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Abstract Emotions have been subject of research and

deliberation in philosophy and psychology mainstream for

a long time. In contrast, emotions have only emerged in

artificial intelligence research as a serious topic in the last

two decades. Year 2000, in particular, experienced a shift

in attitude towards emotions and their relationship to

human reasoning and human–computer interaction. This

shift continued slowly but surely over the years and com-

putational emotions can be seen as a mainstream research

topic within artificial intelligence and cognitive systems. In

this paper, we attempt to contribute to the development of

this area by interpreting psychological theories of emotions

computationally and translating them into machine imple-

mentable models. These models are generic and applica-

tion independent which most of the current computational

emotions models lack. We have selected two psychological

theories, namely Millenson (The psychology of emotion:

theories of emotion perspective, vol 4. Wiley, New Jersey,

pp 35–36, 1967) and Scherer (Soc Sci Inf 44(4):695–729,

2005), that lend themselves, with varying degrees of dif-

ficulty, to the computational interpretation. Fuzzy logic

was utilised as a tool to keep the fidelity of psychological

interpretation of emotion. The paper discusses in details the

computational interpretation of these psychological models

and presents a full theoretical formalism in fuzzy logic type

1, implementation and detailed analysis of this psycho-

logically grounded generic computational models.

Keywords Emotion � Fuzzy logic � Artificial
intelligence � Emotion representation � Geneva Emotion

Wheel

Introduction

The subject of accurately modelling the emotional state of

an agent in such a fashion as to be both computationally

advantageous and psychologically consistent is an area that

has enjoyed consistent growth in interest over the years [1–

3]. This work has varied in scope from the philosophical

questions about why and how to make an emotional agent

[4–7], to the sociological questions about what impact

emotional agents have on human–computer interactions [2,

8–10].

While some authors focus on the overarching questions

regarding the quantification of psychological concepts and

phenomena [11], others direct their attention towards the

ideas of emotions place within cognition and thought [12,

13]. By and large, however, the direction of such research

has tended towards affective control systems [14–17], and

rarely specifically upon the determination of the emotional

state of an agent outside that somewhat narrow context [3,

18]. While some efforts have been made to introduce fuzzy

logic to the field of emotion modelling [5], they have

tended to discuss emotion in the context of deterministic

behavioural architecture, rather than in the context of a

psychological construct in its own right. Following on from

work published in 2008 [19, 20] and in 2009 [21], we

explore in greater depth this growing arena of scientific

debate.

This paper shall present a brief overview of the psy-

chology of emotion, and the historical application of fuzzy

logic systems in this arena, to provide some measure of
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context to the ideas it proposes. It shall then discuss in

detail two specific psychologically grounded models of

emotion and outline several methods by which these

models have been translated into fuzzy logic constructs.

Implementations of these systems shall be presented in

particular detail. The paper shall then conclude with a

detailed result analysis from experimenting with the pro-

totypes provided, which is freely available1 to researchers

for further experimentation and concrete application.

Background

Possibly more than any other multidisciplinary research

area, the computational modelling of emotion requires

some significant measure of preface, if only to outline the

standpoint from which the researchers approach the issue.

It is hoped that by outlining both the basic psychology of

the work, including the historical research context in which

the work fits, and the mathematics upon which the work is

based, the overall aims and goals of the research might be

better understood.

Psychology of Emotions

Within the various fields of psychological research, two

schools of thought appear to dominate the debate regarding

the nature of emotions, and how they are best modelled

[22, 23]. From a philosophical perspective, the nature of

their divergence and their theoretical differences is of great

importance; from a computing sciences perspective, how-

ever, their differences lie entirely in the nature of the

models they propose.

The view of emotions as an evolutionary construct was

initially proposed by Darwin [24]. It was this work which

postulated the idea of basic emotions, differing combined

intensities of which might give rise to an overall emotional

state. Over the past century, this has ultimately given rise to

swathes of psychological research dedicated to determining

both the number and nature of these basic emotions. The

exact number of fundamental emotions given widely var-

ies. Plutchik first proposed his system of emotion classifi-

cation in 1980 [25], containing eight fundamental

emotions. In contrast, Ekman proposed a system consisting

of six fundamental, or basic, emotions in 1982 [22].

The maximum number of basic emotions is generally

thought to be fourteen [26]. Following on from the defi-

nition of basic emotions comes the definition of more

complex emotions. Occasionally, these categories are

divided using nomenclature indicating primary and sec-

ondary emotions as in the structure proposed by Parrott

[23]. Oftentimes, however, these more complex emotions

are simply defined by the relative intensities of their parent

emotions. In general terms, however, it is the view of this

school of thought that the sum of human emotional expe-

rience can be defined as a function, or construct, of less

than a dozen named emotions [27, 28]. An alternative to

this view proposed by Wundt [29] suggested that emotions

could be better defined in the context of experience than

crisp linguistics. Research based on this principle has, as

with the Darwinian view, given rise to many varied schools

of thought following the same fundamental idea.

In Wundt’s original model, emotional state was repre-

sented in terms of three facets of experience which he

labelled pleasantness, approach and arousal. He asserted

that any individual emotion would be better modelled in

the context of relative magnitudes of these facets of the

emotional experience than through verbal labels. Sub-

sequent to Wundts original work, significant research has

been performed regarding this idea of a dimensional

emotion model. In many cases, it is common for the third

axis to be ignored and, instead, for proponents of this view

to model emotions in the context of valence, which might

be seen as a clearer definition of pleasantness and arousal.

More recently, however, it has been suggested that these

views are not necessarily mutually exclusive. Russell

produced a circular model of emotions outlining the posi-

tion of what he believed to be fundamental emotions in

terms of relative values of what were effectively arousal

and valence [30].

It is upon this idea of hybridised conceptual models that

this work pitches its focus. Such models permit us to

consider the emotional state as an output, or resultant, of

disparate and seemingly unrelated contextual inputs. In

particular, attention has been directed towards two such

hybridised concepts. The first was proposed by Millenson [31].

1 Please contact the authors for a copy.

Fig. 1 Millenson’s three-dimensional model of emotional intensity

[31]
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The second is a more recent model called the Geneva

Emotion Wheel, first presented by Scherer [26].

The Millenson Model

Millenson’s model of emotion, defined as a stand-alone

model of emotion and not presented with its own psycho-

logical theory, was built upon Watson’s three-factor theory

[32, 33]. Often considered the father of behaviourism [34],

Watson proposed the connection between applied and

withdrawn stimulus, and resultant emotional response.

Millenson’s model took this idea and derived a three-axis

system that associated certain applied and removed stim-

ulus with different facets of emotional experience. Figure 1

shows an interpretation of his modular structure, where Sþ
represents an applied positive stimulus, $? represents a

removed positive stimulus, S� represents an applied neg-

ative stimulus, and $- represents a removed negative

stimulus.

Along each axis, Millenson places an emotional arche-

type. He associates the x axis with anger, the y axis with

anxiety and the z axis with pleasure. He acknowledges that

three emotions do not account for the sum total of emo-

tional experience and accounts for this in two ways. First,

he posits that some emotions vary from each other only in

terms of their intensity. Given the structure of his model,

this is a linguistically ambiguous statement, with one of

two meanings. The first possible meaning is that along a

given axis, all named emotions are essentially the same

emotion at varying levels of intensity. The second possible

meaning is semantic inasmuch as it may be interpreted that

his statement meant that emotions along a particular axis

are only triggered by a more intensely felt application or

removal of their associated stimulus. Both of these inter-

pretations are explored in later discussions regarding

mathematical transliteration of the model and subsequent

implementation. Second, he suggests that some emotions

are simply complex compounds of the basic emotions his

model acknowledges. In this, his theory is consistent with

many subsequent works suggesting the existence of basic

emotions; that being that complex emotions, which might

be linguistically recognised in popular language, are

complex compounds of two or more basic emotions [28].

In terms of an applied example of Millenson’s theory in

the context of compound emotional responses to stimulus,

his own example was that of a child taking a cookie from a

jar [31]. In this example, there is an associated applied

positive stimulus with the action, that being to eat the

cookie, and an associated applied negative stimulus, that

being the fear of being caught. We can define this com-

pound as guilt. We can also consider other combinations of

more dramatically conflicting stimuli, such as behaviours

that arise from neuroses.

As Fig. 1 outlines, his nine basic emotions are divided

into three groups: those associated with the removal of

positive stimulus; those associated with the application of

negative stimulus; and, those associated with the concep-

tual combination of applied positive stimulus and removed

negative stimulus. Listing these respectively, and subse-

quently in order of implied intensity, these emotions are as

follows: (1) Annoyance, (2) Anger, (3) Rage, (4) Appre-

hension, (5) Anxiety, (6) Terror, (7) Pleasure, (8) Elation,

(9) Ecstasy. Looking at Millenson’s model from a process

sense and perspective, it fundamentally associates a given

event with a composite of adding or removing two stimuli

and their value impact. Any environmental stimulus will

have a net addition or subtraction of positive and negative

stimulus. Each stimulus has two possible quality values of

positive and negative. Thus, an emotional response asso-

ciated with the event is represented by nine basic emotions.

These emotional responses to stimuli, over time, can be

used to define an adaptive emotional state.

Scherer’s Geneva Emotion Wheel

Where Millenson’s model associates the stimulus of a

given event with an emotional component, the Geneva

Emotion Wheel adopts a more classical approach. Fol-

lowing on the principles outlined by Wundt over a century

earlier, Scherer’s work associates the agent’s perceptions

of its situation with a discrete emotional component. In his

paper presenting the Geneva Emotion Wheel [26], Scherer

discusses a perceived relationship between specific emo-

tions, and relative experiences of valence and control.

Through empirical analysis, informed by extensive exper-

imentation, Scherer postulates that a structure featuring

sixteen basic emotions might be generated, with each

emotions position and intensity being determined by a

vector relationship defined by these two input factors.

Commenting on Russell’s original circumplex work [30],

Scherer takes some of the conclusions drawn and uses them

to tune his model. He also makes note of the comparable

results obtained through separate empirical experimenta-

tion. At length, the Geneva Emotion Wheel is presented in

the form shown in Fig. 2.

While Scherer admits that previous scholars suggested

that, if basic emotions are the root of emotional experience,

the maximum number of basic emotions would be fourteen,

his circular model includes sixteen distinct emotions, each

of which we may consider a basic emotion. These sixteen

basic emotions are Pride, Elation, Happiness, Satisfaction,

Relief, Hope, Interest, Surprise, Anxiety, Sadness, Bore-

dom, Shame/Guilt, Disgust, Contempt, Hostility and

Anger. We note that three of these basic emotions are

directly comparable to the list proposed by Millenson:

Anger, Anxiety and Elation. Indeed, these three emotions
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actually form the core of Millenson’s model, as they rep-

resent the conceptual mid-point on each axis of his system.

We also note in particular that the example of a complex

emotion provided by Millenson, that of Guilt, features as a

basic emotion in the Geneva Emotion Wheel.

Considering further the graphical representation, we

note that it also indicates varying degrees of intensity,

showing that as the relative magnitudes of valence and

control become greater, the emotions they engender are

experienced in a more dramatic fashion. As these relative

magnitudes of the two determining factors tend towards

zero, so too does the emotional impact they generate. At

the centre of the model lies an emotional white space to

reflect this. Looking at the Geneva Emotion Wheel in a

process sense, it connects an input based upon agent per-

ception, specifically the agent’s perception of the valence

and control it feels in a given situation. From this, it defines

an emotional response associated with the event, repre-

sented by sixteen basic emotions. These emotional

responses to stimuli, over time, can be used to define an

adaptive emotional state.

Computational Emotions

While emotions have been extensively studied by philos-

ophy and psychology mainstream researchers for a long

time, as exemplified by Darwain’s work [24] and Sartre’s

[35], it has only emerged in artificial intelligence research

as a serious topic in the last two decades. Year 2000, in

particular, experienced a shift in attitude towards emotions

and their relationship to human reasoning and human–

computer interaction [5, 8, 36–38]. This shift continued

slowly but surely over the years [3, 4, 39–46] and now

computational emotions can be seen as a mainstream

research topic within artificial intelligence and cognitive

systems [15, 47–50]. The computational emotions litera-

ture is growing at an impressive pace with raising number

of applications in commercial consumer products, and yet

it can be categorised into two main streams of research,

namely detection and modelling, with fascinating

differences.

Emotion Detection

Perhaps emotion detection was the key to the changing

attitudes of computer technologists towards emotions and

their applications. This could be contributed to three facts.

The first and most important of these is that a ready-made

physio-psychological system in the form of Ekman’s FACS

[51] is readily available with practical applications prior to

its’ computerisation and supported by growing literature

surrounding its interpretation and uses [52–61].

The second fact is that this emotion detection in general

and FACS in particular each lends itself naturally to the

field of pattern recognition research that has a rich litera-

ture and a wide scope of techniques from the simple tem-

plate-matching to multilayered neural nets and scores of

classifiers, all of which gave researchers in computational

emotions the basis to start developing emotion detection

systems while dimensioning the importance of the question

whether or not a machine can have emotions. Following

the strands of pattern recognition research, a new strand of

emotion categorisation investigations and models started to

evolve [62, 63].

The importance of the philosophical question about

machine abilities of holding emotions was diminished even

further by the third fact that is contributing to the growth of

this stream of computational emotions research, which is

the immediate practical application of emotion detection

without the burden of philosophical questions. This fact has

also led to expansion in this stream beyond facial expres-

sion to other modalities including analysis of text [64],

speech [65–67], audio and video [68–71], and images [72].

Internal Modelling of Emotions

The more relevant work to this paper is that done on

modelling emotions in cognitive architectures to produce

emotional agents [3, 4, 43, 73–75], which proved to be far

more difficult technically, questionable to validate, and

slow to progress generally.

The challenges faced in modelling emotions include but

not limited to interpreting the semantics of an emotion

construct. The importance of such interpretation becomes

apparent in the debate on the relationship between emo-

tions as discreet conscious points in which stimulus are

evaluated and emotional state an agent may hold given his

current emotional state, physical state, emotions associated

Fig. 2 A graphical depiction of the Geneva Emotion Wheel [26]
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with stimulus [3, 20], mood and personality of the agent [6,

74], i.e. the rate of the emotional swings and the duration of

each swings.

We believe that if we wish for a generic emotion cal-

culus independent of applications then a satisfactory

answer to representing singular emotions and calculating

emotional states should be found. This strand of thinking

and approach is becoming more accepted as the way for-

ward and more apparent in recent published work by other

researchers of which the HourGlass Model is a good

example [62]. In the HourGlass Model, the relation

between affect states and emotions is an interact subject of

investigation which also opens the door to new questions

about the affect and emotional states, their interpretations

and how they may relate.

Approach Adopted for Psychologically Grounded Models

of Emotion

This work attempts to start from first principles and

develop psychologically grounded computational models

of emotion by taking established psychological theories of

emotions and develop generic computational models that

can be implemented in emotion-enabled machines. In

doing so, we have selected two contrasting emotional

theories, one of them supports the notions of behaviour-

based school of thought on intelligence while the other

relates more to the cognitive systems. Section ‘‘Psychology

of Emotions’’ discusses these two theories, namely Mil-

lenson and Scherer, in sufficient details for the purpose of

this paper. By looking at the emotion modelling research,

interpretation of emotions in psychology and other related

literature, it becomes evident that any generic models of

emotion will require representational tool allowing for

vagueness and shades of intensity to be present. Thus fuzzy

logic (FL) [76, 77], which has been already used in mod-

elling emotions [2, 5, 6, 18, 78], becomes an obvious

candidate. Since we aim to calculate the emotional state

and not merely provide data structures to represent emo-

tions, we require inference mechanisms as well as ways of

dealing with possible higher-order predicates. Considering

the complexity of the emotional theories selected and their

multidimensionality Type I of FL was selected as the

modelling tool, which produced implementable generic

models of computational emotions.

Fuzzy Computational Models of Millenson and Scherer

In this section of the paper is outlined the processes

undertaken in constructing computational models of emo-

tions based on the Millenson and Scherer models using

fuzzy logic, while maintaining the integrity of their

respective psychological standpoints. Representations of

each model are presented. Due to their nature and possible

interpretations, two computational models of Millenson

were constructed while one model of Scherer. These

models are presented here along with their derivative

mathematics and discussion regarding their individual

benefits. The Millenson model is addressed first, followed

by subsequent discussion of the Geneva Emotion Wheel.

Fuzzifying the Millenson Model

As discussed previously, Millenson provides connective

links between stimuli of differing valence and specific

facets of emotional experience. As this link is contextual,

we must first represent each axis as a conceptual rela-

tivistic sum of respective stimuli, with a crisp value

between 0 and 1.

X ¼
X

f$þg½0; 1� ð1Þ

Y ¼
X

fS�g½0; 1� ð2Þ

Z ¼
X

fSþ; $�g½0; 1� ð3Þ

The nature of these variables, and the manner in which

they are normalised into quantifiable values between 0

and 1, is naturally dependent upon the context in which

they are applied and the setting in which they are being

implemented. As an example, however, let us consider a

mobile agent within a universe shared with two other

objects: an item of food and a predator. Conceptually

speaking, at a time t, the distance between the agent and

the food we define as rt, and the distance between the

agent and the predator we define as st. The stimulus the

agent receives between time t and time t þ 1 may be

derived through changes to these two variables. Thus, we

might consider the agent to have received application of

positive stimulus (Sþ) if rtþ1\rt, informing the variable

Z. Conversely, if rtþ1 [ rt, we might consider this a

removal of positive stimulus ($þ), informing the variable

X. Similarly, we might consider the application of neg-

ative stimulus (S�), associated with the variable Y , to be

influenced should stþ1\st. Likewise, if stþ1 [ st, we

could consider this the removal of negative stimulus

($�), and thus define an impact on the variable Z. Thus,

we define the concept of an stimulus event J. J is a

column vector, defined by the variables X, Y and Z such

that

J ¼
X

Y

Z

2

64

3

75 ð4Þ
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At this point, the manner in which we associate the stim-

ulus event with emotional output conceptually bifurcates,

as was briefly discussed during the psychological outline of

the model. First, it is possible to infer from Millenson’s

qualifications regarding multiple emotions that the differ-

ences between distinct emotions along a particular axis are

solely defined in terms of experiential intensity. Alterna-

tively, we might infer that the intensity he speaks of is

explicitly the intensity of stimulus required to trigger

individual emotions. Conceptually, and psychologically,

these two interpretations each require an alternative rep-

resentation through fuzzy logic. Both shall be discussed

here, beginning with the first interpretation, published ini-

tially in 2008 [19]. Prior to expounding upon them, how-

ever, we are obliged to clarify in specific terms how the

emotional state shall be defined through either representa-

tion of the Millenson Model.

Millenson’s model presents nine emotions that he

describes as basic, whatever the interpretation of how they

might be related to stimulus. It stands to reason, then, that

in consideration of Millenson’s emotion model, the emo-

tional state include representation of all nine of these ele-

ments. In explicit terms, this work defines the emotional

state of an agent governed by the Millenon Model,

EM ¼

lx1½0; 1�
lx2½0; 1�
lx3½0; 1�
ly1½0; 1�
ly2½0; 1�
ly3½0; 1�
lz1½0; 1�
lz2½0; 1�
lz3½0; 1�

2
66666666666666664

3
77777777777777775

ð5Þ

as an array of nine elements, and where l in all cases

represents the membership grade of the named emotion

the variable is associated with, and where; x1 represents

Annoyance, x2 represents Anger and x3 represents Rage;

y1 represents Apprehension, y2 represents Anxiety and

y3 represents Terror; z1 represents Pleasure, z2 repre-

sents Elation and z3 represents Ecstasy. These relative

magnitudes seek to indicate the level to which the

agent is experiencing each individual emotion at a

given instant, and are informed by the systems we now

outline.

Millenson A

Let us assume a given interpretation of Millenson’s model

that connects the significance of applied and removed

stimuli, of differing valence, with three emotional

components. Let us explicitly define these connections of

the form

X ! Anger

Y ! Anxiety

Z ! Pleasure

where X, Y and Z are defined in Eqs. (1), (2) and (3),

respectively, and their associated axes are clearly shown in

Fig. 1. We assign variables to each of these emotional

components, of the form

Anger ! x

Anxiety ! y

Pleasure ! z

Each of these emotional components possesses three

associated emotions, differing from each other in terms of

the degree with which the component is experienced.

Mirroring our merging of the stimulus components into a

single variable, we define the emotional experience index

eJ associated with a discrete event J, to be a vector of these

three values, and normalise them to crisp numbers between

0 and 1.

eJ ¼
x½0; 1�
y½0; 1�
z½0; 1�

2

64

3

75 ð6Þ

Obtaining eJ is a conceptual problem which this paper

approaches from the perspective of fuzzy inferencing. Let

us consider an individual component of J, X. As has been

previously stated, a given value assigned to X is a number

between 0 and 1, which conceptually represents the sig-

nificance of removed positive stimulus from the system.

Understanding that such a quantifier cannot crisply repre-

sent the nature of stimuli affecting the system, it is pro-

posed that fuzzy linguistics be implemented in its

interpretation. Thus, let us define X as an input to a

Mamdani fuzzy inferencing system, with linguistic vari-

ables describing ‘‘Low Significance’’, ‘‘Medium Signifi-

cance’’ and ‘‘High Significance’’. Thus, we define X in

fuzzy terms as

ðX; lÞ ¼
flðLow SignificanceÞ=Low Sig.;

lðMedium Sig.Þ=Medium Sig.;

lðHigh Sig.Þ=High Sig.g

Millenson stipulates the correlation between stimulus and

implied emotional output, and thus, we define x as an

output of a Mamdani fuzzy inferencing system, with lin-

guistic variables describing ‘‘Low Response’’, ‘‘Moderate

Response’’ and ‘‘Extreme Response’’ describing the

agent’s reaction to given behavioural stimuli in emotional

terms. In mathematical terms, this redefines x as

290 Cogn Comput (2015) 7:285–308
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ðx; lÞ ¼
flðLow Res.Þ=Low Res.;

lðModerate Res.Þ=Mod. Res.;

lðExtreme Res.Þ=Ext. Res.g

Let us ascribe three simple, fuzzy rules to this system:

Rule 1: If X is Low Significance, then x is Low

Response

Rule 2: If X is Medium Significance, then x is Moderate

Response

Rule 3: If X is High Significance, then x is Extreme

Response

Following from the Mamdani fuzzy inferencing system

[76] and centroid defuzzifier, it is plain how this system

can take a single, crisp variable defined as a component of

J, and provide a single, crisp variable which provides a

component of eJ. Conceptually, this principle extends to all

three axes in a similar fashion, with identical rules, thus

providing all three elements of the emotional experience

index eJ. It is not the purpose of this work simply to

quantify in vague terms the emotional response to stimulus.

Rather, it is to define an emotional state that may be

informed and adapted through emotional response to

environment. Having defined the emotional component of

the stimulus J, and clarified the means by which the two

are connected, it is now obligatory to connect eJ in some

direct fashion with an as yet undefined emotional state.

Before this undertaking, however, let us first associate the

emotional component eJ with the nine discrete emotions

posited by Millenson. The numerical values within eJ
quantify the emotional component along the associated

axis. Following Millenson’s literature, that component can

then be used to determine which emotions along that axis

are triggered by the stimulus changes presented by event J.

These emotions are, of course, linguistic terms, and as such

inherently fuzzy [26, 79]; thus, it is not at all assumed that

a binary state of active or inactive is inferred by the grade

of the emotional component along a given axis. Rather, let

us assume that each named emotion might be represented

by a fuzzy set along its parent axis. In fuzzy set termi-

nology, referencing our previous example discussing the

variable x in terms of a fuzzy set, this provides a new string

of fuzzy relations. The axis with which x is associated

houses three named emotions: Annoyance, Anger and

Rage. If we consider these emotions as linguistic variables,

we can define their relationship with x as

ðx; lÞ ¼
flðAnnoyanceÞ=Annoyance;

lðAngerÞ=Anger;
lðRageÞ=Rageg

As with our interconnection of stimulus with emotional

component, this relation between emotional component

and named emotions can be extrapolated to all three vari-

ables. As such, y and z would take the form

ðy; lÞ ¼
flðApprehensionÞ=Apprehension;

lðAnxietyÞ=Anxiety;
lðTerrorÞ=Terrorg

ðz; lÞ ¼
flðPleasureÞ=Pleasure;
lðElationÞ=Elation;
lðEcstasyÞ=Ecstasyg

It should be stressed that this is not a preamble to the

application of a second fuzzy inferencing system. Rather,

the functions connecting the various values of l to the

named discrete emotions should be defined and employed

in a more traditional, arithmetic manner. Millenson’s

model gives us no reason to assume that the relations

between a component and its associated discrete emotions

are not uniform across individual components of equiva-

lent scaling. That is to say that within his derivation, there

is no reason to assume that the relationship associating x

with Rage is in any way different to the relationship

associating z with Ecstasy. That being the case, we define

an array of equations associating the components of eJ
with values for discrete emotions associated with their

respective axes.

lJx1 ¼ f1ðxÞ½0; 1� ð7Þ

lJx2 ¼ f2ðxÞ½0; 1� ð8Þ

lJx3 ¼ f3ðxÞ½0; 1� ð9Þ

lJy1 ¼ f1ðyÞ½0; 1� ð10Þ

lJy2 ¼ f2ðyÞ½0; 1� ð11Þ

lJy3 ¼ f3ðyÞ½0; 1� ð12Þ

lJz1 ¼ f1ðzÞ½0; 1� ð13Þ

lJz2 ¼ f2ðzÞ½0; 1� ð14Þ

lJz3 ¼ f3ðzÞ½0; 1� ð15Þ

where lJ represents explicitly the membership grade

associated with the specified emotion for a given stimulus

event J, and where x1, x2 etceteras have the same

meanings as outlined in Eq. 5. For the sake of succinct-

ness, this relationship array condenses down to a single

equation,

lJji ¼ fiðjÞ½0; 1� forj ¼ x; y; z

i ¼ 1; 2; 3

Let us collect these nine membership grades into a single

vector. We define this vector EJ, the emotional state

component of an event J.
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EJ ¼

lJx1
lJx2
lJx3
lJy1
lJy2
lJy3
lJz1
lJz2
lJz3

2
66666666666666664

3
77777777777777775

ð16Þ

The distinction between EJ and EM is conceptually

fundamental. EM is the emotional state of the agent. EJ

is the emotional impact of a given stimulus event J; as

such, EJ informs EM, but the two are not equivalent, as

the distinctions in their notation emphasise. At this stage,

the system can now inform the emotional state of the

agent. How this emotional state is informed depends

specifically upon the level of emotional memory it is

desired that the agent experience; that meaning, how

strongly the current emotional state mutes the impact of

the stimulus event J. Let us return to the emotional state

EM as defined by Eq. 5. In merging EMðtÞ with EJ, to

obtain EMðtþ 1Þ, the simplest operator would be to take

the mean of the two vectors, such that

EMðtþ 1Þ ¼ ðEMðtÞ þ EJÞ
2

ð17Þ

However, this notation is inherently limiting and precludes

study into the area of emotional memory and its impact on

learning systems. As such, it is preferred to use alternative

notation of the form

EMðtþ 1Þ ¼ ðuEMðtÞ þ vEJÞ
uþ v

ð18Þ

where u and v are constants introduced at the point of

implementation, permitting the system to adjust the

weightings of importance between a new event and an

established emotional state. In behavioural simulation

sense, u and v are emotion-change regulators dictating the

degree of influence the current state and calculated emo-

tional response have on the next cycle of derived behav-

ioural responses. This allows the model to be flexible to

accommodate the modelling of agents with varying degrees

of emotional swings. Thus, those wishing to investigate

cognitive systems where emotional memory makes up a

large component have the freedom to do so with this

notation, as do those who wish to study behaviour-based

systems with a limited memory component where emo-

tional state is based predominantly upon instantaneous

stimulus.

Millenson B

Let us consider, from a psychological standpoint, the

alternative interpretation of Millenson’s intensity state-

ment. If one chooses to interpret it in the context of a more

intense stimulus leads to a different triggered emotion

along an axis, then one already has the fundamental basis

for a complete fuzzy inferencing system, as shall now be

outlined. Consider the stimulus event J in the context of its

three components X, Y and Z. Section ‘‘Millenson A’’

discussed these in terms of significance—the importance of

the applied or withdrawn stimulus—and derived from this

the intensity of the emotional response. If we linguistically

define stimulus in terms of intensity, however, rather than

context, the shape of the problem shifts somewhat. The

intensity Millenson discussed in an emotional context

might not specifically interconnect his basic emotions with

each other, but rather define their connections with the

stimulus itself. Let us return to the removed positive ($þ)

stimulus variable, X. As before, we consider this an input to

a fuzzy system. Let us define its linguistic variables as ‘‘No

Intensity’’, ‘‘Some Intensity’’, ‘‘Particular Intensity’’ and

‘‘Extreme Intensity’’. Thus, linguistically, our model par-

ticularly considers the idea of stimulus intensity and its

impact on emotional reaction. In fuzzy set terms,

ðX; lÞ ¼

flðNo IntensityÞ=No Int.;

lðSome IntensityÞ=Some Int.;

lðParticular Int.Þ=Part Int.;
lðExtreme Int.Þ=Ext. Int.g

Further to that, if stimulus intensity is, as is implied by

Millenson [31], the determining factor in which emotions

are triggered along a particular axis, this system would

require a redefinition of the previous interpretation’s defi-

nition of x as a fuzzy set. Rather than discussing degrees of

x, we instead consider x to simply be a geometric construct

indicating the relationship between three named emotions,

Annoyance, Anger and Rage, and the removal of positive

stimulus (represented through X). Thus, instead of associ-

ating X with a single output variable, we associate X with

three output variables, each with their own linguistic def-

initions outlining the level to which they are triggered. The

first, representing Annoyance, we define as x1 and describe

in fuzzy set terms as

ðx1; lÞ ¼

flðNot AnnoyedÞ=Not Ann.;
lðSlightly Ann.Þ=Slight. Ann.;

lðAnnoyedÞ=Annoyed;
lðVery AnnoyedÞ=Very Ann.g

Using comparable linguistic variables, we define the other

two output variables associatedwithX, these being x2 and x3.
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ðx2; lÞ ¼

flðNot AngryÞ=Not Ang.;
lðSlightly Ang.Þ=Slight. Ang.;

lðAngryÞ=Angry;
lðVery AngryÞ=Very Ang.g

ðx3; lÞ ¼

flðNot EnragedÞ=Not Enr.;
lðSlightly Enr.Þ=Slight. Enr.;

lðEnragedÞ=Enraged;
lðVery EnragedÞ=Very Enr.g

This alternative architecture, connecting multiple outputs

to a single inputs, generates rules which are significantly

more complex. In the case of X, we create a list of rules of

the form:

Rule 1: If X is No Intensity, then x1 is Slightly Annoyed,

and x2 is Not Angry, and x3 is Not Enraged

Rule 2: If X is Some Intensity, then x1 is Very Annoyed,

and x2 is Slightly Angry, and x3 is Not Enraged

Rule 3: If X is Particular Intensity, then x1 is Annoyed,

and x2 is Very Angry, and x3 is Slightly Enraged

Rule 4: If X is Extreme Intensity, then x1 is Slightly

Annoyed, and x2 is Angry, and x3 is Very Enraged

It should be clarified that these linguistic terms defining the

level of the named emotions refer specifically to its level rel-

ative to the other emotions. One might say that to be Enraged

one must be Very Angry by definition, but that would be the

wrong context. Rather, when the agent is Very Enraged, but

only Angry rather than Very Angry, this is because Anger and

Rage are treated as two distinct basic emotions by Millenson,

and the system is experiencing Rage to a greater degree than it

is experiencing Anger. As we have with all other numerical

variables, we apply limits of [0,1] to x1, x2 and x3 in this

context. That is to say that upon the conclusion of centroid

defuzzification, as discussed in a previous section, the crisp

output associated with each of the three named emotions shall

be a value between 0 and 1.We explicitly label these outputs as

lx1, lx2 and lx3 explicitly as, for our purposes, they define

membership of their associated emotion within the emotional

component of the stimulus vector J,EJ. Expanding this system

to include the other two input variables, and their associated six

basic emotions, permits us to generate a Mamdani fuzzy in-

ferencing system which will absorb the numerical contents of

the stimulus vector J and produce a value, between 0 and 1, for

each of the nine named emotions in Millenson’s model. As

these nine values represent the experiential level of the indi-

vidual emotions, they are considered analogous to the emo-

tional state generated by the previous implementation of

Millenson’s model, and thus, we define a vector formed with

these nine elements asEJ, taking the form outlined previously.

At this stage, the system can now inform the emotional state of

the agent. As we have kept our notation and vector structure

consistent throughout both interpretations of the Millenson

model, the manner in which it does this, with respect to the

emotional state EM is analogous with that discussed in the

previous subsection and, as such, has no need of explicit

repetition.

Fuzzifying the Geneva Emotion Wheel

Scherer himself described emotions, and their surrounding

linguistic conventions, in terms of fuzziness [26]. Indeed,

were our interest entirely fixed on the implementation of a

singular, emotionally informed cognitive engine, his work

alonemight provide a suitable basis for in-depth explanation.

As the terms of this article reflect a broader topic, however,

we are compelled to focus our interest upon specific aspects

of his work. A major contrast between the Geneva Emotion

Wheel and the Millenson model is Scherer’s inherent geo-

metricalisation. Within the Millenson model, geometry was,

to an extent, immaterial, primarily due to the independent

nature of the variables. Within the Geneva Emotion Wheel,

however, specific geometry and positional relativity enjoy

significantly more prominence. Description of the Geneva

Emotion Wheel as a concept was largely covered in our

previous sections; here, we consider thewheel as a geometric

construct and circumplex. Scherer provides us with two

conceptual axes—the level of control experienced by the

agent, ranging from ‘High’ to ‘Low’, and the valence (pos-

itivity or negativity) of the experience. Defined by these axes

are twomatters: the experienced emotion of the agent, and its

intensity. In Scherer’s conceptual prototype, upon which our

own prototyping is based, each named emotion had four

represented degrees of intensity. In addition, each named

emotion had a crisply defined occupational region in terms of

relative magnitudes of control and valence. These are shown

in Fig. 2. Each of the named emotions in Scherer’s prototype

might be described in terms of a ratio of the control and

experience magnitudes, irrespective of specific emotional

intensity (though that is obviously important to our consid-

erations). That is to say that one might assume a ‘prideful’

emotional state for any situation where the values of control

and valence were positive, and the ratio of control to valence

was significantly weighted in favour of control. Conceptu-

ally, this raised interesting questions regarding how best to

represent the Geneva Emotion Wheel in fuzzy terms. When

considering the output for a fuzzy system relating to the

Geneva Emotion Wheel; therefore, Scherer has already

provided us with two ‘fuzzy’ concepts. First, named emo-

tions themselves, and second, intensity of those named

emotions. The question comes in the manner in which we

conceptually fuzzify the emotions, and in order to clarify that

we must first define the inputs received by a system utilising

the Scherer model of emotions, and the outputs our imple-

mentation of that system should provide. The inputs Scherer

provides are the concepts of Control and Valence. We name
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these xJ and yJ for a given situation, and define them in the

context of conceptual sums of experiential perceptions,

xJ ¼ 1

nu

Xn

i¼1

fuiðuiJÞ½�1; 1� ð19Þ

yJ ¼ 1

nv

Xn

i¼1

fviðviJÞ½�1; 1� ð20Þ

where uiJ is an element of the agent’s environment which

impacts its sense of valence, ofwhich there are nu for any given

xJ, and whose individual impact is defined by an associated

function fui ; and, viJ is an element of the agent’s environment

which impacts its sense of control, of which there are nv for any

given yJ, and whose individual impact is defined by an asso-

ciated function fvi ; and, where the sums are normalised to a

value between �1 and 1, to reflect the juxtapositions they

represent.Usage of Jwith respect to Scherer is analogous to the

usage of the variable with respect to Millenson, up to a point.

Whereas Millenson permitted the explicit association of stim-

ulus events with J, Scherer’s model requires a more esoteric

interpretation. Rather than an event, in this context J represents

the agent’s perception of its situation at a given instant, in the

context of valence and control. Thus, the input J is defined,

J ¼
x

y

� �
ð21Þ

As previously stated, the output of any system covered

within this work should be that of an emotional state,

defining at any given instant the discrete state of the agent in

the context of experiential magnitudes of a given number of

named emotions. Scherer’s model presents sixteen named

emotions; thus, the desired output of any implementation is

defined as a vectorwhich indicates the relativemagnitudes of

each of these sixteen emotions, between values of 0 and 1.

Numerically, this emotional state ES is written

ES ¼

ePride
eElation
eHappiness
eSatisfaction
eRelief
eHope
eInterest
eSurprise
eAnxiety
eSadness
eBoredom

eShame=Guilt

eDisgust
eContempt

eHostility
eAnger

2
66666666666666666666666666664

3
77777777777777777777777777775

ð22Þ

where e represents the relative level with which a given

emotion is being experienced, with that given emotion

identified in explicit terms by its subscript. Having

defined the generalist input and desired output of the

system, one must now consider the best way to approach

it from a fuzzy perspective. That is to say, whether to

approach it from a fuzzified geometric perspective, or to

approach it from a linguistic perspective. It should be

clarified that by ‘linguistic perspective’, we mean

description of inputs linguistically, rather than geomet-

rically. For example, one could connect the concept of a

‘steep’ relationship between Valence and Control, and an

intense experience, with a ‘high’ relative magnitude of

Pride. The issue with such a system, however, is the

inherently geometrical nature of Scherer’s model. While

it might be possible to devise a multitude of adjectives

to describe experienced level of Valence or Control, and

thus map them in fuzzy terms, ultimately such linguistic

variables would simply be geometric place-holders, not

having any particular linguistic meaning, and thus

defeating the purpose of their inclusion. It should also be

borne in mind that the Geneva Emotion Wheel has

inherently fuzzy, linguistic components already: the

inputs themselves, and the conceptual intensities of the

experienced emotions. As these are fuzzified in the

method now outlined, it is felt the application of fuzzy

logic is still wholly justified in this context. Shown in

Fig. 2, the Geneva Emotion Wheel can be viewed from a

geometric perspective. This means that rather than

interpret inputs in the context of linguistic variables such

as ‘‘Low’’, ‘‘Medium’’ or ‘‘High’’, we instead consider

the inputs geometric coordinates, and fuzzify the emo-

tions they represent. As with the Millenson model, it is

possible to dissect this emotion representation in the

context of its axes and associate each axis with one of

the variables defined in J. Let us consider first the axis

associated with the variable x, that of Valence. Consid-

ering the model geometrically in the context of the x

axis, it is evident that all discrete regions therein can be

conceptually represented by thirty-three unique sets. We

say thirty-three, rather than the sixty-five unique regions

indicated on the model, because the model is a geo-

metrical mirror of itself, with only the emotional white

space (the thirty-third unique set) crossing the intersec-

tion. Thus, is it possible to define the variable x, in fuzzy

terms, as

ðx; lÞ ¼
flðx1Þ=x1; lðx2Þ=x2; lðx3Þ=x3; . . .;
lðx31Þ=x31; lðx32Þ=x32; lðx33Þ=x33g

These sets are described as unique, but it should be

noted that many of the sets share elements; that is to say

that many discrete values of x are found in more than
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one set. It is necessary that the values assigned to these

sets be geometrically consistent with the model, or the

psychology upon which it is ground ceases to have

meaning. The explicit limits that were defined for our

particular implementation of the Geneva Emotion Wheel

are included in the Implementation section. That said, it

was reasoned that these sets should be defined such that

their maxima coincide with the geometrically crisp

regions defined by Scherer’s prototype at their widest

points. The ranges defining alternative non-trivial mem-

berships vary, dependent upon how broadly the imple-

mentation seeks to fuzzify the emotions. It is suggested,

however, that the non-maximal, non-trivial bands remain

proportionally consistent across different grades of the

same emotion, thereby maintaining the ratio-based rela-

tionship that psychologically associates the conceptual

inputs with the named emotions. Let us now consider the

variable y, which we previously paired with the concept

of control. As one compares the structure of y to the

structure of x, the near-identical, if tangential nature of

their relationship coincides with the ideals of a circum-

plex representation. Again, each discrete grade of a

named emotion can be represented by a single function,

and thirty-three functions can be applied to represent the

entire circumplex. As a fuzzy construct, we similarly

define y in terms of

ðy; lÞ ¼
flðy1Þ=y1; lðy2Þ=y2; lðy3Þ=y3; . . .;
lðy31Þ=y31; lðy32Þ=y32; lðy33Þ=y33g

where the meanings are comparable with those espoused

in the representation of x, and consistent with fuzzy

principles as outlined in the preamble. It should be

noted that, while linguistic variables are not employed

in this case, the very nature of what each fuzzy function

within the variables represents is inherently fuzzy, as

shall become evident as the links between the input and

output variables are explicitly clarified. Let us consider

the output structure of a system informed by these two

fuzzy input variables. As stipulated in the psychological

outline of the Geneva Emotion Wheel, this system

represents both the nature and intensity of sixteen

named emotions, as a function of the variables we have

outlined as x and y. The output of such a system, then,

should be a relative intensity of each of these sixteen

emotions, individually. Let us consider a single emotion,

Satisfaction, as a fuzzy construct, with its structure

informed by the Geneva Emotion Wheel. We define

Satisfaction, in this context, as ðeSatisfaction; lÞ, and in

specific terms as

ðeSatisfaction; lÞ ¼

flðN Int.Þ=
N Int.;

lðLo Int.Þ=
Lo Int.;

lð Mid Int.Þ=
Mid Int.;

lð Hi Int.Þ=
Hi Int.

lð Ext Int.Þ=
Ext Int.g

Let us introduce such a structure to the remaining discrete

emotions, and thus define our system output. The links

between input and output, however, have not yet been clari-

fied. Let us return to our fuzzy construct ðeSatisfaction; lÞ. The
structure of ðeSatisfaction; lÞ is drawn from the geometric model,

with a null membership function ascribed to the central

emotional white space, and gradiated emotional intensities

based upon the four discrete intensities shown in Fig. 2. Thus

let us consider the fuzzy system rules which connect mem-

bership functions of our inputs to all of ðeSatisfaction; lÞ’s
membership functions. Such rules would be of the form,

Rule 1: If x is x33, and y is y33, then eSatisfaction is Null

Intensity

Rule 2: If x is x17, and y is y24, then eSatisfaction is Low

Intensity

Rule 3: If x is x18, and y is y27, then eSatisfaction is Mid

Intensity

Rule 4: If x is x19, and y is y30, then eSatisfaction is High

Intensity

Rule 5: If x is x20, and y is y32, then eSatisfaction is Extreme

Intensity

The minimum membership grade of each doublet of input-

related fuzzy sets is projected onto their associated emo-

tional grade. The centroid of all of these grades, for a given

named emotion, determined its numerical output, between

0 and 1. In the case of eSatisfaction, we call this discrete value

e0Satisfaction. Thus the structure of a geometrically concep-

tualised, fuzzy representation of the Geneva Emotion

Wheel becomes clear. Any given values for x and y obtain

membership grades for the thirty-three fuzzy functions that

constitute their make up, and such memberships are com-

pared to rules explicitly connecting combinations of these

inputs with grades of specific output emotions. This will

provide discrete values for the sixteen emotional outputs,

between 0 and 1, thereby constructing an instantaneous

emotional response E0
S, which is defined
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E0
S ¼

e0Pride
e0Elation
. . .

e0Anger

2

6664

3

7775 ð23Þ

As discussed in the context of the Millenson representation,

the instantaneous result of the fuzzy inferencing system

informs the emotional state; that is to say, in this context,

E0
S informs ES. Let us consider ES at time t and time t þ 1,

where the interval represents the time taken for the system

to obtain a value for E0
S. As both ES and E0

S are vectors of

the same structure, the method of combining them is

analogous to that used with respect to the Millenson model.

ESðtþ 1Þ ¼ ðuESðtÞ þ vE0
SÞ

uþ v
ð24Þ

where u and v are constants introduced at the point of

implementation, permitting the system to adjust the

weightings of import between the newly calculated emo-

tional component E0
S and the established emotional state

ES. In behavioural simulation sense, u and v are emotional

regulators dictating the degree of influence the current state

and calculated emotional response has on the next cycle of

derived behavioural responses. Again, those wishing to

investigate systems where emotional memory has signifi-

cant influence on decision-making have the freedom to do

so with this notation, as do those who wish to study sys-

tems with a limited memory component where emotional

state is based predominantly newly obtained environment-

driven emotional components.

FIS Prototyping of the Emotional Models

The MATLAB Fuzzy Inferencing System Editor (FISE)

provides a stable, well-integrated platform through which

to generate implementations of these psychologically

grounded models of emotion. This section shall outline in

specific detail the MATLAB implementations of the three

mathematical mechanisms previously outlined. First, it

shall address the representation of the initial Millenson

model, followed by the alternative interpretation of Mil-

lenson’s literature. It shall then outline the process by

which Scherer’s Geneva Emotion Wheel was implemented.

Millenson A in MATLAB

Within MATLAB’s FISE, a Mamdani fuzzy inferencing

system was generated, three inputs to three outputs. This

fuzzy inferencing system utilised the minimum ‘And’

operator as discussed in section ‘‘Internal Modelling of

Emotions’’, and the centroid method of defuzzification.

This structure is illustrated by Fig. 3. As indicated in sec-

tion ‘‘Fuzzifying the Millenson Model’’, these inputs were

declared so as to represent the elements of a stimulus event,

J. Each of the input elements X, Y and Z was, as a fuzzy

construct, defined as having three associate fuzzy mem-

bership functions, representing quantified levels of associ-

ated stimulus in the context of significance to the agent.

Within this implementation, those fuzzy membership

functions were represented as triangular functions, with

their geometric vertices given by Table 1. Figure 4 illus-

trates the membership functions described by Table 1, as

applied to input variable Z. These structures were deemed

to be conceptually uniform across all three axes and were

applied thus. The output variables of the fuzzy inferencing

system, x, y and z, were described and outlined in section

‘‘Millenson A’’ as having three intrinsic membership

functions. These were, explicitly, LowResponse;

Moderate Response and HighResponse. Millenson’s model

gives rise to direct equivalency across the input and output

variables; thus, it was determined there should be equiva-

lency in their description as triangular fuzzy membership

functions. The geometric vertices of these three member-

ship functions were applied uniformly across all three

output variables. These are given in 2 and their application

to the output variable z is illustrated by Fig. 5.

Rules as outlined in section ‘‘Millenson A’’ in the con-

text of variables X and x were defined the internal structure

of the fuzzy inferencing system such that any vector J

produced a suitable output eJ where:

eJ ¼
x½0; 1�
y½0; 1�
z½0; 1�

2

64

3

75

The process by which the vector eJ was processed to

generate the desired output EJ associated with a given

stimulus J required more subtle analysis in order to be

implemented. As a function of the usage of centroid de-

fuzzification applied in this representation, coupled with

the specific representation of the triangular membership

functions, ensured that the minimum value for any output

was 0.163. Conversely, the maximum output value for any

output was 0.837. Returning to Millenson’s geometry, it

was required that we suitably scale the named emotions

along a given axis in accordance with his structure. That is

to say that, along the axis, the maximum for the lowest

grade would appear at 20 %, the next highest grade at

60 %, and the highest grade at 100 %. Thus, it was

determined to scale these grades to fit the value range

granted by the fuzzy inferencing system, when defining the
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fuzzy functions linking the output variables to the specific

emotions they influenced. While the calculations that pro-

cessed the individual outputs x, y and z into discrete grades

of the nine named emotions were explicitly not a second

fuzzy inferencing system, the nature of the associative

functions was inherently fuzzy in nature. These functions

were likewise triangular in structure, so as to maintain

internal consistency within representations, though not

symmetrical. Their vertices are presented in the context of

output variable z in Table 3, which is illustrated in Fig. 6.

These relations between variable and its associated

discrete emotions were applied uniformly. For each vector

eJ, a simple MATLAB M-File used these fuzzy relations to

determine membership grades for each discrete emotion,

producing the desired output for a given iteration, EJ. The

interaction between EJ and the emotional state EM is dis-

cussed in greater detail in the testing section, since it is an

inherently customizable concept; for the basic implemen-

tation, however, a mean value of EJ and the current EM

was taken whenever a stimulus event J was applied to the

system.

Millenson B in MATLAB

Within MATLAB’s FISE, a Mamdani fuzzy inferencing

system was generated, three inputs to nine outputs. This

fuzzy inferencing system utilised the minimum ‘And’

operator as discussed in section ‘‘Internal Modelling of

Emotions’’, and the centroid method of defuzzification.

This structure is illustrated by Fig. 7. Implementation of

this alternative representation of Millenson’s model

through MATLAB was a simpler process than that listed

above, primarily due to the removal of the intermediary

layer of calculation associated with eJ. The structure of the

input vector remained consistent, that being the stimulus

event J, although its context differs, as described earlier.

Each of the input elements X, Y and Z was, as a fuzzy

construct, defined as having four associate fuzzy mem-

bership functions, representing quantified levels of associ-

ated stimulus in the context of intensity with which the

agent felt the stimulus. Within this implementation, those

fuzzy membership functions were represented as triangular

functions, with their geometric vertices given by Table 4.

These are illustrated in the context of variable X in Fig. 8.

Fig. 4 Millenson A: MFs of

input variable Z

Fig. 3 Millenson A: FIS

structure

Table 1 Millenson A: input

MFs
Low Sig – 0.0 0.5

Med Sig 0.2 0.5 0.8

Hi Sig 0.5 1 –

Table 2 Millenson A: output

MFs
Low Resp – 0.0 0.5

Mod-Resp 0.2 0.5 0.8

Ext-Resp 0.5 1 –
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These membership functions were applied uniformly to the

three input variables X, Y and Z. The nine output variables,

mathematically denoted as x1�3, y1�3 and z1�3, were each

associated with four membership functions as outlined in

section ‘‘Millenson B’’. In implementing them, these

membership functions were represented as triangular

functions; their vertices are given in Table 5, in the context

of the output x1, or the ‘Annoyed’ emotion. They are

illustrated, again in the context of output x1, in Fig. 9.

These membership functions were applied uniformly

across all nine output emotions to maintain consistency

across the target resultant, vector EJ, elements. Rules were

input into the system reflecting those outlined in section

‘‘Millenson B’’, where the mathematics of this model were

discussed in depth. The rules were applied uniformly

across input variables, connecting them each with their

three associated output variables. An M-File obtained the

nine discrete values, one for each output, and combined

them into the desired iterative output vector EJ. In simple

testing, EJ was then aggregated with EM in order to con-

struct an evolving emotional state; the specifics of this are

discussed in the testing section of this paper.

The Geneva Emotion Wheel in MATLAB

Implementation of the Geneva Emotion Wheel through

MATLAB proved to be a complex endeavour, both in

terms of the geometric analysis required in order to

maintain scientific consistency, and in terms of limitations

of the MATLAB FISE. Within MATLAB’s FISE, a

Mamdani fuzzy inferencing system was generated, two

inputs leading to sixteen outputs. This fuzzy inferencing

system utilised the minimum ‘And’ operator as discussed

in section ‘‘Internal Modelling of Emotions’’ and the cen-

troid method of defuzzification. This structure is illustrated

by Fig. 10.

As outlined in section ‘‘Fuzzifying the Geneva Emotion

Wheel’’, the input vector to this system, J, is defined in this

context as

J ¼
x

y

� �

where x and y represent a quantified determination of

valence and control, respectively, within the value ranges

of �1 to 1. As fuzzy constructs, it has already been

Table 3 Millenson A: discrete emotions associated with z

Pleasure 0.1630 0.2978 0.5674

Elation 0.4326 0.5674 0.8370

Ecstasy 0.7022 0.8370 –

Fig. 6 Millenson A: discrete

emotions associated with z

Fig. 5 Millenson A: MFs of

output variable z
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determined that each of these input variables has thirty-

three fuzzy functions associated with it; the matter of the

implementation is to calculate in discrete terms and so

encode these thirty-three functions. In this implementation,

the nature of the fuzzy functions faced applied constraints.

Firstly, that the fuzzy functions would be trapezoidal.

Secondly, that the maxima of these trapezia would, along

either axis, coincide with the discrete geometrical region

determined by Scherer’s prototype. Thirdly, that each

shoulder of a trapezium would be equal in width along its

axis to the width of its maximum. Finally, that the absolute

values of �1 and 1 along each axis would be determined by

the edge of the maximum of the first and thirty-second

membership functions for that axis (mindful that the thirty-

third occurs out of sequence, and functionally occupies the

origin 0). Following these constraints, and applying geo-

metrical analysis to four significant figures of accuracy, a

table was constructed from the vertices of each trapezoidal

membership function. As the x and y axes on Scherer’s

prototype mirrored each other, this table presents the

membership functions of both the x and y variables, nu-

mericised according to the value of their first coordinate.

These functions are naturally applied uniformly across both

x and y. A graphic representation of these membership

functions as applied to the x input variable is included as

Fig. 11.

Each of the sixteen outputs as described in section

‘‘Fuzzifying the Geneva Emotion Wheel’’ is required to

have five membership functions describing its relative

magnitude. These were described as Null Intensity;

Low Intensity;Middle Intensity;High Intensity and Extreme

Intensity. The idea, as explained, was to map individual

couplets of input membership functions to a specific

grade of an individual output variable. Experimentation,

Table 4 Millenson B: input

MFs
No intensity – 0.0 0.3

Some Int. 0.0 0.3 0.6

Particular Int. 0.4 0.7 1.0

Extreme Int. 0.7 1.0 –

Table 5 Millenson B: output

MFs
Not

annoyed

– 0.0 0.33

Slightly

Ann.

0.0 0.33 0.67

Annoyed 0.33 0.67 1.0

Very Ann. 0.67 1.0 –

Fig. 7 Millenson B: FIS

structure

Fig. 8 Millenson B: MFs of

input variable X
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however, revealed a weakness in the application of the

centroid defuzzification mechanism. In this system, there

were naturally instances where individual outputs would

have membership of 0; in situations where Extreme Pride

was triggered, for example, Anxiety would have no mem-

bership output. In such situations, MATLAB’s implemen-

tation of centroid defuzzification returns the median value

of the output range. As such, in the above example eAnxiety
would return membership of 0.5. The solution to this

problem was to introduce a sixth output membership

function. This function had a discernible membership area

of 5� 10�5units2 and would be the default state for all

outputs unless one of their other rules was triggered.

