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Abstract Classification over data streams is an important

task in data mining. The challenges become even larger

when uncertain data are considered. An important chal-

lenge in the classification of uncertain data streams is

concept drift and uncertainty of data. This paper studies the

problem using extreme learning machine (ELM). We first

propose weighted ensemble classifier based on ELM

(WEC-ELM) algorithm, which can dynamically adjust

classifier and the weight of training uncertain data to solve

the problem of concept drift. Furthermore, an uncertainty

classifier based on ELM (UC-ELM) algorithm is designed

for the classification of uncertain data streams, which not

only considers tuple value, but also its uncertainty,

improving the efficiency and accuracy. Finally, the per-

formance of our methods is verified through a large number

of simulation experiments. The experimental results show

that our methods are effective ways to solve the problem of

classification of uncertain data streams and are able to

solve the problem of concept drift, reduce the execution

time and improve the efficiency.

Keywords Extreme learning machine � Classification �
Uncertain data streams � Possible worlds � Single-hidden-

layer feedforward neural networks � Weighted

Introduction

Along with the generation of uncertain data streams, more

and more attention is paid to the mining of uncertain data

streams. This need is due to the inherent uncertainties of

data in many real-world applications, such as sensor net-

work monitoring [1, 2] and moving object detection [3–5].

Since the intrinsic differences between uncertain and

deterministic data streams, existing data mining algorithms

on deterministic data streams cannot be applied to uncer-

tain data streams. The mining tasks over uncertain data

streams are much more complicated than mining task on

deterministic data streams, because the possible world

instances derived from the uncertain data stream expand

exponentially.

Classification is considered as an important cognitive

computation [6–10] task, which has drawn much attention.

The objective is the creation of an target function, which

maps each property set x to a predefined class label y. Due

to inherent uncertainty and streams properties, the impor-

tant challenge that classification over data streams mining

is the uncertainty of data [11] and concept drift [12–16].

While the input data are uncertain, each uncertain tuple

consists of several instances. These special properties of

the uncertain data need to be considered in the process of

classification, further complicating the classification pro-

cess. Concept drift is the change of the data distribution,

forcing changes in the classification model reflecting the

drift. If the change in data distribution is ignored, inevita-

bly, the accuracy of the classifier trained for the previous

data will greatly decline. Therefore, the data streams

classification algorithm research is focused on testing the

new class and timely updating the classification model to

adapt the new data distribution. Concept drift rate be

loosely classified into two categories, namely emergent

concept drift and gradual concept drift [17], in this paper,

we only study gradual concept drift.

Motivation 1 (sensor data): Sensor networks are fre-

quently used to monitor the surrounding environment. The
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monitoring range is covered by a number of individual

sensors, each reporting its measurements to a central

location. In the case of environmental monitoring sensor

net, measurements may include temperature, humidity and

air pressure. The true measured values cannot be accurately

obtained due to limitations of the measuring equipment.

Instead, sensor readings are send in order to approximate

the true value, and a confidence in the measurement is

often estimated based on its failure rate, leading to uncer-

tain tuples, where multiple readings collected from a sensor

at this location are instances of this uncertain tuple. An

example of concept drift in this context includes the change

of temperature due to the changes of the seasons.

Motivation 2 (stock data): Stock data streams come every

day, which requires analyzing the data online with a timely

manner. However, in order to protect the users’ privacy, the

user’s data need to be blurred. Uncertain data streams are

classified online, results are feeedback in time.

In the field of uncertain data mining, the presence of

uncertainty can significantly affect the results of data

mining [11]. Since the input data are uncertain, we should

consider both the value and uncertainty of each uncertain

tuple in the classification process. To the best of our

knowledge, there is no existing method taking the uncer-

tainty into account in the classification process for data

mining in uncertain data streams.

Traditional classification algorithms are unable to deal

with such challenges. In this paper, we investigate classi-

fication based on extreme learning machine (ELM) [18–28]

of uncertain data streams. Our main contributions are:

• We propose the weighted ensemble classifier based on

ELM (WEC-ELM) algorithm, which can dynamically

adjust the classifier and the weight of training data to

solve the problem of concept drift.

• Based on ELM and the uncertainty calculation method,

we propose a two phase classification algorithm (UC-

ELM) of uncertain data streams, which is able to

balance the value and uncertainty of tuples, thus

improving the effectiveness.

• Because there is no real uncertain data set available, the

data set we used in the experiments is synthesized from

real data sets. We implement a series of experimental

evaluations, showing that our methods are both effec-

tive and efficient.

The rest of the paper is organized as follows. We first

introduce the ELM in ‘‘Brief of extreme learning machine’’

section. After that, ‘‘Problem definition’’ section defines

our problem formally. We analyze the challenge of clas-

sification over uncertain data streams and develop the two

algorithms, respectively, in ‘‘Classification algorithm’’

section. ‘‘Performance verification’’ section presents an

extensive empirical study. In ‘‘Conclusions’’ section, we

conclude this paper with directions for future work.

