all classes.

For a given minority class where each real sample S

corresponds to a sentence vector VS, a new synthetic

sample Vnew can be generated based on the formula given

in Eq. (6). Vnew is derived from VS and VSN
, which is one of

the k -nearest neighbors of VS [15].

Vnew ¼ VS þ R0�1 � VsN
ð6Þ

where R0�1 is a random number between zero and one. The

value k is an algorithm parameter specifying the over-

sampling rate. Since R0�1 is a real number between zero

and one, the algorithm can generate as many different Vnew

as needed. Let M denote the number of training samples of

the largest class. For any class c, let N denote its number of

training samples where N is less than M. Then, sentence

vectors Vs in the safe region [24]: where less than half of

the k -nearest neighbors are negative samples, see ‘‘Com-

parison Methodology’’ section) of class c can be randomly

selected. New samples can be randomly generated

according to Eq. (6) for class c until there are M samples in

total. k is defined as the imbalance ratio of the size of class

c and that the largest class: k ¼ M=N.

Figure 6a is the vector illustration of three training

sentences which have the same distance between each

other using the BOW representation. Figure 6b shows the

vectors resulting from word embedding. Figure 6a illus-

trates that the neighbors of ‘‘I hate it’’ belong to c0. Thus, ‘‘I

hate it’’ is regarded as a small disjunction in class c. The

new sample derived from ‘‘I love it’’ and ‘‘I like it’’ for the

BOW representation is closer to the training data of ‘‘I hate

it’’ than ‘‘I like it’’. This is because in BOW, data of the

same class do not cluster well. Conversely, word embed-

ding results in a new sample which is closer to the samples

that generated it due to better class clustering.

The proposed WEC-MOTE algorithm is applicable to

many imbalanced text classification systems whether they

involve single-label or multi-label classification or senti-

ment or emotion classification. Data imbalances are quite

common in sentiment corpora since there are often more

Fig. 2 An illustration of the recursive neural tensor network
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Fig. 3 PCA projection of word

embedding sentence vectors

trained on Stanford sentiment

treebank

Fig. 4 PCA projection of BOW

representation trained on

Stanford sentiment treebank

Fig. 5 Enlarged view of the top

left portion of PCA projection

of BOW representation (Fig. 4)
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positive sentences than negative sentences and like and

disgust samples are much more common than fear and

surprise samples. Using the WEC-MOTE algorithm on

these corpora before applying a machine learning method

can improve the classification performance significantly.

Performance Evaluation

In this section, the performance of our proposed WEC-

MOTE algorithm is evaluated on two datasets, namely an

English sentiment analysis dataset (single label) and a

Chinese emotion classification (multi-label), respectively.

Dataset

The English Sentiment Corpus

The single-label dataset is from the Stanford sentiment

treebank proposed by Socher et al. [39]. The treebank

provides fully labeled parse trees based on the dataset

introduced by Pang and Lee [34]. This dataset is quite

balanced with 11,855 single sentences extracted from

movie reviews comprised of three subsets: the training

data, the development data, and the testing data. To obtain

the imbalanced dataset for evaluation purpose, we combine

the training data and the development data. We then dis-

card the neutral sentences. Finally, we randomly remove

negative sentences to achieve an imbalance ratio of 3.5. For

our evaluation, the training data has 4,054 positive sen-

tences and 1,158 negative sentences. The test dataset has

909 positive sentences and 912 negative sentences.

The Chinese Emotion Corpus

The NLPCC2013 Chinese micro-blog emotion classifica-

tion dataset is used as the multi-label classification dataset.

The dataset includes seven emotion categories: like, dis-

gust, happiness, anger, sadness, surprise, and fear. Since

natural language text may express complex emotions in a

sentence, each sentence in this dataset is labeled by a pri-

mary and a secondary emotion category. Details of the

distribution of the NLPCC2013 dataset are listed in

Table 1. Note that in the training set, the data distribution

is quite skewed. The majority class, like, is about four

times the size of the surprise class and 11 times the size of

fear.

Parameter Settings

Performance Metric

When data show a high degree of imbalance, traditional

empirical measures such as accuracy rate are no longer

appropriate [29] since correctly classifying all examples

corresponding to the majority class will achieve a high

accuracy rate despite misclassifying minority classes. For

sentiment analysis, the geometric mean, Gmean, as defined

in Eq. (7), is a more appropriate performance measure.

Gmean ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPrate � TNrate

p
ð7Þ

where TPrate is the true positive rate signifying the per-

centage of correctly classified positive examples and TNrate

is the true negative rate signifying the percentage of cor-

rectly classified negative examples.

Since there are more than two classes in emotion classi-

fication, geometric mean is not applicable. The common

measure average precision is used in NLPCC2013’s multi-

class multi-labeled emotion classification evaluation.5

Average precision takes the weighted precision for different

classes of data. Since NLPCC2013 data label sentences by

both primary and secondary classes, NLPCC2013 requires

Fig. 6 An illustration of a new

sample generated by the

SMOTE algorithm using

a BOW representation and

b word embedding

5 http://tcci.ccf.org.cn/conference/2013/dldoc/evres02.
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two additional measures depending on the importance of the

secondary class. The loose measure tracks the classification

of the primary and secondary classes equally such that one

point is awarded for each correct class label whether it cor-

responds to the primary or secondary class. The strict mea-

sure introduces a weighting such that a correct secondary

label receives half the score of a correct primary label.

Pre-trained Word Embedding for RNTN Model

For sentiment analysis, a 25-d English word embedding is

constructed from a snapshot of Wikipedia in April 2010

provided by the Westbury Lab6 [38]. This snapshot contains

about 990 million words in over 2 million documents. The

sentence vector for the English training set is obtained using

the RNTN model. The Stanford sentiment treebank, obtained

manually through Amazon Mechanical Turk, 215,154

phrases labeled 10,662 sentences. The Chinese word

embedding is obtained from a 4.29-billion word Chinese

micro-blog corpus from weibo.com using the continuous

skip-gram model. The word/POS pair is used as the basic

lexical unit. Empirically, the maximum skip length between

words is set to five and the threshold for word occurrences is

set to 10�5. The minimum word frequency is set to four, the

initial learning rate is set to 0.025, and the number of negative

examples is set to five. The vector dimension is set to 200-d

and 25-d for the RNTN linear model and the RNTN com-

positional model, respectively. 399,059 word embedding

models are thus obtained.

To train the RNTN model on the NLPCC2013 dataset, a

Chinese sentiment treebank is required. Since a Chinese

sentiment/emotion treebank similar to Stanford’s English

sentiment treebank is not available, we prepared the data

ourselves. We first parsed each of the training sentences

into a binary tree using the Stanford Chinese PCFG parser

[28] and the sentiment model in Stanford CoreNLP tools.7

We then labeled each node of the binary tree with the

emotion class describing the sentence. Eight classes are

used to build the RNTN, and the learning rate is 0.01.

Classifiers

For sentiment analysis, we explore two base classifiers:

Naive Bayes (NB) and support vector machines (SVM).

For NB, we use the default parameters in the Weka soft-

ware tool [23]. For SVM, we use the radial basis function:

e�c u�vj j2 . We use a cost parameter of 1.0 for C-SVC. The

full parameter list is ‘‘-S 0 -K 2 -D 3 -G 0.0 -R 0.0 -N 0.5

-M 40.0 -C 1.0 -E 0.001 -P 0.1’’, again, the default used in

Weka.

For the multi-label multi-class task of emotion classifi-

cation, we train a multi-label k-nearest Neighbor (ML-

kNN) classifier using the original and balanced training

data. We test the hyper-parameter k with every odd number

from 1 to 99 and find k ¼ 41 brings the best classified

result. So empirically, k ¼ 41 is used in this evaluation.

The nearest-neighbor similarity between two sentences is

estimated by the cosine of the angle between their corre-

sponding sentence vectors:

similarityðSi; SjÞ ¼ cosðhÞ ¼
VSi
� VSj

jjVSi
jj � jjVSj

jj ð8Þ

where VSi
and VSj

are sentence vector of sentence Si and Sj,

respectively.

Comparison Methodology

We evaluate the proposed WEC-MOTE algorithm with

different sentence representations and oversampling

methods. For sentence representation, we use unigram

BOW as the baseline. We also use the linear combination

word embedding algorithm (WE linear) proposed by [18]

for comparison. We use the duplicate instances method as

the baseline oversampling method. Safe-Level-SMOTE and

Borderline-SMOTE are also used for comparison. In this

study, we use the definition of safe samples given by Han

et al. [24]. The minority samples are grouped into three

Table 1 Emotional class

distribution in NLPCC2013

dataset

Class Training set Testing set

Primary emotion Secondary emotion Primary emotion Secondary emotion

Like 1,226 24.8% 138 21.6% 2,888 27.6% 204 26.1%

Disgust 1,008 20.4% 187 29.2% 2,073 19.8% 212 27.1%

Happiness 729 14.7% 95 14.8% 2,145 20.5% 138 17.6%

Anger 716 14.5% 129 20.2% 1,147 10.9% 82 10.5%

Sadness 847 17.1% 45 7.0% 1,565 14.9% 84 10.7%

Surprise 309 6.2% 32 5.0% 473 4.5% 43 5.5%

Fear 114 2.3% 14 2.2% 186 1.8% 20 2.6%

6 http://www.psych.ualberta.ca/*westburylab/downloads/westbury

lab.wikicorp.download.html.
7 http://nlp.stanford.edu/software/corenlp.shtml.
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regions: borderline, safe, and noise regions by considering

the number of negative samples n in k -nearest neighbors:

k=2� n\k for borderline samples, 0� n\k=2 for safe

samples, and n ¼ k for noise samples.

Evaluation for Single-Labeled English Sentiment Data

Table 2 shows the result for the selected two-class imbal-

anced Stanford sentiment treebank corpus. WEC-MOTE

achieves the best classification performance for both the NB

classifier and the SVM classifier. We first examine the dif-

ferent data models without considering any sampling methods

(first row in Table 2). Even without sampling, data repre-

sentation accounts for significant performance variations.

Compared with the BOW baseline data representation, both

word embedding (WE) composition and WE linear achieve

superior performance. Furthermore, all four oversampling

methods used with WE composition lead to superior perfor-

mance compared with both the BOW unigram representation

and the WE linear representation. For example, WEC-MOTE

paired with WE composition achieves geometric mean clas-

sification accuracy values of 0.830 (NB) and 0.833 (SVM).

WEC-MOTE paired with the BOW unigram representation

achieves only a 0.480 (NB) and 0.658 (SVM) geometric mean

accuracy. This translates to a relative improvement of 72.9

and 26.6 % for NB and SVM, respectively, just by using the

WE composition representation rather than BOW unigram.

Comparing different oversampling methods, the dupli-

cation method is most effective when paired with the BOW

unigram or WE linear representations. Still, the overall best

performance when using this oversampling method is only

0.65. In contrast, WE composition leads to an overall

accuracy rate of at least 0.807 regardless of the sampling

method. In other words, the results in Table 2 indicate that

word embedding with composition is most effective for

document representation. The performance improvements

achieved by the different oversampling methods are minor

compared to the effect of changing the data representation.

Table 3 gives a more detailed analysis of the different

sampling algorithms using only WE composition. The first

row shows the results obtained without oversampling, and

the rest of the rows are the results with different over-

sampling methods. The results show that compared with

SVM, NB is less effective for true positive classification

and generally more effective for true negatives. Overall,

WEC-MOTE paired with the SVM classifier achieves the

highest weighted average accuracy rate.

Figuers 7 and 8 show the PCA projection (using 10 %

random sampling) of the sentence vectors without and with

WEC-MOTE oversampling, respectively. The samples that

are generated through oversampling are marked by stars in

Fig. 8. We can see from both figures that WE composition

leads to well-defined clusters and a very good partition

between the two classes with the positive samples mainly

scattered over the right region and the negative ones over

the left region. Figure 8 shows that the new negative

samples generated by WEC-MOTE oversampling are

usually close to the original samples. This indicates that

WEC-MOTE generally maintains the same distribution as

the original samples while rendering denser data to resolve

the small disjuncts problem.

Evaluation for Chinese Multi-label Emotion Data

Table 4 shows the multi-class emotion classification per-

formance results for Chinese micro-blog text. This set of

results shows that WEC-MOTE achieves the highest

average precision of 0.520 (loose) and 0.497 (strict).

Compared with the top performers of the 19 submitted

systems in the NLPCC2013 evaluation, which achieved

0.365 (loose) and 0.348 (strict)8 average precisions, our

approach achieves a very significant 42.5 % (loose) and

42.8 % (strict) relative improvement.

Regardless of the sampling method, word embedding

with both the linear and the composition methods leads to

an improvement of more than 100 % over BOW. WE

composition does not show a significant advantage over the

linear RNTN model. The significant improvement gained

from using word embedding instead of BOW is due to

BOW unigram features having 25,229 dimensions and

word embedding features having only 25 dimensions.

Table 2 Evaluation results for English sentiment dataset

Method Geometric mean (BOW unigram) Geometric mean (WE linear) Geometric mean (WE composition)

NB SVM NB SVM NB SVM

Original training set 0.361 0.618 0.422 0.486 0.824 0.827

Duplicating instances 0.606 0.650 0.636 0.650 0.828 0.828

Borderline-SMOTE 0.460 0.657 0.484 0.640 0.807 0.814

Safe-Level-SMOTE 0.512 0.645 0.486 0.639 0.829 0.829

WEC-MOTE 0.480 0.658 0.491 0.644 0.830 0.833

Bold value indicates the best performance of all the experiment results

8 http://tcci.ccf.org.cn/conference/2013/dldoc/evres02.

Cogn Comput (2015) 7:226–240 235

123

http://tcci.ccf.org.cn/conference/2013/dldoc/evres02


Since there are only 4,949 emotional sentences in the

training set, using 25,229 dimensions as features in BOW

makes the training data too sparse. Word embedding has a

much lower dimensionality and the data show improved

clustering effect when using RNTN.

A preliminary finding in this experiment suggests that

sufficient training of the RNTN model is imperative when

using word embedding trained with a continuous skip-

gram. If training is insufficient, a usable vector (i.e., a

vector which is float valued and does not suffer from the

vanishing gradient problem) in the root node of a sentence

parse tree is not guaranteed. This is especially true for long

sentences. Thus, we use the mean vector of two usable top-

node vectors instead. When the RNTN model is not fully

Table 3 Performance for each

sentiment class using WE

composition

Bold value indicates the best

performance of all the

experiment results

Method TPrate TNrate Weighted average

NB SVM NB SVM NB SVM

Original training set 0.794 0.890 0.855 0.768 0.825 0.829

Duplicating instances 0.779 0.810 0.880 0.846 0.830 0.828

Borderline-SMOTE 0.705 0.743 0.924 0.892 0.815 0.817

Safe-Level-SMOTE 0.778 0.836 0.884 0.823 0.831 0.830

WEC-MOTE 0.817 0.812 0.843 0.855 0.830 0.834

Fig. 7 PCA projection without

oversampling for Stanford

sentiment treebank

Fig. 8 PCA projection with oversampling for Stanford sentiment treebank
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trained, the classification performance using WE compo-

sition degrades to equal the WE linear performance.

When the BOW unigram method is used to obtain the

features, Safe-Level-SMOTE oversampling leads to the

best performance. In fact, for this feature set, it is consid-

erably better than WEC-MOTE and Borderline-SMOTE.

However, WEC-MOTE leads to superior performance

when word embedding is used. Generally speaking, bor-

derline samples contain more negative instances than safe

samples. This implies that there are more small disjuncts

for borderline samples than for safe samples. So, there

must be more small disjuncts in BOW features than in

word embedding features. The newly generated samples

from WEC-MOTE reduce small disjuncts such that clas-

sification performance is significantly improved.

While sentence representation is crucial to performance

improvement as seen from the original data without any

oversampling, It is important to note that the use of over-

sampling is more significant for multi-label emotion clas-

sification compared with binary sentiment classification.

This is because the number of training samples for the

emotion classification is much smaller than for sentiment

classification and thus oversampling plays a more impor-

tant role in the overall performance improvement.

Table 5 shows the class-by-class classification results

using the original training data as well as the balanced

training data generated by WEC-MOTE. It is obvious that

the performance for every class is improved using the fully

balanced training data. Yet, the important contribution of

the algorithm is that the improvement for the minority

classes is more significant. As an example, the two classes

surprise and fear show improvement factors of about 15

and 12 times, respectively, whereas the improvement for

the majority class like is 53.1 %. Table 5 is a clear indi-

cation that the proposed oversampling method is very

effective when data are more imbalanced.

Figure 9 shows the LDA projection of sentence vectors

from the largest class like and the smallest class fear

without WEC-MOTE oversampling. In contrast, Fig. 10

shows the LDA projection of sentence vectors from the

largest class like and the smallest class fear with WEC-

MOTE oversampling for the minority class fear. The newly

generated samples are denoted by stars. Similar to the

distribution of data in Figs. 7 and 8 for sentiment analysis,

the two classes are clustered well and the additional sam-

ples introduced in the fear class create more density and

decrease small disjuncts within that class.

Discussion

Our proposed method shows a greater performance

improvement for the multi-class emotion classification than

for the binary sentiment classification. This is because

multi-class emotion data are more skewed and thus over-

sampling is more effective. In terms of performance in

absolute values, the binary classification task yields much

better results as the overall performance levels are over

80 %, yet the best performance for the multi-class data is

Table 4 Emotion classification results with different sentence representation and oversampling methods

Method Average precision (BOW unigram) Average precision (WE linear) Average precision (WE composition)

Loose Strict Loose Strict Loose Strict

Original training set 0.144 0.141 0.334 0.325 0.347 0.339

Duplicating instances 0.158 0.154 0.383 0.369 0.398 0.380

Borderline-SMOTE 0.175 0.167 0.416 0.397 0.433 0.409

Safe-Level-SMOTE 0.275 0.264 0.434 0.420 0.449 0.437

WEC-MOTE 0.185 0.177 0.501 0.478 0.520 0.497

Bold values indicate the best performance of all the experiment results

Table 5 Performance for each

emotion class before/after

oversampling

Class Average precision Imbalance ratio Improvement ratio

Original Balanced

Like 0.424 0.649 1.000 0.531

Disgust 0.256 0.552 1.216 1.156

Happiness 0.280 0.373 1.682 0.332

Anger 0.208 0.355 1.712 0.707

Sadness 0.413 0.612 1.447 0.482

Surprise 0.009 0.136 3.967 14.111

Fear 0.024 0.283 10.754 10.797
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only about 50 %. This is because there are many more

training instances in the binary data.

Due to the lack of training data in the form of a Chinese

emotion Treebank to train the RNTN model, we have to

label every node of the binary tree with the same emotion

as the root node of the tree (the class corresponding to the

entire sentence). Experimental results show that compared

with the word embedding linear representation, word

embedding composition trained on NLPCC2013 dataset

shows an only 3.79 % improvement (for WEC-MOTE

loose). This is in contrast to the 29.3 % improvement (for

WEC-MOTE SVM) when training on the Stanford senti-

ment treebank corpus. We hope to continue further anno-

tation of related Chinese corpora. The increased

availability of such resources will greatly benefit the use of

machine learning methods over other methods.

Conclusion and Future Directions

This paper presents an oversampling approach based on

sentence vector learning from word embedding to improve

sentiment and emotion classification for imbalanced data.

Sentence vectors derived through word embedding com-

position are dense and continuous and have low dimen-

sionality compared with the BOW representation. Word

embedding composition is a superior data representation

method for machine learning when data are sparse and

skewed. This paper also proposes a recursive neural tensor

network-based composition method to construct sentence

vectors corresponding to training samples. To address the

data imbalance issue and the lack of training data for

minority classes, we use a SMOTE algorithm to overs-

ample the minority classes to produce a fully balanced

Fig. 9 LDA projection of like and fear classes without oversampling

Fig. 10 LDA projection of like

and fear classes after WEC-

MOTE oversampling
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training dataset. Machine learning classifiers can then be

trained on this fully balanced training dataset with

improved prediction outcomes. Evaluations on two differ-

ent datasets show that the proposed method is very effec-

tive in overcoming data sparseness and small disjuncts

present in imbalanced sentiment and emotion classification.

Our approach improves imbalanced sentiment and emotion

classification for both English and Chinese data and for

both single- and multi-label data.

Due to the complexity of the RNTN, the sentence vec-

tors in this paper are constructed with only 25 dimensions.

Improvements to the RNTN model should allow us to

increase the number of dimensions and further improve

overall performance. Other potential future works include

word embedding in terms of semantic representation and

the development of other composition methods for sen-

tence vector construction.
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