Regrettably, this introduced a potential error margin within

obtained outputs. This error margin is factored into the

results obtained from this implementation of the Geneva

Emotion Wheel. As a result of this, the mathematical

construct describing the emotion of satisfaction with

respect to l; eSatisfaction, given in section ‘‘Fuzzifying the

Geneva Emotion Wheel’’ was amended to:

ðeSatisfaction; lÞ ¼

flð No IntensityÞ= No Int.;

lð Null IntensityÞ= Null Int.;

lð Low IntensityÞ= Low Int.;

lð Middle Int.Þ= Mid Int.;

lð High Int.Þ= High Int.

lð Extreme Int.Þ= Ext. Int.g

Each of these fuzzy terms is represented by a trapezoidal

membership function, the coordinates of which are given in

Fig. 9 Millenson B: MFs of

output variable x1- annoyance

Fig. 10 Scherer: FIS structure

Fig. 11 Scherer: MFs of input

variable x
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Table 6. This table is illustrated by Fig. 12 in the context of

the output eSatisfacton. Whereas the rules required to repre-

sent both interpretations of the Millenson Model were self-

explanatory in the context in which they were presented,

the geometric representation of the Geneva Emotion Wheel

is not so. Each rule in the implementation associated one

membership function from each input variable with a

specific membership function of one of sixteen output

variables. An additional rule exists associating all outputs’

‘‘Null’’ membership functions to x33 and y33, as has been

suggested previously. Also, be necessity, all of the above

couplets are also associated with the ‘‘No Intensity’’ error-

correction membership function for all output emotions to

which they are not explicitly connected. A simple M-File is

used to generate the desired output vector E0
S from the

sixteen discrete numerical values generated by the fuzzy

inferencing system outputs. In simple testing, E0
S was then

aggregated with ES in order to construct an evolving

emotional state; the specifics of this are discussed in the

testing section of this paper.

Models Testing and Evaluation

The testing segment of this paper will focus on broad

examination of the effective and practical limitations of the

implementations proposed, and comparison of their

behaviours where appropriate. Undertaking an exhaustive

experimental trial with a geometrically determined variety

of inputs, we shall determine behavioural trends within the

systems regarding their output structure.

Millenson A Testing

The Millenson A implementation was tested along its

Elation-related axis, using the following input values:

�0:1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1.

The uppermost and lowermost of these values were

included to test the system’s behaviour when inputs were

received that lay outside operational boundaries. As

anticipated, these values, �0:1 and 1.1, returned warning

errors. The remainder of the input values produced usable

results which shall be further discussed in analysis. Spe-

cifically, these results are membership grades of the three

named emotions that lie along the Elation-related axis. Our

analysis shall focus upon these and their relationship with

input magnitude. The reason for considering only one input

variable for the purposes of this publication is a function of

the structure of the model. Since each input variable, as has

been discussed in both the psychological background and

implementation sections, is associated solely with its single

output variable and with no other, any single input–output

pairing can be examined as a single entity without losing

context. Furthermore, as all three axes are identical,

numerically, in terms of their structure, analysis of any single

input–output pairing provides equal insight into the two

undiscussed input–output pairings. That said, in preliminary

testing, all three input–output pairings in the implementation

of Millenson A were tested to ensure complete consistency

across them, and this was confirmed. The Analysis section,

however, centres upon only the pairing discussed above.

Millenson B Testing

The Millenson B implementation was tested along its

Elation-related axis, using the following input values:

�0:1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1.

The uppermost and lowermost of these values were

included to test the system’s behaviour when inputs were

received that lay outside operational boundaries. As

anticipated, these values, �0:1 and 1.1, returned warning

errors. The remainder of the input values produced usable

results which shall be further discussed in analysis.

Table 6 Scherer: output MFs

No intensity – – – 0.0001

Null Int – 0.00 0.10 0.20

Low Int 0.05 0.15 0.30 0.40

Mid Int 0.30 0.40 0.55 0.65

High Int 0.55 0.65 0.80 0.90

Ext Int 0.80 0.90 – –

Fig. 12 Scherer: MFs of output

variable eSatisfaction
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Specifically, these results are membership grades of the

three output variables (named emotions) associated with

the Sþ $� input variable. Our analysis shall focus upon

these and their relationship with input magnitude. The

reason for considering only one input variable for the

purposes of this publication is a function of the structure of

the model, similar but naturally not identical to the justi-

fication with respect to Millenson A. Since each input

variable, as has been discussed in both the psychological

background and implementation sections, links exclusively

to three output variables (named emotions lying along its

representative axis) and with no other, any single input–

output grouping may be treated as representing the entire

structure. As with Millenson A, however, all three input–

output groups in the model were tested to ensure complete

consistency across them, and this was confirmed. The

Analysis section centres upon only the Sþ $� grouping.

Scherer Testing

Unlike the Millenson model, neither of Scherer’s input

variables enjoys exclusive impact with any of its output

variables. Each of the sixteen emotional output variables is

intrinsically associated with both the Control and Valence

input variables. As such, exhaustive testing was required

across the range of accepted input values, with no

abstraction or extrapolation being possible. It was deter-

mined that 5 % incremental increases across the ranges,

plus tests beyond the accepted extremities of both input

variables, would be required to gain a true understanding of

the model’s behaviour. These experiments were performed

and the insight they provided into the capacities and lim-

itations of this model are discussed in the next section.

Critical Analysis

Millenson A Analysis

Our analysis of the Millenson A fuzzy logic implementa-

tion centres upon the Sþ $� input variable and its asso-

ciated named emotional outputs. Table 7 shows the data

obtained within the functional boundaries of the model.

Tests outside of these boundaries returned a warning error.

This data can be represented visually as shown in Fig. 13.

The graphical representation gives us a clearer view of the

model’s behaviour as the numerical value of Sþ $�
increases. We can see, in accordance with our expectations,

there are no situations where all three emotions have

nonzero membership grades.

The relative surface areas beneath the three named

emotions were calculated based on the area beneath the

chart. This information is useful in determining the relative

membership magnitudinal probabilities of the three emo-

tions, which is to say how ‘strongly’ they are represented

within the boundaries of the system. In such terms, we

choose to recognise the area under the Pleasure emotion as

representing unity. The Elation emotion has a surface area,

then, equal to 1.337 times unity. The Ecstasy emotion,

similarly, has a surface area equal to 1.330 times unity. In

terms of chance of firing for random data input, however,

we must instead consider range of nonzero values. Again,

we choose to recognise the operational range of the Plea-

sure emotion to represent unity. In this case, the Elation

emotion’s active range is equal to unity, while the Ecstasy

emotion’s active range is equal to 0.429 of unity. Taking

both into consideration, the central emotion, Elation, which

Millenson uses to describe the entire axis, is the most

strongly represented for any given random input. By con-

trast Elation, which is considered the extremis emotion,

while having very great membership when fired is the least

likely to be so for any random input. The general shapes of

the graphs display trends we anticipated on the basis of the

Fig. 13 Millenson A test results

Table 7 Millenson A test results

S?$� Pleasure Elation Ecstasy

0.0 0.0024481 0 0

0.1 0.047033 0 0

0.2 0.14874 0 0

0.3 0.78412 0 0

0.4 0.46502 0.069955 0

0.5 0.25 0.5 0

0.6 0.034978 0.93004 0

0.7 0 0.71588 0

0.8 0 0.074369 0.85126

0.9 0 0.023516 0.95297

1.0 0 0.001224 0.99755
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two-tier nature of the Millenson A representation. In

accordance with the limitations we sought to place upon

the structure, lower-level emotions trail into higher-level

emotions in terms of membership. That is to say that an

Elation response is more likely to trigger residual Pleasure

than a Pleasure response is likely to trigger residual Ela-

tion. Further discussion of this implementation shall occur

in the context of its comparability with the alternative

Millenson representation.

Millenson B Analysis

Our analysis of the Millenson B fuzzy logic implementa-

tion focuses on the Sþ $� input variable and associated

named emotional outputs. Table 8 shows the data obtained

within the functional boundaries of the model. As with

Millenson A, tests outside of these boundaries returned a

warning error. It is clear from the initial data that, impor-

tantly, there are no points within operational range of the

system where all three named emotions do not provide

nonzero results. We include a graphical representation of

this data as Fig. 14. Again, the graphical representation can

provide us with a clearer view of the behaviours of the

model in terms of membership grades of the named emo-

tions as the Sþ $� variable increases.

Again, we first consider the relative surface area beneath

the curve. Taking the area under the Pleasure curve as

unity, we can determine the area under the Elation curve to

be 0.865 of unity, and the area under the Ecstasy curve to

be 0.480 of unity. There can be no comparison of range of

relevance when considering the results provided by the

Millenson B implementation as nonzero results are pro-

vided for all three named emotions across the entire

operational range of the system. Looking at the member-

ship area, however, it is clear that the Millenson B

implementation weights in favour of the lower-level emo-

tions over the higher. In terms of trailing edges, this is

visually apparent in the system when considering the

length of the trailing edge of Pleasure relative to the

leading edge of Ecstasy. It is also visible when comparing

the descending trends of Elation with the ascending trends

of Elation.

Millenson A versus Millenson B

In order to permit a clearer comparison of the two imple-

mentations of the Millenson theory, Fig. 15 demonstrates a

superposition of Figs. 13 and 14. When comparing the

behaviour of the models, it is appropriate that we consider

their structural differences, in particular their rules struc-

ture. The key differences between the models come in two

parts, rule structure and tier structure.

In the Millenson A implementation, each rule in the

fuzzy inferencing system makes a connection between a

single input and a single output. That is to say association

is drawn between a specific input membership function and

a specific output membership function. In the Millenson B

implementation, by contract, each rule in the fuzzy infer-

encing system connects a specific input to three associated

outputs. Which is, again, to say that a connection is drawn

between a specific input membership function and three

output membership functions. Similarly, while the Mil-

lenson B fuzzy inferencing system has an output for every

named emotion, Millenson A produces instead a three-part

vector which is then converted, geometrically, to generate

values for the nine named emotions. This is the role of its

second tier. Taking these differences into consideration, the

magnitude of variation in the results should not be con-

sidered surprising. A key and instantly discernible differ-

ence lies in the variety of compound emotional results

presented by each implementation. While Millenson A

never provides nonzero results for more than two named

emotions, Millenson B provides nonzero results for all

three named emotions at all times. Connected to this are the

Table 8 Millenson B test results

S?$� Pleasure Elation Ecstasy

0.0 0.33333 0.10667 0.10667

0.1 0.45999 0.2571 0.11644

0.2 0.57938 0.3147 0.11644

0.3 0.89333 0.33333 0.10667

0.4 0.88356 0.3336 0.11644

0.5 0.69501 0.5109 0.30499

0.6 0.6664 0.88356 0.3336

0.7 0.66667 0.89333 0.33333

0.8 0.54577 0.7429 0.45999

0.9 0.45423 0.6853 0.57938

1.0 0.33333 0.66667 0.89333

Fig. 14 Millenson B test results
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differences in membership surface area between the two

models. Summing the membership surface area of all three

named emotions, and defining the summed surface area of

the Millenson A results as unity, the summed surface area

of the Millenson B results equate to 2.281 of unity. This

enables us to say that in average terms, Millenson B shall

return a higher summed membership across the three

named emotions for a given input value. Taking the global

view, while both models have justification in Millenson’s

theory, the broader-brush approach of Millenson B pro-

vides a more interesting psychological blend of emotions

for a given emotional state, while the more targeted nature

of Millenson A might be considered to have more use in

terms of pedagogue system control. Indeed, the application

of Millenson A as an agent controller in a pedagogic case is

explored in associated work [21].

Scherer Analysis

An exhaustive list of results from the Scherer experimen-

tation is impractical to present in print format, far moreso

than is the case with either Millenson model. As such,

discussion of these results will be more targeted and less

abstract than in the prior cases. The first important result of

experimentation with our implementation of the Scherer

model was the revelation of a weakness in the system in

cases of extremis. Specifically, in 4 % of cases, where both

input variables approached j1j, errors were returned as

though the input data lay outside the boundaries of the

system. Investigation revealed that this error was an

inherent function of the two-coordinate representation of

the circumplex geometry. These aberrations aside, the

fuzzy geometry used in the representation of the Geneva

Emotion Wheel demonstrated interesting behaviour when

considered across a range of named emotions with similar

ratios of Valence to Control. Rather than discuss exhaus-

tive results in the context of each named emotion, as is

possible with Millenson, instead we focus upon four cross-

sections and the implications of the non-trivial results each

presents. In each case, the figures represent membership

grades for the named emotions at the input values pre-

sented, with one input value remaining static while the

other varies across the range. Figure 16 presents an

example where Valence is fixed at 0.8, and Control varied

from �1:0 to 1.0. Figure 17 presents its corrollary, Control

fixed at 0.8 while Valence varies from �1:0 to 1.0. In an

effort to provide additional evidence of the implementa-

tion’s behaviour, Fig. 18 presents emotion memberships

where Valence is fixed at 0.5, with Control varied across

the range of inputs. Similarly, Fig. 19 presents the corrol-

lary, with Control fixed at 0.5 and Valence varied from

�1:0 to 1.0.

The purpose of these figures is to demonstrate two

things. Firstly, that the Scherer geometry is obeyed within

the constraints of the model, and within the context in

which the implementation is presented. Secondly, that the

geometry is consistent inasmuch as behaviour is main-

tained across the operational region. Figure 16 presents a

case where Valence is both positive and of high magnitude.

That being the case, referring back to Fig. 2, and taking

into account the trailing edges of our fuzzy geometry, we

should expect the emotions triggered by a variance in

Control across the range to be Elation, Happiness, Satis-

faction, Relief, Hope and Interest. Figure 16 confirms that

to be the case, in addition to several key features. Firstly,

that the emotions triggered follow the Geneva Emotion

Wheel geometry in abstract terms. That is to say, Interest,

being the emotion in the above list associated with the

lowest relative Control, is triggered at lower levels of

Control than any other. Similarly, the order of triggering

follows the geometry of the Geneva Emotion Wheel.

Secondly, Fig. 16 demonstrates symmetrical membership

relationships for emotions across the mid-point of the

Control range. This is important from a consistency per-

spective. The Geneva Emotion Wheel is a circumplex and,

as such, any attempt to represent it geometrically must

adhere to the symmetry inherent in its structure. Lastly, the

application of fuzzy logic, and the nature and structure of

our particular implementation, should give rise to situations

where multiple emotions have nonzero memberships

simultaneously. Note that unlike Millenson, Scherer does

not include as a function of the Geneva Emotion Wheel’s

structure an intrinsic property of compound emotions.

Rather, in this case, it is the fuzziness associated with

environmental perception which gives rise to these com-

plex solutions. Figure 16 demonstrates that the imple-

mentation provides such results, with over 80 % of samples

providing nonzero results for two or more named emotions.

Considering Fig. 17, the important features are pre-

dominantly shared with Fig. 16, save that Fig. 17

Fig. 15 Millenson A and B test results
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demonstrates through it’s complete consistency with Fig.

16 that the symmetrical consistency is observed across both

variables at the values presented. Once again, the named

emotions triggered remain consistent with the structure

outlined in Fig. 2, as is the order in which they are

triggered. Moving on to consider Fig. 18, we present the

case where Valence is both positive and of middling

magnitude. In this case, we would anticipate across the

range of Control values, all eight emotions associated with

positive Valence to be triggered to a certain degree, which

is to say Pride, Elation, Happiness, Satisfaction, Relief,

Hope, Interest and Surprise. Figure 18 confirm this to be

the case. Setting Valence as 0.5 prevents the prima facae

analysis possible with Figs. 16 and 17 in terms of which

emotions should be triggered at the highest intensity. As is

shown when considering Surprise and Interest, it is Interest

which enjoys a higher, earlier peak. This makes sense,

however, when one considers the geometry of Fig. 2,

whereby Interest more closely relates to a point of mid-

dling, positive Valence and extreme, negative Control.

Of particular interest are the membership spikes in

Satisfaction and Relief, which occur when the point of

input moves outside the third fuzzy region of each, while

remaining within the extremes of the fourth, triggering a

brief, sharp increase in membership. This is, again, a

function of the squared membership functions that lie at the

root of the aberrations discussed at the beginning of this

subsection. That aside, Fig. 18 behaves much as we would

expect. Unlike the case in Fig. 16, there are no positions

within Fig. 18 which provide less than two emotions

nonzero memberships at any given time. This is a result

supported by the structure of the Geneva Emotion Wheel’s

geometry, which demonstrates greater concentration of like

emotions as input magnitude decreases. Similarly, in

accordance with the geometry, membership of the named

emotions behaves symmetrically about the Control mid-

point. Figure 19, as with Fig. 17, provides useful infor-

mation in the context that it supports all of the previous

assertions regarding Fig. 18, while at the same time veri-

fying that the symmetry of behaviour remains consistent

across both input variables. Again, this is important as it

Fig. 16 Geneva Emotion Wheel cross-section versus control, valence

fixed @ 0.8

Fig. 17 Geneva Emotion Wheel cross-section versus valence, control

fixed @ 0.8

Fig. 18 Geneva Emotion Wheel cross-section versus control, valence

fixed @ 0.5

Fig. 19 Geneva Emotion Wheel cross-section versus valence, control

fixed @ 0.5
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demonstrates geometrical consistency with the Geneva

Emotion Wheel upon which our implementation is based.

Future Work and Conclusions

Future work and exploration of these ideas will revolve

around the application of one or more of the implementa-

tions presented here to influence the actions of an artificial

agent in an effort to determine usefulness of these imple-

mentations in real-world behavioural simulation scenarios.

Current work includes the exploration and expansion of all

three of these implementations through type 2 fuzzy logic,

an extension of fuzzy logic as it is presented in this paper.

Following the conclusion of that work, comparisons and

contrasts of behaviour between these type 2 implementa-

tions and the implementations presented here shall be

made. This paper has presented fuzzy logic-based imple-

mentations of three mathematical models, based upon two

thoroughly distinct psychological theories of emotion. It

has provided a rationale for each mathematical interpreta-

tion, and an elementary overview of the psychology of the

theories in question. The theories being wholly disparate in

nature, direct comparison between them is not possible. That

said, direct comparisons were provided in the context of the

two implementations which shared a psychological basis.

All three implementations were demonstrated to function

from a numerical standpoint, with operational issues high-

lighted where appropriate. In addition, the behaviour of all

three implementations was discussed in-depth, with graph-

ical and numerical data provided where appropriate. It is

envisioned that in future work the process of abstractionmay

be explored further. It by its nature implies a framework by

which other psychologically ground theories of emotion

might be explored. Developing such a framework requires a

substantial effort but would provide an important contribu-

tion to computational emotions research.
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