Brief of Extreme Learning Machine

In this section, we present a brief overview of extreme

learning machine (ELM), developed by Huang et al. [18,

28–31]. ELM is based on a generalized single-hidden-layer

feedforward network (SLFN). In ELM, the hidden-layer

node parameters are mathematically calculated instead of

being iteratively tuned, providing good generalization

performance at thousands of times higher speeds than tra-

ditional popular learning algorithms for feedforward neural

networks [32]. The output function of SLFNs with L hidden

nodes can be represented by

fLðxÞ ¼
XL

i¼1

bigiðxÞ ¼
XL

i¼1

biGðai; bi; xÞ; x 2 Rd; bi 2 Rm

ð1Þ

where gi denotes the output function Gðai; bi; xÞ of the ith

hidden node. For additive nodes with activation function

g; gi is defined as

gi ¼ Gðai; bi; xÞ ¼ gðai � xþ biÞ; ai 2 Rd; bi 2 R ð2Þ

For radial basis function (RBF) nodes with activation

function g; gi is defined as

gi ¼ Gðai; bi; xÞ ¼ gðbikx� aikÞ; ai 2 Rd; bi 2 Rþ

ð3Þ

The above equation can be written compactly as:

Hb ¼ T ð4Þ

where

H ¼

hðx1Þ
..
.

hðxNÞ

2

664

3

775 ¼

Gða1; b1; x1Þ � � �GðaL; bL; x1Þ
..
.

Gða1; b1; xNÞ � � �GðaL; bL; xNÞ

2

664

3

775

N�L

ð5Þ

b ¼
bT

1

..

.

bT
L

2
664

3
775

L�m

and T ¼

tT
1

..

.

tT
N

2
664

3
775

N�m

ð6Þ

H is called the hidden-layer output matrix of the SLFN

[20, 32, 33]; the ith column of H is the ith hidden node

output with respect to input x1; x2; . . .; xN . . .; hðxÞ ¼
Gða1; b1; xÞ; . . .; gðaL; bL; xÞ is called the hidden-layer

feature mapping. The ith row of H is the hidden-layer
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feature mapping with respect to the ith, input xi : hðxiÞ. It

has been proved [31, 32] that from the interpolation

capability point of view, if the activation function g is

infinitely differentiable in any interval, the hidden-layer

parameters can be randomly generated.

For the multiclass classifier with single output, ELM can

approximate any target continuous function, and the output

of the ELM classifier hðxÞb can be as close as possible to

the class labels in the corresponding regions [34]. The

classification problem for the proposed constrained-opti-

mization-based ELM with a single-output node can be

formulated as

Minimize : LPELM ¼
1

2
bk k2þC

1

2

XN

i¼1

n2
i

Subject to : hðxiÞb ¼ ti � ni; i ¼ 1; . . .;N

ð7Þ

where C is user-specified parameter. Based on the KKT

theorem [35], training ELM is equivalent to solving the

following dual optimization problem:

LDELM ¼
1

2
bk k2þC

1

2

XN

i¼1

n2
i �

XN

i¼1

aiðhðxiÞb� ti þ niÞ

ð8Þ

where each lagrange multiplier ai corresponds to the ith

training sample. The KKT optimality conditions given in

[35] are as follows:

oLDelm

ab
¼ 0 �! b ¼

XN

i¼1

aihðxiÞT ¼ HTa ð9Þ

oLDelm

ab
¼ 0 �! ai ¼ Cni; i ¼ 1; . . .;N ð10Þ

oLDelm

ab
¼ 0 �! hðxiÞb� ti þ ni ¼ 0; i ¼ 1; . . .;N ð11Þ

where a ¼ ½a1; . . .; aN �.
For a multiclass classifier, ELM requires multioutput

nodes instead of a single-output node. Under these condi-

tions, the classification problem can be formulated as

Minimize : LPELM
¼ 1

2
bk k2þC

1

2

XN

i¼1

nik k2

Subject to : hðxiÞb ¼ tT
i � nT

i ; i ¼ 1; . . .;N

ð12Þ

where n ¼ ½ni;1; . . .; ni;m�T is the training error vector of the

m output modes with respect to the training sample xi.

Similar as above, training ELM is equivalent to solving the

following dual optimization problem:

LDELM ¼
1

2
bk k2þC

1

2

XN

i¼1

nik k2

�
XN

i¼1

Xm

j¼1

ai;jðhðxiÞbj � ti;j þ ni;jÞ
ð13Þ

where bj is the vector of the weights linking hidden layer to

the j-th output node and b ¼ ½b1; . . .; bm�.
There are many variants of ELM, such as Circular-ELM

[36], which augments the standard ELM paradigm by

introducing a structural enhancement derived from the

CBP network. