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Abstract Cluster extraction is a vital part of data mining;

however, humans and computers perform it very differ-

ently. Humans tend to estimate, perceive or visualize

clusters cognitively, while digital computers either perform

an exact extraction, follow a fuzzy approach, or organize

the clusters in a hierarchical tree. In real data sets, the

clusters are not only of different densities, but have

embedded noise and are nested, thus making their extrac-

tion more challenging. In this paper, we propose a density-

based technique for extracting connected rectangular

clusters that may go undetected by traditional cluster

extraction techniques. The proposed technique is inspired

by the human cognition approach of appropriately scaling

the level of detail, by going from low level of detail, i.e.,

one-way clustering to high level of detail, i.e., biclustering,

in the dimension of interest, as in online analytical pro-

cessing. A number of experiments were performed using

simulated and real data sets and comparison of the pro-

posed technique made with four popular cluster extraction

techniques (DBSCAN, CLIQUE, k-medoids and k-means)

with promising results.

Keywords Biclustering � Cognition � Cluster extraction �
Density � Noise � Similarity matrix

Introduction

Data mining is an exploratory approach of knowledge

discovery, where automatic browsing is performed using

proven algorithmic techniques. Data mining can reveal

previously unknown aspects that are non-trivial and valu-

able to the end user. Hence, in data mining, we expect the

unexpected. Cognitive data mining can be considered to be

knowledge discovery supported by cognitive sciences, i.e.,

adopting a multi-disciplinary approach. This includes

usage of human pattern recognition skills along with their

engineering implementations in computation. Information

visualization is defined as the use of computer-supported,

interactive, visual representations of abstract (non-physi-

cal) data in order to amplify cognition [1].

More formally, suppose we have n objects to be clus-

tered and are denoted by R.

R = {o1, … oi, …on} where oi is the ith object. A

partition d breaks R into subsets or clusters {C1, C2 … Cm}

satisfying the following ‘‘Eq. (1)’’:

Ci \ Cj ¼ / where i 6¼ j and C1 [ C2 [ . . .Cm ð1Þ

Thus, the act of dividing meaningful groups of objects

that share common properties is called clustering, such that

the objects in a group (or cluster) are similar to each other

(in some sense) and dissimilar to objects in other groups or

clusters.

In multivariate statistics, a data matrix is a mathematical

matrix of data of dimension n-by-m, where n is the number

of samples drawn, and m is the number of variables in each

sample [2]. In this representation, different rows represent

different repetitions of an experiment, while columns rep-

resent different types of data (say, the results from partic-

ular probes). For example, suppose a survey is conducted

where 15 people are questioned on the street and asked
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eight questions. The data matrix M would be a 15 9 8

matrix (meaning 15 rows and 8 columns). The datum in

row i and column j of this matrix would be the answer of

the ith person to the jth question. Note that in a data matrix,

correlation values are not calculated between instances.

The proximity (or similarity) among objects is described

by a similarity matrix S(n 9 n) defined as in ‘‘Eq. (2)’’:

S ¼
s11 � � � s1n

..

. . .
. ..

.

sn1 � � � snn

0
B@

1
CA8i ¼ j; sij ¼ 1 ð2Þ

Here, sij is the similarity between the ith row and the jth

row of the data matrix, i.e., sij = sji.

The matrix S contains measures of similarity or dis-

similarity among the n objects. If the values sij are dis-

tances, then they measure dissimilarity. The greater the

distance, the less similar are the objects. If the values sij are

proximity measures, then the opposite is true, i.e., the

greater the proximity value, the more similar are the

objects. Distance and similarity are of course dual. The

nature of the observations plays an important role in the

choice of proximity measure. Nominal values (like binary

variables) lead in general to proximity values, whereas

metric values lead (in general) to distance matrices. There

can be different similarity measures, such as Jaccard

coefficient and Tanimoto coefficient. However, in this

paper, we consider the similarity measure based on Pear-

son’s correlation as defined in ‘‘Eq. (3)’’:
Pn

i¼1ðXi � �XÞðYi � �YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðXi � �XÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðYi � �YÞ2

q ð3Þ

Additional details about similarity matrix are given in

‘‘Similarity matrix.’’

Consider the data stored in a table or a data matrix. There

can be several ways of knowledge discovery in the data

matrix. For example, clustering only the rows (or the col-

umns) of a similarity matrix results in one-way clustering.

For a detailed analysis or a local view, biclustering or co-

clustering or two-way clustering is performed on the data

matrix involving the direct and simultaneous clustering of

the records and the attributes of the data matrix [3, 4].

If one-way clustering is performed by clustering the

pair-wise correlation similarity matrix corresponding to the

data matrix, the clusters would ideally be square. A typical

data matrix has very large number of rows as compared to

the number of columns; therefore, biclusters by definition

are rectangular, but can be square. The proposed technique

is unlike the generic two-way clustering that works by

applying a one-way clustering method in a sequential

manner [5]. Instead, the proposed technique is about

starting with a global view of the data, i.e., one-way

clustering, and then extracting the details thorough

biclustering. The cognitive model of our approach can be

best explained using the analogy of online analytical pro-

cessing (OLAP), where drill-down is used to increase the

level of detail. In this paper, we consider the problem of

extracting connected rectangular clusters from one-way

clustered data under non-ideal, i.e., noisy conditions.

Connected clusters are defined similar to the definition

given in WaveCluster [6], i.e., connected clusters are just

groups of connected ‘‘pixels,’’ i.e., pixels that are con-

nected to one another horizontally or vertically; we do not

consider diagonal connectivity, additional details in

‘‘Problem definition and our contribution.’’

There are different types of cluster extraction algorithms

for different types of applications. The most common

distinction is between partitioning, density-based and

hierarchical cluster extraction algorithms [7], details in

‘‘Background.’’ Density-based clusters are defined as

clusters, which are differentiated from other clusters by

variable densities, meaning a group which has dense region

of objects may be surrounded by low-density regions. In

this paper, we will consider DBSCAN [8] for comparison

since DBSCAN is excellent for arbitrary-shaped clusters.

Grid-based cluster extraction methods have been used in

some data mining tasks for very large databases. In the

grid-based cluster extraction, the feature space is divided

into a finite number of rectangular cells forming a grid. All

clustering operations are performed in this grid structure.

Since clusters resulting from clustering of a similarity

matrix can be rectangular, therefore, we will also consider

CLIQUE (Clustering In QUEst)-based cluster extraction in

our study [9] . We hypothesize that extraction of square or

rectangular clusters or their combination (with an under-

lying grid) should not be a problem for CLIQUE. For the

purpose of comparison, in this paper, we will also consider

partition-based cluster extraction, i.e., k-means and k-

medoids.

Clustering Versus Cluster Extraction

In the published literature, the words cluster and cluster

extraction are sometimes used interchangeably. However,

in this paper, clustering and cluster extraction (or cluster

mining) are considered to be different and distinct. In

cluster extraction, the order of the data items in the given

data set is not changed, instead based on some similarity

measure, similar data items are considered to belong to a

certain cluster, e.g., k-means. In clustering, the order of the

data items in the data or the correlation matrix is changed

based on some similarity measure (e.g., one-way cluster-

ing), which is subsequently followed by cluster extraction.

Both concepts are explained using Fig. 1. Note that the

proposed technique works on both ordered and unordered

data sets.
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Real data are always noisy, and it is very hard to dif-

ferentiate noise from data, consider such a noisy data set

with two clusters. We consider two types of noise, i.e.,

missing data within clusters and false relationships across

clusters. Observe that if there are no clusters in the data set,

then noise is likely to get clustered; therefore, the sound-

ness of a cluster extraction technique is hard to verify.

Thus, in Fig. 1, a data set with two clusters is used, which

is the ‘‘ground truth’’ for verification purposes only. The

clusters are color coded for ease of comprehension; how-

ever, the color information is neither used in clustering nor

in cluster extraction, i.e., unsupervised learning. Figure 1a

shows one such simulated data set (n = 322) with light

random permutation to ‘‘hide’’ the two clusters. The two

clusters are color coded (i.e., green and blue), missing data

shown by white spots within the clusters and black spots

corresponding to false relationships across clusters.

Now cluster extraction is performed on the data set of

Fig. 1a using symmetric cluster extraction (SCE), cognitive

cluster extraction (CCE), i.e., the proposed technique, and

finally cluster extraction using DBSCAN, the results are

shown in Fig. 1b–d. Note that for SCE and CCE (details in

‘‘Materials and methods’’), the red boxes show the

boundary of the clusters extracted. By comparing the

results of Fig. 1b–d with Fig. 1a, it can be observed that

since the data set was not clustered, therefore, the cluster

extraction was partial and the ‘‘scattered pieces’’ of the two

clusters were instead considered as multiple independent

clusters. Observe the promising results of CCE.

Now the un-clustered data set of Fig. 1a is clustered

using the indigenous clustering technique based on the

crossing minimization paradigm [10], with the result

shown in Fig. 1e. Note that the data set shown in Fig. 1a, e

is identical except for reordering of columns. Although

clusters C1 and C2 in Fig. 1e are visually well-defined to

humans, but the computer cannot ‘‘see’’ them. To resolve

this problem, we need to perform cluster extraction. Now

cluster extraction is performed on the data set shown in

Fig. 1e using SCE technique, CCE technique and finally

using DBSCAN, the results shown in Fig. 1f–h. By com-

paring the results of Fig. 1f–h with Fig. 1e, it can be

observed that SCE technique could not completely extract

C2 (shown by dotted arrow) while DBSCAN considered

the two cluster and noise as a single cluster. The proposed

CCE technique not only successfully extracted both clus-

ters, but also differentiated noise from data, i.e., did not

extracted noise with data.

Observe that for the data set of Fig. 1e, the data

extraction by SCE and DBSCAN does not satisfy the

clustering conditions of ‘‘Eq. (1).’’ This being also true for

extraction using k-means, k-medoids and CLIQUE for

which the results are not shown here.

Once the clusters are extracted, the obvious question is

how to quantify cluster quality? There can be different

Fig. 1 Cluster extraction versus clustering of connected clusters.

Clusters in a, e colored for ease of comprehension only. a Input noisy

data set, b SCE clusters = 5, c CCE clusters = 13, d DBSCAN

clusters = 6 (Eps = 10, MinPts = 9), e result of clustering Fig. 1a

by crossing minimization [10], f two clusters extracted using SCE,

one being partial, i.e., C2
0, g two clusters completely extracted using

CCE without noise, h DBSCAN (Eps = 10, MinPts = 9) two clusters

and noise extracted as a single cluster.
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criterion for establishing the cluster quality, some of which

are as follows [11]:

1. Distinguishing the existence of non-random structures

in the data.

2. Comparing the results of cluster analysis to externally

known results, i.e., with externally given class labels.

3. Evaluating the fitness of the clustering results with the

data.

4. Different aspects of cluster validation without refer-

ence to external information and using only the data.

5. Comparing the results of two different sets of cluster

analyses to determine which one is better.

6. Determining the ‘‘correct’’ number of clusters.

7. Establishing cluster quality by inspection of visualization.

In this paper, we will use the metric of normalized standard

deviation (Sn) to evaluate cluster quality for real data and

metric of purity to evaluate cluster quality for simulated

data, details in Sects. 5.2.3 and 5.2.4, respectively.

The Challenges

Real-world data often contain noise. This poses two main

challenges for clustering and cluster extraction, i.e., (1)

how to extract correct clusters from noisy data and (2) how

to extract correct clusters from noisy data and also remove

the noise. While the former only considers clustering

regardless of the noise, the latter performs both clustering

and noise removal simultaneously. Obviously, the latter is

more challenging and of more practical utility. Most of the

clustering and cluster extraction algorithms including

crossing minimization heuristics (CMH) [10] and CCE

may even fail in the former problem, let alone the latter,

because of masking and distortion of real data distribution

due to noise. The results of noise tolerance of five cluster

extraction techniques considered in this paper are discussed

in Section 5.3

An important aspect of cognition is visualization. As per

Card et al. [12], visualization is the use of computer-sup-

ported, interactive and visual representation of abstract

data to amplify cognition. Visualization is considered one

of the instinctive methods for cluster detection and vali-

dation, especially well suited for arbitrarily shaped clusters.

Several approaches have been proposed in the literature

for visual cluster analysis [13, 14], but their arbitrary

exploration of group information makes these techniques

inefficient and time-consuming for cluster exploration. On

the other hand, the impreciseness of visualization and

limited screen resolution limits its utilization in quantita-

tive verification and validation of clustering results. Thus, a

color-coded visualization technique, focused toward cluster

detection and precise contrast between clustering results, is

also one of the motivations of this research.

Problem Definition and Our Contribution

The problem considered in this paper is contiguous rectan-

gular clustering and extraction; this problem is a special case

of the problem of connected cluster extraction discussed by

Böhm et al. [15], i.e., in this paper, we only consider rect-

angular clusters. The problem of connected clusters is also

encountered in case of spatial objects in image segmenta-

tion, e.g., for regional maps, road maps and also in wireless

sensor networks (WSN), storage area networks (SAN) to

name a few. Spatial objects have spatial location and dis-

tance properties. The problem of recognizing spatial conti-

nuity of some morphological elements in a map is

reformulated as the problem of grouping adjacent cells

resulting in a morphologically homogeneous area, i.e., a

problem of clustering spatial objects according to the dis-

crete spatial structure imposed by the relation of ‘‘adja-

cency’’ among cells [16]. Thus, spatial data mining means

extracting implicit knowledge, spatial relations or other

modes explicitly from the spatial database [17].

Figure 2 shows connected rectangular clusters for the

block map of 2009 offshore petroleum acreage release area

[18], while Fig. 2b shows connected rectangular clusters

composed of horizontal and vertical rectangles that can be

found on street maps.

Consider the 10 clusters shown in Fig. 2b, i.e., C1–C10.

As a result of using DBSCAN with parameters used for

better results, DBSCAN extracted C1–C4 and C8 as a single

cluster along with parts of C7, C9 and C10 and considered

almost all of C6 as noise. As can be observed, using the

proposed CCE technique, each and every cluster was

extracted without any overlap including the adjacent

clusters with different densities, i.e., C5 and C6.

The main contributions of our work are as follows:

• A novel CCE technique based on backtracking with

depth-limited search for extracting connected rectan-

gular clusters or biclusters from a clustered or unclu-

stered similarity matrix (i.e., global clustering).

• A CCE technique with high noise tolerance and limited

sensitivity to clustering parameters as compared to the

traditional cluster extraction techniques (DBSCAN,

CLIQUE, k-medoids and k-means).

• A meta-heuristic technique based on using indigenous

one-way clustering by crossing minimization, followed

by two-way indigenous CCE.

Rest of the paper is organized as follows. In ‘‘Introduction’’

section, we provide the basic concepts, such as difference

between similarity and data matrix, difference between clus-

tering and cluster extraction and also provide problem defi-

nition. In ‘‘Background’’ section, we will provide the

necessary background about OLAP, similarity matrices,

compare biclustering with one-way clustering, briefly discuss
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the traditional cluster extraction techniques, i.e., density-

based, grid-based and partition-based techniques and the

cognition part of the proposed approach. In ‘‘Related work’’

section, related work will be discussed and brief comparisons

made. In ‘‘Materials and methods’’ section, we will describe

the working of the CCE, and how data are prepared for clus-

tering and subsequent cluster extraction. In ‘‘Results’’ section,

we will present the results of different cluster extraction

techniques using simulated as well as real data sets, i.e., Oyster

data set and Breast cancer data set with comparisons done

based on cluster quality, scalability and cluster discrimination;

this will be followed by ‘‘Discussion’’ section, which consists

of presentation of necessary theoretical and conceptual details

explaining the effectiveness of our idea. In this section, we

will also discuss the effect of noise and sensitivity to extraction

parameters, and the potential strengths of the proposed tech-

nique. This will be followed by ‘‘Conclusions and future

work’’ section, i.e., conclusions and future work.

Background

There are three basic approaches to cluster extraction, i.e.,

(1) partition-based, (2) density-based approach and (3)

grid-based. In the partitioning approach, various partitions

are constructed and then evaluated by some criterion, e.g.,

minimizing the sum of square errors, some of the typical

methods are k-means, k-medoids, and CLARANS [19]. In

the density-based approach, clusters are constructed based

on connectivity and density functions; some of the typical

methods are DBSCAN, OPTICS [20] and DENCLUE [21].

Finally, in the grid-based approach, clusters are constructed

based on a multi-level granular structure; some of the

typical methods are STING [22], WaveCluster [6] and

CLIQUE. The proposed clustering approach CCE is a

combination of density-based and grid-based approach. In

this paper, we will consider all three approaches for the

purpose of comparison.

Fig. 2 Examples of connected rectangular clusters. a connected rectangular clusters of petroleum resources [15], b connected rectangular

clusters extracted using DBSCAN and CCE
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Various biclustering techniques have been proposed in

the literature, each having their own strengths and weak-

nesses. Discussion of these techniques is beyond the scope

of this paper, as the paper deals with bicluster extraction

instead of biclustering.

OnLine Analytical Processing (OLAP)

The term OLAP was coined by Codd [23]. OLAP exploits

the exploration of multi-dimensional structured data, since

this structure reflects the analyst’s cognitive model of the

data; therefore, the deduction process is less meticulous,

and analysis is performed with ease [24]. The OLAP

approach cognitively supports the iterative nature of the

process of analysis, allowing the analyst to explore and

navigate across different dimensions at different levels of

aggregation detail, i.e., through drill-down and roll-up.

Drill-down descends in the dimensional hierarchy of the

OLAP cube by increasing the level of detail of the measure

(and decreasing its level of abstraction), this being equiv-

alent to bicluster extraction in our case. Note that analysis

services can be utilized for both OLAP and data mining, as

both are used to analyze data and find patterns. The big

difference, however, is in performance, i.e., OLAP or more

precisely MOLAP (multi-dimensional OLAP) is used

interactively (almost in real time) due to memory-based

usage of the pre-aggregates, while knowledge discovery

using data mining can take from minutes to hours.

Similarity Matrix

Tucker [25] suggested a classification of data matrix based

on two numerical variables, i.e., the number of ways and

the number of modes. A formal description of that classi-

fication follows. Let I1, I2, …, In be sets of some entities,

i.e., kinds of plant, kinds of bird, geographical sites and

periods of times, observe that these entities are dimensions

in the context of OLAP. It is permitted that some of the sets

be coinciding; with k, i.e., number of different sets among

the given n sets. An n-dimensional array of, usually

numeric, code values a(i1, …, in) given for any combina-

tion of i1 [ I1, I2 [ In, …, in [ In, is referred to as a n-way

k-mode table. Therefore, a similarity matrix aij between the

entities i, j [ I is a two-way one-mode table.

Biclustering Versus One-Way Clustering

In this paper, clustering of a similarity (or correlation)

matrix is considered as one-way clustering, as either each

record in the cluster is selected using all the attributes or

each attribute in a cluster is selected using all the records.

Thus one-way clustering methods give a global view or

perspective of the relationships between all the records (or

attributes), i.e., knowledge discovery at a lower level of

detail. In one-way clustering, evaluating each record in a

given cluster using all the attributes may actually distort

the cluster, since all attributes may not be contributing

toward that cluster. Similarly, each attribute in a one-way

cluster is usually characterized by the effect of all the

records, which may not always be true.

As opposed to one-way clustering, each record in a bi-

cluster is selected using only a subset of the attributes, and

each attribute in a bicluster is selected using a subset of the

records [26], i.e., knowledge discovery at a higher level of

detail. As per Maderia and Oliveria [27], there are four

major classes of biclusters (details in next section). In this

paper, we will consider the first class of biclusters, i.e., with

constant values, as this goes well with the concept of dis-

cretized similarity matrix, i.e., a bicluster corresponding to

a collection of contiguous 1’s along the rows and columns.

The complexity of the biclustering problem depends on

its particular formulation. The problem of finding a mini-

mum set of biclusters, either mutually exclusive or over-

lapping, covering all the elements in a data matrix is a

generalization of the problem of covering a bipartite graph

by a minimum set of bicliques, either mutually exclusive or

overlapping. This problem has been shown to be NP-hard

[28]. As a result, instead of devising exact algorithms, a

pragmatic approach would be to come up with heuristics or

approximation algorithms.

Major Classes of Biclusters

A useful criterion to evaluate a biclustering algorithm has

been proposed [27] based on the identification of the type

of biclusters the algorithm can discover. Based on this

criterion, four major classes of biclusters are identified as

follows:

• Biclusters with constant values.

• Biclusters with constant values on rows or columns.

• Biclusters with coherent values.

• Biclusters with coherent evolutions.

Patterns that rise and fall concordantly are considered to

be coherent. Table 1 shows additive and multiplicative

coherent biclusters.

The first three types of biclusters are based on the direct

analysis of the numeric values in the data matrix; thus, the

biclustering algorithm attempts to find subsets of columns

and subsets of rows with similar properties. The similarity

of these properties can be observed on the columns, on the

rows, or on both columns and rows of the data matrix. For

the fourth class, the biclustering algorithm attempts to find

coherent properties regardless of the exact numeric values

in the data matrix. Therefore, elements in the data matrix

are considered as symbols for biclusters with coherent
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evolutions. These symbols can represent coherent positive

and negative changes relative to a normal value, or could

be purely nominal that may correspond to a given order.

Traditional Cluster Extraction Techniques

Density-Based Cluster Extraction

Density-based cluster extraction or mining has a broad

range of applications ranging from monitoring moving

objects to stock trade analysis. According to Yang et al.

[29], although several methods for efficient extraction of

density-based clusters have been studied in the literature,

the problem of matching and summarizing of such clusters

with complex cluster structures and arbitrary shapes

remains unsolved.

DBSCAN [8] (Density-Based Spatial Clustering of

Applications with Noise) is one of the most popular den-

sity-based algorithms where regions of high density are

considered as a cluster and regions of low density are

considered to be noise. Clusters are defined on some cri-

teria, which is called core. Core points lie in the interior of

density-based clusters and should lie within Eps (epsilon or

radius or threshold value) and MinPts (minimum no of

points), which are user-specified parameters.

Grid-Based Cluster Extraction

Recently, a number of algorithms have been proposed that

segregate the data space into a finite number of cells, i.e.,

of required resolution and then perform all the operations

on the quantized space. The main characteristic of these

approaches is their fast processing time, which is usually

independent of the number of data objects. The reason

being this depends only on the number of cells in each

dimension in the segregated space, i.e., high resolution,

resulting in accurate results and correspondingly more

processing time. Grid-based methods have been employed

for extracting rectangular as well as non-rectangular clus-

ters for hyper-rectangular cells as well as arbitrary-shaped

polyhedral [30–32]. For d-dimensional space, hyper-rect-

angles (rectangular-shaped cube [33] of d-dimensions

relate to the cells. In the hierarchical grid structure, the size

of the grid cell can be decreased in order to achieve a more

exact cell structure. The hierarchical structure can be split

into several levels. Each cell at the higher level l is parti-

tioned to form a number of cells at the next lower level

l ? 1. The cells at the level l ? 1 are formed by splitting

the cells at level l into smaller sub-cells.

CLIQUE is a hybrid of density-based and grid-based

clustering method, as each dimension gets partitioned into

the same number of equal length intervals; thus, an

m-dimensional data space is partitioned into non-overlap-

ping rectangular cells, i.e., biclusters. As per Agrawal et al.

[9], a cell is dense if the fraction of total data points contained

in that cell exceeds the input parameter; thus, a cluster is a

maximal set of connected dense cells within a subspace. Two

parameters are necessary, i.e., intervals (I) that is the number

of units along one dimension and the threshold (T) that is the

minimum points in one grid. CLIQUE automatically iden-

tifies subspaces of a high-dimensional data space allowing

improved clustering than the original. CLIQUE-based

cluster extraction is considered in this paper.

Partition-Based Cluster Extraction

In partitioned-based clustering data, space is divided into

non-overlapping subsets or biclusters in such a way that no

two subsets will share a common data object. The problem

can be stated as, given n patterns in a d-dimensional space,

determine the partitions of patterns into k biclusters, here

k may or may not be defined. Thus, the partitioned biclu-

stering solution to this problem is to choose a partitioning

criterion and evaluate it for all partitions and pick the

partition that best suits the criteria. Correct parameters for

partitioning algorithms allow the algorithm to reveal the

true structure of a data set. These parameters are in general

difficult to determine, and they may not even exist.

k-Means is one of the simplest partitioning algorithms

adopted for many problem domains. The algorithm follows

simple and easy steps to extract k spherical clusters and

possibly biclusters in the given data space, here k is fixed a

priori. Sometimes k is just declared arbitrarily, sometimes

the problem determines k and sometimes k is chosen nat-

urally, but in general, this notion is not well defined.

However, sometimes several iterations of k-means can

reduce this effect. The main idea is to identify k centroids,

i.e., one centroid assigned to each cluster. It can be proved

that the k-means algorithm will always terminate; however,

the algorithm (actually a heuristic) does not necessarily

find the optimal clusters corresponding to the global

objective function, i.e., minimum of the sum of the squared

distance of each data point to its allocated mean.

Table 1 Additive and multiplicative coherent biclusters

Additive coherent bicluster

1 2 5 0

2 3 6 1

4 5 8 3

5 6 9 4

Multiplicative coherent bicluster

1 2 0.5 1.5

2 4 1 3

4 8 2 6

3 6 1.5 4.5
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Although k-means algorithm is one of the most popular,

however, k-medoids-based algorithms have been shown to

be robust, as they are less sensitive to the existence of

outliers and are not limited in application to certain attri-

bute types. Finally, the clusters found do not depend on the

order of the input data set. The drawback of the k-medoids-

based algorithms is that they do not scale well and there-

fore cannot be efficiently applied to large data sets. This

has resulted in the development of several methods aimed

at reducing the computational effort required for execution

of these algorithms [8, 34, 35]. Both k-means and k-med-

oids-based cluster extraction are considered in this paper.

Related Work

The domain of density-based, grid-based and partition-

based clustering is literature rich. However, in this section,

we will consider some of the more popular and related

techniques and do a comparison showing the utility of the

proposed method/technique.

Böhm et al. [15] have considered the extraction of cor-

relations between different features in a set of feature vec-

tors, as correlation indicates a dependency between the

features or some relationship of cause and effect. However,

correlations are not global since the dependency between

features can be different in different subgroups of the set.

They [15] have used a method called 4C (Computing Cor-

relation Connected Clusters) to identify local subgroups of

the data objects sharing a uniform but arbitrarily complex

correlation which we note to be a bicluster in a n 9 m data

matrix, here n is the number of records or vectors and

m number of attributes or dimensions. 4C is based on a

combination of principal component analysis (PCA) that can

find global linear correlations that are not embedded in noise

and density-based clustering (DBSCAN). Subsequently, the

results are compared with DBSCAN, CLIQUE and OR-

CLUS. Although we also extract biclusters and compare the

results with DBSCAN and CLIQUE, but instead of extract-

ing biclusters from correlations of feature vectors, we use

CCE to extract biclusters from a clustered correlation matrix

with noise. Note the prohibitively large time complexity of

PCA, i.e., O(nm2) which forms the basis of 4C, while the

proposed CCE techniques take only O(e) time, where e is the

number of 1’s in the discretized similarity matrix. Due to

discretization, the binary matrix is fairly sparse [10],

resulting in small values for e. However, on the contrary, 4C

relies on the assumption that the clustering structure is dense

in the entire feature space, else 4C will fail to produce

meaningful results [36].

Tan et al. [37] have analyzed some characteristics and

weak points of traditional density-based clustering algo-

rithms, followed by an improved cluster extraction

technique based on density distribution function. K Nearest

Neighbor (KNN) is used to measure the density of each

point, and then, a local maximum density point is defined

as the center point. By means of local scale, cluster

extraction extends from the center point. This, however, is

at the cost of additional time required for KNN, i.e., O(n2)

for all pair nearest neighbor, and requirement of additional

control parameters. Although Tan [37] do not use

DBSCAN, instead use DENCLUE [15] with better time

complexity, i.e., O(log n), but then there is the additional

cost of creating and maintaining a B? tree. In the proposed

CCE technique, the cluster extraction exploits the property

of the similarity matrix to be symmetric across the diagonal

and does not employs the concept of radius thus achieving

better noise tolerance with lower time complexity. The

time complexity of the proposed technique is O(e) where

e is the number of 1’s in the discretized similarity matrix

and does not have the overhead of KNN and that of cre-

ating and maintaining a B? tree.

Erten and Sözdinler [38] have used the idea of growing

localized sub-matrices for bicluster extraction called as

LEB (Localize-and-Extract Biclusters). Biclustering results

in localization of correlated rows/columns, i.e., ‘‘localized’’

rows/columns exhibiting similar patterns placed in nearby

locations within the given matrix. LEB starts by providing

a constraint c and dividing the biclustered data matrix into

equal sized a 9 a grid called bags. The score of a sub-

matrix corresponding to a possible bicluster is determined

and grown (say) along x-direction until arrive at a bicluster

with a desirable score, and then, the union is taken of

adjacent bags meeting the criterion c, this is repeated till all

bags in the x-direction are exhausted. Subsequently, the

process is repeated along y-direction. We observe the

problem with this approach of forcing a regular structure

on irregular biclusters; furthermore, wrong choice of a can

split clusters thus reducing the accuracy of the results as in

the case of CLIQUE. Although we also expand biclusters

by traversing along the two directions, i.e., x-direction and

y-direction, but unlike Erten and Sözdinler [38], we do so

simultaneously along both directions and then backtrack,

thus increasing the cluster quality. Furthermore, there is no

user-specified criterion of c i.e., a more unsupervised

approach.

Zhou et al. [39] have used cluster extraction for anomaly

detection using a distributed approach for data located at

multiple local sites. Three cluster extraction techniques

have been used for this purpose, i.e., k-means, SOM and

DBSCAN. Although we have also considered k-means and

DBSCAN for cluster extraction, but for different reasons.

According to Zhou et al. [39] for k-means, an anomaly

means its distance to any cluster centroid is higher than the

given minimal distance threshold or the anomaly belongs

to a cluster that has smaller number of instances than the
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given threshold of minimal number of instances. For

DBSCAN, data points are declared to be outliers, if there

are few other points in the neighborhood. DBSCAN is used

to identify the type of instances (normal or anomaly), so

the type is taken as binary anomaly scores (1 for normal

and 0 for anomaly). However, in our study, we are more

interested in capturing the clusters instead of noise or

anomalies. Furthermore, in this paper, DBSCAN is used to

extract clusters instead of a binary identification of being

normal or an anomaly.

As per Zhou et al. [40], DBSCAN is an outstanding

representative of clustering algorithms that show good

performance for spatial data clustering. However, for large

spatial databases, DBSCAN requires large volume of

memory support that could incur substantial I/O costs

because it operates directly on the entire database. In their

paper [40], several approaches are proposed to scale

DBSCAN algorithm to large spatial databases, such as

developing a fast DBSCAN algorithm, which considerably

speeds up the original DBSCAN algorithm. They have also

studied a sampling-based DBSCAN algorithm, a parti-

tioning-based DBSCAN algorithm and a parallel DBSCAN

algorithm in their work, and then, there is GDBSCAN [41].

Following that, based on the above-proposed algorithms, a

synthetic algorithm is also given. Although in our work we

also consider DBSCAN but not from the perspective of

performance or speed, this is also evident from the size of

data sets being considered. In our work, instead of looking

at performance, we consider the accuracy of DBSCAN for

cluster extracted in the presence of noise and also do an

analysis of sensitivity to parameters.

As per Qian et al. [42], current clustering methods

always have the problems of: (1) scanning the whole

database leading to high I/O cost and expensive mainte-

nance (e.g., R*-tree), (2) pre-specifying the uncertain

parameter k, with which clustering can only be refined by

trial and test many times and (3) lacking high efficiency in

treating arbitrary shape under very large data set environ-

ment. In [42], first a new hybrid-clustering algorithm is

presented to solve these problems. This new algorithm

combines both distance and density strategies and can

handle any arbitrary shape clusters effectively. Further-

more, it makes full use of statistical information in mining

to reduce the time complexity while ensuring cluster

quality. Although we also use DBSCAN for comparison in

our work and use the global density to reduce time com-

plexity, but one of the differences between our work and

that of Qian et al. [42] is the definition of noise. In their

work, the density of noise is considered to be well pro-

portioned and noise is very sparse; however, in our work,

noise is considered to be random and not very sparse. This

can also be observed from the examples considered in their

work and ours.

As per Ester et al. [43], DBSCAN algorithm groups

object to clusters based on the density of data and discover

consistent arbitrary-shaped clusters along with detection of

noisy outliers. The important issues of DBSCAN are its

actual computational speed and efficiency for large data

sets, and sensitivity to d which we will discuss in Sect. 5.3.

For DBSCAN, the time complexity is O(n2) where n is size

of the data set [44]. The proposed technique is an order of

magnitude faster as compared to DBSCAN and produces

promising results for clustered similarity matrices with

connected rectangular clusters. OPTICS (Ordering Points

to Identify the Clustering Structure) [20] is an extension of

DBSCAN and equivalent with DBSCAN in structure, both

having the same time complexity, i.e., O(n2) or O(n log

n) while adopting space index. Although OPTICS can

realize auto and alternative clustering and is not sensitive

to parameters, but its slow running speed is one of its

drawbacks [37].

The strength of the CLIQUE algorithm is the unsuper-

vised discovery of subspaces of high level of details when

high-density clusters exist in those detailed subspaces. The

technique is also insensitive to the order of records in input,

and it rarely considers data distribution, which affect

cluster quality to a certain extent. The time complexity of

CLIQUE is O(Ck ? nk), where k is the highest dimen-

sionality, n is the number of input points and C is the

number of clusters [45]. Although CLIQUE scales linearly

with the size of input as the number of dimensions

increase, but its known major weakness is the accuracy,

which may degrade due to simplicity of the method.

Observe that extracting meaningful clusters using CLIQUE

is dependent on proper selection of the grid size and the

density threshold. This selection can be difficult in reality,

since the grid size and density threshold are used across all

combinations of dimensions in the data set, resulting in

degradation of clustering results. In the proposed method,

by virtue of one-way clustering, the effect of constant grid

size and threshold is not there, and the localization of

related data items minimizes the overlap of dense regions

as in CLIQUE. Unlike CLIQUE, in the proposed tech-

nique, clusters are not ‘‘forced’’ into a rectangular grid, but

are considered to be rectangular. Therefore, rectangular

clusters are extracted with time complexity O(e), where e is

the number of 1’s in the discretized similarity matrix. Thus,

the proposed technique is not only fast, but also generates

promising results (details in ‘‘Results’’).

Materials and Methods

The cognitive approach used in this paper proceeds as

follows:
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1. Use the given data matrix to create the similarity

matrix (SM).

2. Perform one-way clustering of the SM.

3. Generate heat-maps for global results.

4. Perform cluster extraction using CCE for detailed

results.

Biclusters provide a detailed view of the relationships

between different data elements; this could have gone

undetected by one-way cluster extraction. The sub-matrices

corresponding to the clusters obtained by one-way clustering

followed by two-way cluster extraction may not necessarily

be square. As these sub-matrices are extracted from a simi-

larity matrix instead of a data matrix, hence, they are not

regarded as biclusters in the true formal sense. Hence, in this

paper, the word cluster and bicluster will be used inter-

changeably wherever needed to enhance comprehension.

More formally, consider an n 9 m data matrix, where

n is the number of rows and m is the number of columns.

We proceed by creating a pair-wise n 9 n similarity matrix

using Pearson’s correlation. This is followed by knowledge

discovery at low level of detail, i.e., one-way clustering

(using crossing minimization) of the bipartite graph cor-

responding to the similarity matrix [10]. Subsequently,

clusters are automatically extracted from the clustered

matrix by traversing along the diagonal, i.e., symmetric

cluster extraction (SCE) technique. Along with SCE tech-

nique, we implemented the more natural nonsymmetric and

approximate CCE technique to achieve knowledge dis-

covery at a higher level of detail. The proposed technique

being inspired by the human cognition approach of

appropriately scaling the level of detail, by going from low

level of detail, i.e., one-way clustering to high level of

detail, i.e., biclustering, in the dimension of interest, as in

online analytical processing (OLAP). Pseudo code for the

CCE extraction technique is shown in Fig. 3.

The CCE technique starts with a grid size of s 9 s,

where s is the default cluster size (usually 1 9 1) and then

calculates the density of the cluster, i.e., d0, if d0 is more

than the density of the similarity matrix, i.e., d (=number of

1’s divided by matrix size), then s 9 s is considered to be a

bicluster suitable for expansion. This expansion is simul-

taneously along x-direction and y-direction till d’ falls

below d. At this stage, instead of adopting a greedy

approach and freezing the bicluster, the bicluster bound-

aries are refined, i.e., guided by d, expansion proceeds

constant number of cells (say) along x-direction. If there is

no increase in bicluster density, the expansion is undone

and backtracked (details in ‘‘Effectiveness of CCE sec-

tion’’) to the stage when the density fell below d for the first

time. Subsequently, cluster expansion proceeds along y-

direction in a similar manner, and when density falls below

d the bicluster is frozen. For the next bicluster, the

extraction subsequently starts from the cell at which it had

stopped expansion, and the above process is repeated.

Observe that SCE is a special case of CCE, i.e., once the

density falls below d, boundary refinement is performed

simultaneous along x-direction and y-direction, resulting in

square clusters, i.e., one-way cluster extraction.

In real data sets, existence of clusters of very different

point densities and in different regions of the data space is

typical instead of an exception. However, these variable

density clusters may also be nested, which makes cluster

Fig. 3 Pseudo code for

cognitive cluster extraction

(CCE)
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extraction difficult using a traditional algorithm. This

problem is due to the absence of global parameters, which

may be required directly or indirectly by most partitioning

algorithms that may characterize the clusters in the data

space [46]. In the proposed CCE technique (Fig. 3), the

global parameter d (density of the discretized similarity

matrix) is first used to expand the biclusters and then to

refine them; thus, the impact of global parameter is there.

Median-based or mean-based discretization further con-

tributes to the impact of global parameters.

Results

For the purpose of comparison, in addition to SCE, we will

consider four other popular cluster extraction techniques,

i.e., DBSCAN, CLIQUE, k-medoids and k-means, to

extract clusters from the simulated as well as the real data

sets used in this paper. For these four techniques, we will

use their publically available online implementations:

http://webdocs.cs.ualberta.ca/*yaling/Cluster/Applet/Code/

Cluster.html.

Along with simulated data, real data sets will also be

considered, i.e., the Oyster data set and the Breast cancer

data set, corresponding details in ‘‘Oyster data set’’ and

‘‘Breast cancer data set.’’ For cluster extraction using the

Breast cancer data set, we will use our JAVA implemen-

tation of DBSCAN which unlike the online version does

not limits the size of input data set.

Results Using Simulated Data

Consider the clustered 21 9 21 similarity matrix shown in

Fig. 4a. For this rather small data set, we can identify the

clusters of interest by inspection, for example, in Fig. 4a,

there are eight clusters of size 3 9 3. However, the tradi-

tional symmetric cluster extraction (SCE) technique misses

the clusters of interest altogether, instead extracts the less

interesting 21 unit clusters (size 1 9 1) located along the

diagonal as shown by red rectangles in Fig. 4a.

Note that in Fig. 4b–d, different sets of colored dots

correspond to different clusters. Figure 4b shows the

results of CLIQUE-based cluster extraction; recall that

CLIQUE requires two parameters, i.e., intervals (I) that is

the number of units along one dimension and threshold

(T) that is the minimum points in one grid. For k-medoids

and k-means, k is the number of clusters to be extracted

based on some a priori knowledge.

From the results shown in Fig. 4b–d, we observe that

although the three cluster extraction techniques considered

performed better than SCE, i.e., by also clustering the non-

trivial non-unit clusters, but were unable to correctly

extract the useful/interesting clusters, i.e., these techniques

incorrectly clustered together dissimilar clusters.

Now consider Fig. 5 where clusters are extracted using

CCE and DBSCAN. The indigenous CCE technique

(pseudo code given in Fig. 3) successfully extracted all 18

connected biclusters as shown by red rectangles in Fig. 5a,

while six clusters were extracted by using DBSCAN as

shown in Fig. 5b. Observe that in Fig. 5b DBSCAN fails to

recognize Ci to Ci?4 as four distinct clusters, instead

DBSCAN treats them as a single cluster this being also true

for other distinct clusters in the data space erroneously

clustered together by DBSCAN. Quantitative comparison

of bicluster extraction results of Figs 4 and 5 is discussed

in Section 5.2.4

Cluster Quantification Using Simulated Data

For the simulated data with known number of clusters

along with the corresponding details, we use the metric of

purity. To compute purity, each cluster is assigned to the

class that is most frequent in the cluster, and then, the

accuracy of this assignment is measured by counting the

number of correctly assigned data elements and dividing by

N, i.e., the input size ‘‘Eq. (4).’’ Formally [47]:

purityðX;CÞ ¼ 1

N

Xmax

kj

xk \ cj

�� �� ð4Þ

where X = {x1, x2, …, xk} is the set of clusters and

C = {c1, c2, c3, …, cj} is the set of classes. We interpret xk

as the set of data elements in xk and cj as the set of data

elements in cj.

So based on this metric, the purity of clusters extracted

in Fig. 4a–d is 0, 0.24, 0.22 and 0.22, respectively. Note

that increasing the value of k and subsequently performing

several runs of k-means can improve the purity of the

clusters extracted, but it is difficult to know a priori a good

value of k and required number of runs? For the results

shown in Fig. 4, the purity of clusters extracted via pro-

posed CCE is 1, i.e., perfect, and for DBSCAN, the purity

is 0.4. Note that unlike the other cluster extraction tech-

niques discussed in this paper, CCE results were obtained

without adjusting any parameter values.

Results Using Real Data

In this section, we will present the results of using two data

sets, i.e., Oyster data set, which consist of a 30 9 5 data

matrix, and the Breast cancer (BC) data set, which consist

of a 699 9 11 data matrix available at the UCI Machine

Learning repository http://archive.ics.uci.edu/ml/. The

main purpose of using the Oyster data set is ease of com-

prehension of the presented concepts, while the BC data set
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is used for comparative study w.r.t scalability and dis-

crimination of the clusters extracted. Furthermore, clus-

tering of BC results in spatially displaced clusters, thus

making cluster extraction challenging.

Oyster Data Set

Shucking and grading of oysters is a labor intensive and

tedious task. Therefore, a 3D computer vision system for

oyster classification was developed by Lee et al. [48] to

improve on the existing 2D system for oyster grading.

Oysters were defined to be small, medium or large if their

volume fell in (0, 10], [10, 13), [13, inf), respectively. Data

on 30 oysters (10 small, 10 medium and 10 large) were

collected in a calibration experiment in which simple linear

regression models were used to predict observed oyster

volume, one using digital image area (2D) in pixels as a

predictor, and the other using digital image volume (3D).

For this study, we consider the Oyster volume estima-

tion data set [48] consisting of 30 observations and 5

variables. The data were collected in 2001 in a research and

development lab at AGRI-TECH Inc., Woodstock, VA.

Details of how the data were collected can be found in [48].

The variable description of the oyster data set is given in

Table 2; note that there were no missing values.

Cluster Extraction Oyster Data Table 2 shows the attri-

bute description of the data matrix. It can be observed from

Table 2 that there is large variation in the range of attribute

values, for example, the oyster weight and volume being

four-digit numbers, while the pixels for 2D image are six

digit and that for 3D image this being seven digits. To have a

common basis for visual comparison of attributes, last four

attributes of Table 2 were discretized using average attribute

value of that attribute, resulting in the discretized data matrix

Fig. 4 Cognitive cluster extraction from simulated data using four different techniques. a SCE clusters = 21, b CLIQUE I = 18, T = 3,

clusters = 3, c k-medoids k = 3, d k-means k = 3

Fig. 5 Qualitative comparison

of cluster extraction using CCE

and DBSCAN. a CCE All 18

connected clusters extracted,

b DBSCAN 6 clusters extracted

Table 2 Column variables for Oyster data set

Columns Description of attributes

1–2 Oyster ID

11–15 Oyster weight (g)

27–31 Oyster volume (cc)

44–50 Oyster size information from the 3D imaging system (in

volume pixels)

54–58 Oyster size information from the 2D imaging system (in

pixels)
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as shown in Fig. 6a. Using Pearson’s correlation (Eq. 3), a

30 9 30 similarity matrix was created using the actual val-

ues of the last four attribute of Table 2. Due to very fine

variation in Pearson correlation values, the color-coded

similarity matrix using RGB color model resulted in single

color assigned to each pixel. Therefore, the similarity matrix

was discretized using average attribute values; the corre-

sponding discretized similarity matrix is shown in Fig. 6b.

As expected, hardly any clustering can be observed in

Fig. 6b, because without clustering there is no ordering of

dimensions of the similarity matrix, the ordering of the

dimensions of the similarity matrix is as per the ordering of

the rows of the data matrix used to create that similarity

matrix. Using the CMH [10], clustering is performed,

resulting in the clustered similarity matrix as shown in

Fig. 6c, d, observe that clustering of the similarity matrix

changes the ordering of the dimensions, resulting in

enhanced cluster extraction. Figure 6c shows the results of

one-way cluster extraction (global view) using the SCE

technique, resulting in three clusters, while Fig. 6d shows

the results of bicluster extraction (detailed view) using the

CCE technique for the same clustered matrix shown in

Fig. 6c with 10 clusters extracted. Thus, scaling the level of

detail, i.e., going from a low level of detail to a higher level

of detail in the dimension of interest results in extraction of

these biclusters that were missed by SCE.

Figure 7 shows the cluster extraction results using the

four cluster extraction techniques for the clustered simi-

larity matrix shown in Fig. 7b. Figure 7 is based on those

extraction parameters that generated better results. Note

that unlike CCE and SCE where the cluster boundaries are

generated automatically, for ease of comprehension, the

dashed cluster boundaries have been drawn manually in

Fig. 7. From Fig. 7, it is obvious that that the four tech-

niques have been unable to interpret the symmetric nature

and structure of the similarity matrix and the corresponding

rectangular clusters. k-Medoids (Fig. 7c) seems to have

demonstrated better results; however, the results could

have been bad, if a ‘‘lucky’’ guess had not been made about

the number of clusters present. Note that in Fig. 7d, the

cluster boundary is drawn square because by definition

CLIQUE works with square grid cells.

Cluster Quantification Oyster Data To quantify the

clustering results, we consider the metric of normalized

standard deviation denoted by Sn. Sn is the normalized

measure of spread obtained by dividing a measure of

spread (except the variance as it has squared units) by a

measure of location ‘‘Eq. (4).’’ Thus, normalized standard

deviation (or coefficient of variance) is simply the standard

deviation (S) divided by the mean (�p), i.e.,:

Sn ¼ S

�p
ð5Þ

Note that the smaller the value of Sn, the better. This

metric allows the comparison of the spread of the distri-

bution of a variable with large standard deviation and a

correspondingly large mean more appropriately with the

spread of the distribution of another variable, with smaller

standard deviation and correspondingly smaller mean.

For each of the 10 clusters extracted using CCE, i.e., CCE1

through CCE10 and for each of the three clusters extracted

using SCE and k-medoids (KMD), we calculate the normal-

ized standard deviation using the Oyster weight and subse-

quently arrange the clusters in ascending value of Sn. The

corresponding results are shown in Fig. 8; here, the number in

the parenthesis is the cluster size, i.e., the number of rows.

From Fig. 8, it can be observed that the proposed CCE

technique was able to extract at least three significant

additional biclusters (with rows[3), i.e., CCE8, CCE7 and

CCE17 (identified by arrows) and that too with Sn better

than SCE2 and KMD2. These biclusters could not be

extracted using the traditional SCE technique and the k-

medoids technique. Note that CCE1, SCE1 and KMD1 are

statistically identical. Thus, as compared to the traditional

cluster extraction techniques, the proposed CCE technique

is able to perform knowledge discovery from within the

discovered knowledge.

Breast Cancer Data Set

In this section, we will compare CCE with DBSCAN w.r.t

scalability and cluster discrimination, i.e., ability to cluster

dense region into multiple clusters. DBSCAN is considered

for further analysis because:

Fig. 6 Cluster extraction using

SCE and CCE from clustered

Oyster data set. a Discretized

data matrix, b un-clustered

similarity matrix resulting from

6(a), c 3 clusters extracted using

SCE, d 10 clusters extracted

using CCE
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• The technique is considered popular with diverse

applications as compared to the other three techniques

considered.

• The reported scalability issues of DBSCAN in terms of

execution time [49, 50].

The BC data set consists of 699 rows and 11 columns/

attributes, excluding the patient ID and the resultant class,

i.e., Malignant or Benin, we are left with nine attributes

that will be used in this paper; the same are briefly

described here. A1 Clump thickness: Benign cells tend to

be grouped in monolayers, while cancerous cells are often

grouped in multi-layer. A2 Uniformity of cell size: Cancer

cells tend to vary in size, that is why these parameters are

valuable in determining whether the cells are cancerous or

not. A3 Uniformity of cell shape: Cancer cells tend to vary

in shape, that is why these parameters are valuable in

determining whether the cells are cancerous or not. A4

Marginal adhesion: Normal cells tend to stick together,

cancer cells tend to lose this ability. So loss of adhesion is a

sign of malignancy. A5 Single epithelial cell size: Is related

to the uniformity mentioned above. Epithelial cells that are

significantly enlarged may be a malignant cell. A6 Bare

nuclei: This is a term used for nuclei that is not surrounded

by cytoplasm (the rest of the cell). Those are typically seen

in benign tumors. A7 Bland Chromatin: Describes a uni-

form ‘‘texture’’ of the nucleus seen in benign cells. In

cancer cells, the chromatin tends to be coarser. A8 Normal

nucleoli: Nucleoli are small structures seen in the nucleus.

In normal cells, the nucleolus is usually very small if vis-

ible at all. In cancer cells, the nucleoli become more

prominent, and sometimes there are more of them. A9

Mitoses: The act of dividing cells. All attribute values on a

scale of 0–10.

Although the online clustering tool used in this study is

excellent for basic analysis, however, the restriction of

working with very small data sets stifles its practical utility.

Therefore, we coded DBSCAN in JAVA without a restriction

on the size of data set and with additional features, such as

using image as input data, writing cluster extraction results in a

text file such as number of clusters extracted, number of noise

points and cluster details. Our application also supports

standard inputs such as using x,y coordinates for reading each

data point, or reading CSV or space delimited files.

Scalability For the scalability study, we proceed by cre-

ating a pair-wise similarity matrix (details in ‘‘Materials

and methods’’) of size 699 9 699 and after discretization

had 245,329 data points. The proposed CCE technique

performed clustering in 5 s on a core-5 machine with 1.6-

GHz clock and 3.7 GB RAM running windows 8; subse-

quently, cluster extraction was performed in less than this

time. However, for the same data set, cluster extraction

Fig. 7 Cluster extraction using DBSCAN, CLIQUE, k-medoids and k-means from clustered Oyster data set. a DBSCAN (Eps = 10,

MinPts = 3), b k-means (k = 3), c k-medoids (k = 3), d CLIQUE (I = 12, T = 2)

Fig. 8 Comparison of three

cluster extraction techniques

based on normalized standard

deviation
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using DBSCAN took 30 min. Our implementation of

DBSCAN may not be optimal, i.e., having time complexity

O(n2), to speed-up DBSCAN if we would have used a tree

structure for indexing spatial information, such as R*-trees

[49], the time complexity would have reduced to O(n log

n). However, considering the scale factor and the constants,

it is unlikely that the clocked time of fast DBSCAN, i.e.,

O(n log n) would have reduced from 30 min to (say) under

5 min on the same machine for the data set being consid-

ered. The large running time of DBSCAN has been

reported [50, 51]; actually, DBSCAN is reported to be

impractically slow due to the huge I/O cost [51]. Parall-

elization can also be used to speedup DBSCAN, such as for

1 million point data set, Eps = 0.00015 and MinPts = 5

with 2,048 nodes DBSCAN took about 280 s [52]; how-

ever, parallelization is beyond the scope of this paper.

To quickly identify suitable input parameter values of

Eps (Epsilon) and MinPts (Minimum Points), we adopted

the downscaling approach, i.e., creating two versions of the

input image (of the clustered similarity matrix). We scaled

down from 699 9 699 pixels to medium size (300 9 300

pixels) and from 699 9 699 pixels to small size

(150 9 150 pixels) and then running DBSCAN on the

scaled-down versions of input image data. We found the

medium-sized version to give comparable results to that

obtained by using the actual data set. Image downscaling

was performed using standard image editing tools such as

PhotoShop. Therefore, first cluster extraction was per-

formed on the medium-sized image in order to identify

good values for DBSCAN parameters of Eps and MinPts;

subsequently, using these parameter values performed

cluster extraction using the actual clustered 699 9 699

similarity matrix. Note that for some parameter values,

nothing was clustered, such as Eps = 1 and MinPts = 10,

but some combinations gave fairly good results. Thus,

because of downscaling, we got to know the appropriate

values of Eps and MinPts in a couple of minutes instead of

discovering in half an hour!

Cluster Discrimination We experimented with different

values of Eps and MinPts for DBSCAN, but found that the

data points located at the bottom-right corner (BR) of the

clustered similarity matrix were always clustered as a

single cluster, i.e., low cluster discrimination. Apparently,

DBSCAN got ‘‘stuck’’ in the BR region of the similarity

matrix most likely due to its fixed ‘‘density-based’’

approach. Some of the results of running DBSCAN on the

complete BC data set (699 9 699) with different values of

Eps and MinPts are shown in Fig. 9 with random color

assignment to each cluster. For ease of comprehension, the

noise points, i.e., data points, not assigned to any cluster

are not shown in Fig. 9.

Figure 10 shows the cluster extraction results for the

699 9 699 clustered similarity matrix using the pro-

posed CCE technique (Fig. 10a, b) and the traditional

SCE technique (Fig. 10c). In Fig. 10 cluster boundaries

are shown by red rectangles. Here, min size is the

minimum size of a group of data points to be consid-

ered a cluster.

From Fig. 10a, high cluster discrimination of the pro-

posed CCE technique can be observed, i.e., 13 clusters

extracted in the BR region with minimum cluster size set to

10, while DBSCAN extracted 1,699 clusters with low

cluster discrimination in BR region with MinPoints = 10

and Eps = 2 (Fig. 9a). For the proposed CCE technique,

when minimum cluster size was set to five 269 biclusters

extracted (Fig. 10b) with high cluster discrimination in the

BR region, while DBSCAN extracted too many, i.e., 4,942

clusters for MinPts = 5 with some cluster discrimination.

For CCE, when minimum cluster size was set to seven, 112

biclusters were extracted (not shown here) as opposed to

1,117 clusters extracted by DBSCAN with MinPts = 7 as

shown in Fig. 9c. The traditional SCE extracted three

clusters in the BR region of the clustered similarity matrix

(Fig. 10c), but could not extract spatially displaced clusters

w.r.t the diagonal.

Since most of the extraction takes place in the BC region

for the proposed CCE technique, therefore, we do a com-

parison of the modes of the nine attributes (A1–A9) for the

13 clusters extracted by CCE (Fig. 10a) from the BR

region with results shown in Fig. 11. Observe the spike in

the value of A6 (Bare Nuclei) for clusters CCE15, CCE21

and CCE23, the region corresponding to these three clus-

ters in the clustered similarity matrix is indicated by yel-

low-dotted circle (Fig. 10a).

Knowledge Discovery In order to analyze the spike in the

value of A6 (Fig. 11), we revert back to the complete BC

data set. In the given BC data set, Benin records are 458

(65.5 %) and malignant records are 241 (34.5 %). Sum-

mary of bicluster and cluster sizes and percentage of

malignant results for the complete BC data set, BR,

CCE15, CCE21 and CCE23 are shown in Table 3.

Thus, we have an interesting knowledge discovery here,

i.e., although BR mainly consists of Benin records, but

embedded within BR, there are three biclusters, i.e.,

CCE15, CCE21 and CCE23, that mostly consist of

malignant records, actually the percentage malignancy of

each cluster being up to twice that of the entire BC data set.

On further exploration, it was found that out of 699

records, 129 records were of malignant cases having

attribute A6 = 10, and out of this, 121 records were

clustered and captured by the proposed CCE paradigm in

few seconds.
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Analysis of Results By visually comparing the cluster-

ing results of DBSCAN in Fig. 9 with the malignant

clustering region identified by CCE as shown in

Fig. 10a, one could argue that DBSCAN also seem to

have clustered the malignant region too, however, note

that:

Fig. 9 Clustering results of DBSCAN using different values of Eps and MinPts for the BC data set. a Eps = 2, MinPts = 10, clusters = 1,699,

b Eps = 1, MinPts = 5, clusters = 4,942, c: Eps = 2, MinPts = 7, clusters = 1,117

Fig. 10 Comparison of CCE and SCE results for the BC data set with high cluster discrimination in BR region. a CCE technique, min size = 10,

clusters = 34, b CCE technique, min size = 5, clusters = 269, c SCE technique, min size = 5, clusters = 7

Fig. 11 Comparison of nine attributes of BC data set for the 13 CCE clusters in the BR region
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• DBSCAN performs cluster extraction by consuming

CPU time orders of magnitude more than CCE.

• Identifying outlier (malignant) regions from thousands

of DBSCAN clusters is much more complex as

compared to performing the same task with a few

dozen CCE clusters and

• Due to the inherent density connectivity property of

DBSCAN, such outliers (small clusters) may be

‘‘annexed’’ by their large dense neighbors as can be

observed in Fig. 9c shown by dotted red circle.

At the detailed data point level, since DBSCAN requires

dense neighborhood for core points (such as BR in our case),

therefore, with increase in density, fewer core points are

obtained. However, depending on the density of the points just

outside the Eps neighborhood, a core point x loses its status

from being a core point, resulting in three outcomes as follows:

• x is still density reachable from the core points of its

former cluster, and the remaining core points are able to

hold the cluster together. Then, the number of clusters

remains unchanged.

• x is still density reachable from at least two core points,

but no longer acts as a density-connecting ‘‘bridge’’

between the core points, causing them to form separate

clusters. The number of clusters increases and x is

assigned to one of those clusters.

• Neither x, nor its neighboring points are able to sustain

their former cluster and disappear; therefore, x becomes

noise and the number of clusters decreases.

The impact of the points discussed above becomes

profound, as a typical similarity matrix is unlikely to have

constant density regions because of inherent noise in the

data and unpredictable relationships among the records.

Therefore, under such conditions, DBSCAN is unlikely to

produce better results as compared to the proposed CCE

technique that benefits from backtracking (‘‘Effectiveness

of CCE section’’) and may escape the local optima.

Discussion

In this section, we will discuss the results of sensitivity of

the parameters to noise and the extraction parameters.

Finally, we will discuss why the proposed technique

demonstrated promising results as compared to the tradi-

tional techniques in the context of backtracking.

Sensitivity to Noise

To study the sensitivity to noise, two experiments will be

performed using a 30 9 30 similarity matrix. In the first

experiment, global random noise (i.e., 0’s) will be added

incrementally only in the clustered region of the clustered

matrix and 0 % noise added in the non-clustered region and

cluster extraction performed. This process to be repeated

by adding noise to the point, beyond which CCE fails to

extract clusters, the limit was found to be 40 % global

noise as shown in Fig. 12a. Observe that here the global

noise means the noise with reference to the entire 30 9 30

matrix, while local noise means noise is with reference to

the 15 9 15 sub-matrix corresponding to the clustered

region. After trying out different combinations of cluster-

ing parameters, both DBSCAN and CLIQUE successfully

extracted both clusters. For k-means and k-medoids, to get

the right value of k, multiple tries were made to success-

fully extract the two clusters. The proposed CCE tech-

nique, however, extracted the two clusters automatically,

i.e., without adjusting any parameters.

The next experiment is a repetition of the first experi-

ment, but instead of adding noise in the clustered region,

the noise is incrementally added in the non-clustered region

in addition to the noise already present (i.e., 0, s) in the

clustered region, as shown in Fig. 12b. This process repe-

ated till CCE failed to extract clusters; the limit was found

to be 5 % noise. Despite trying several combinations of

values of control parameters, neither DBSCAN nor CLI-

QUE could extract the two clusters cleanly; actually, noise

and data were not differentiated and were instead extracted

together. Figure 12c shows the results of using the pro-

posed CCE technique by using default density value but

dropping clusters of sizes 2 9 2. Observe clean extraction

of the first cluster while most of the second cluster was also

extracted cleanly. The cluster extraction results of k-means

with k = 3 are shown in Fig. 12d, observe k-means tech-

nique could not differentiate between noise and data;

similar results were observed that for k-medoids (not

shown here). Note that although clustering was performed

perfectly, i.e., by clustering the randomly permuted matrix

that resulted in Fig. 12b, but cluster extraction of Fig. 12c

was less than perfect.

Sensitivity to Extraction Parameters

In this section, we will study the effect of cluster extraction

parameters for the four cluster extraction techniques dis-

cussed in this paper with summary of results shown in

Table 3 Summary of malignant results for different bi/clusters in the

BR region

Bi/cluster Rows Columns % Malignant

CCE15 30 13 66.66

CCE21 11 34 54.54

CCE23 80 22 77.5

BR region 439 439 29.38

BC complete 699 699 34.5
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Table 2. Using all combinations of parameter values for the

four techniques considered would result in 40? combina-

tions, with some combinations being of academic nature.

Therefore, a manageable subset of those combinations will

be considered. Thus, for DBSCAN and CLIQUE, we will

use five combinations of parameter values, i.e., (1) small

values for the two control parameters, (2) large values for

the two control parameters (3) large value for the first

control parameter and small value for the second control

parameter, (4) small value for the first control parameter

and large value for the second control parameter and finally

(5) the default values. For k-means and k-medoids, k is set

to four values by extending the reasoning as in the case of

DBSCAN and CLIQUE. The metric for cluster quality will

be purity (P), and we will consider the data space of Fig. 4a

for comparison. Note that using CCE, all 18 clusters were

extracted with purity 1 as shown in Fig. 5a.

From Table 4, it can be observed that except for the case

with parameter values Eps = 10 and MinPts = 3, using the

other four combinations of extraction parameters,

DBSCAN more or less considered the entire data space to

be a single cluster, similar results for Eps = 10 and Min-

Pts = 9. Although DBSCAN has been noted to be very

sensitive to parameter values, with tiny changes producing

clustering results with significant differences [37], how-

ever, we observe different behavior for the data sets being

considered in this paper.

From Table 2, it can be observed that except for the case

with parameter values I = 16 and T = 3, using the other four

combinations of control parameters, CLIQUE more or less

considered the entire data space to consist of two clusters

instead of 18. Note that for I = 12 and T = 2, CLIQUE

considered the entire data space to be a single cluster;

therefore, the results are not presented here. Tuning the

CLIQUE clustering parameters for a specific data set can be

difficult. The reason being, both grid size and the density

threshold are the parameters that greatly affect the quality of

the clustering results. Even with proper tuning, the pruning

stage of CLIQUE can possibly eliminate small, yet important

clusters from consideration see Parson et al. [53].

Table 2 shows the results of sensitivity to parameters for

k-means and k-medoids for four different values of k. It can

be observed that the two partition-based cluster extraction

techniques gave better results as compared to CLIQUE, but

it is rather difficult to have a priori knowledge about a

suitable value for k.

Effectiveness of CCE

Apparently, most of the combinatorial computing appli-

cations can be handled only by what amounts to be the

brute force approach, i.e., an exhaustive search through all

possible solutions. Such searches can readily be performed

by using a well-known ‘‘depth-first’’ procedure which

Walker [54] has called backtracking.

Backtracking is a modification of the brute force approach,

which methodically searches for a solution for a problem

among all available solutions. The algorithm proceeds by

assuming that the solutions are represented by vectors (v1, …,

vm) of values (i.e., ‘B’ as per our case, Fig. 3)and by traversing

the domains of the vectors in a depth-first manner, until the

solutions are found. However, in the proposed CCE technique,

the search is abandoned after a constant number of searches,

i.e., d, and the best solution discovered is used.

Backtracking starts with an empty vector. Subsequently,

at each stage, the algorithm extends the partial vector with

a new value. Upon reaching a partial vector (v1, …, vi) that

cannot represent a partial solution, i.e., no improvement in

density after constant number of searches, i.e., n*d in case

of CCE, backtracking is performed by removing the values

from the vector to the point density decreased, and sub-

sequently, the algorithm proceeds by extending the vector

with alternate values. Figure 13 shows a recursive version

of the backtracking cluster extraction algorithm.

If Si is the domain of vi, then S1 9 … 9 Sm is consid-

ered to be solution space of the problem. The authenticity

criteria used to check for acceptable vectors determines

what portion of the solution space needs to be searched and

that also determines the resources required by the

algorithm.

Fig. 12 Cluster extraction under noise using the proposed technique and k-medoids. a Noise added only in the clustered regions, b noise in the

clustered and non-clustered regions, c cluster extraction using the proposed CCE technique, d cluster extraction using k-means with k = 3
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The solution space can be considered as a tree, of which

a depth-first traversal (shown by dashed line) is performed.

The tree itself is seldom stored entirely by the algorithm;

instead, just a path is stored toward a root, thus enabling

backtracking. Figure 14 shows the tree corresponding to

the search space used by backtracking with depth set to 2

with two levels of search spaces, i.e., S1 and S2, shown by

dotted boundaries.

Now we do a time complexity analysis. The initializa-

tion part of DFS has time complexity O(n), as every vertex

must be visited once so as to mark it as ‘‘visited.’’ The main

(recursive) part of the algorithm has time complexity O(m),

as every edge must be crossed (twice) during the exami-

nation of the adjacent vertices of every vertex. In total, the

algorithm’s time complexity is O(m ? n). In the case of

CCE, the solution space is limited to constant probing

depth; therefore, the time complexity is fairly low, actually

O(1). The proposed CCE techniques takes O(e) time, where

e is the number of 1’s in the discretized similarity matrix,

thus performing DFS for each ‘‘1’’ results in an overall

time complexity of O(e). However, due to discretization,

the binary matrix is fairly sparse, resulting in small values

for e [10].

CCE and Cognition

Comparative psychologists commonly attribute eight

properties to cognitive processes in their experimental

practice. These properties being (1) context sensitivity, (2)

speed, (3) class formation, (4) higher order and abstract

learning, (5) multi-modality, (6) inhibition, (7) monotonic

integration and (8) expectation generation and monitoring

[55]. The first property, i.e., context sensitivity, is one of

the most important ways that a flexible strategy can differ

from a stimulus-bound approach. In contemporary psy-

chology, context sensitivity is a prerequisite for many of

the most-studied cognitive capacities. Episodic memory is

precisely a matter of putting experienced events in a what-

when-where, autobiographical context which is simulated

in ‘‘depth-limited’’ backtracking of the proposed technique

as discussed in the last section. In our case, cognitive

mapping requires the boundary refinement algorithm to

‘‘know’’ where it is going (search space in case of our

work), where it has been (solutions evaluated in case of our

work), and to be able to place its location in the context of

landmarks, i.e., solution space vertices visited during the

depth-first search. The third property attributed to cognitive

processing, i.e., class formation commonly attributed to

cognition, is the ability to group objects and situations into

classes (clustering in case of our work) governed by a firm

member/non-member distinction (i.e., Eq. 1) rather than by

superficial perceptual similarity (similarity matrices in our

case). Thus, we observe that the two major properties of

cognitive processing are closely related with the proposed

cluster extraction technique.

The goal of clustering is either to identify groups in a set

of entities or to group the entities in some way. In the case

of humans, we may associate such a process with cogni-

tion. Cognition is attributed to a whole bunch of high-level

or mental functions that are concerned with attention,

memory, learning, perception and planning [53]. In the

ALGORITHM extract(v1,...,vi)  
   IF (v1,...,vi) is a solution THEN RETURN (v1,...,vi)  
   FOR each v DO  
      IF (v1,...,vi,v) is acceptable vector  THEN  
        sol = extract(v1,...,vi,v)  
        IF sol ≠ () THEN RETURN sol  
      END  
   END  
   RETURN ()  

Fig. 13 Cluster extraction by backtracking

Table 4 Summary of extraction results for the four techniques

MinPts Purity Clusters

DBSCAN

10 3 0.4 6

25 9 0.128 9

25 3 0.176 3

20 5 0.174 3

10 9 0.085 1

1 T Purity Clusters

CLIQUE

IS 3 0.34 6

13 5 0.2 5

12 5 0.266 3

IS 2 0.174 2

12 2 0.085 1

k Purity Clusters

k-Means

2 0.171 2

3 0.323 4

4 0.342 4

5 0.37 4

k Purity Clusters

k-Medoids

2 0.171 2

3 0.257 3

4 0.314 4

5 0.35 4
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case of computers, we can argue more technically that

clustering is a process that is associated with a mapping fc

between a set of N different data items and a set of k data

labels.

Potential Strengths of the Proposed Technique

As per Hartigan et al. [56] and Zhang et al. [57], traditional

cluster extraction methods such as k-mean style clustering,

treat clusters as a statistical entity. Consequently, many

vital features of the clusters, such as their densities and

shapes, are aggregated using a rather simplistic approach.

More specifically, first these techniques assume clusters to

be spherical shaped, which may not be true in all cases,

such as rectangular clusters embedded in similarity matri-

ces. The shape of a cluster is typically described using a

simple ‘‘centroid ? radius’’ formula. Secondly, these

techniques do not capture the internal features of the

clusters, such as distribution of density. Therefore, the

density of a cluster is either assumed uniform or varying

along the radius only. Obviously, such simplistic formula-

based approaches cannot adequately describe the complex

cluster structure of density-based clusters. In real data, both

the shapes and density distributions of density-based

clusters can be arbitrary, not to mention the complex sub-

region connections within each cluster.

Although DBSCAN is known to extract arbitrarily

shaped clusters, but it is also well known that DBSCAN

cannot handle data sets consisting of clusters of varying

densities. The reason being DBSCAN’s density-based

definition of core points cannot categorize the core points

with varying densities. For example, if the user defines the

neighborhood of a point by specifying a particular radius,

then DBSCAN only looks for core points that have pre-

defined number of points within that radius. Subsequently,

either the dense cluster is extracted as one cluster and the

rest will be marked as noise, or else every data point

(including noise) is extracted as one cluster.

k-Means is considerably vulnerable to the initial random

position of the cluster centroids; thus, choosing k is an

irritating problem of cluster analysis with no agreed upon

solution. Thus, the strengths of k-means are its simplicity,

yet fast for low-dimensional data and ability to find pure

sub-clusters if large value of k is specified. The major

weaknesses of k-means are the inability to handle non-

globular data of different sizes and densities and to identify

outliers; furthermore, k-means is restricted to data that has

the notion of a center (centroid).

The proposed technique, however, appears to be

impervious to the problems identified in this section, as

the proposed technique performs backtracking, thus

allowing it to escape the local optima; though global

optima is not guaranteed. Furthermore, the technique

assumes the clusters to be rectangular, which is always

the case for one-way and two-way clustering, which

effectively extracts clusters.

Conclusions and Future Work

In this paper, we have proposed a cognitively inspired

approach of appropriately scaling level of detail, specifi-

cally by going from low level of detail, i.e., one-way

clustering, to high level of detail, i.e., biclustering, in the

dimension of interest—as in OLAP. The proposed tech-

nique is impervious to the ordering of the instances (rows)

and the ordering of the features (columns). Thus, the pro-

posed technique can be used for both unordered instances

and features and ordered instances and features. The nov-

elty of the proposed technique is in utilizing the benefits of

global clustering, while capitalizing on the details of the

biclusters extracted, i.e., knowledge discovery within

knowledge. By using global parameter and backtracking

with depth-limited search, the proposed technique effi-

ciently and fairly accurately extracts connected clusters

quickly. Although classical density-based clustering tech-

niques have been reported to successfully extract arbitrary-

shaped clusters from noise, however, we note the converse

to be true for the data set considered in this paper. The

proposed technique has also demonstrated promising noise

Fig. 14 Depth-limited solution search space for backtracking (dashed line depth-first search and dotted line search space)
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immunity as compared to the classical extraction tech-

niques and unlike DBSCAN is not limited by fixed density.

We intend to conduct further studies to provide more

extensive results on much larger data sets from different

scientific domains. CCE algorithm here considers only

rectangular objects, but it could be extended to other spatial

objects like polygons. Applications of CCE to high-

dimensional feature spaces should be investigated and

adjacency check for high-dimensional data need to be

explored. The technique showed promising results with

fixed density need to explore how to dynamically adjust the

density for possibly better results.
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32. Akodjènou-Jeannin MI, Salamatian K, Gallinari P. Flexible grid-

based clustering. In: Kok JN, Koronacki J, Lopez de Mantaras R,
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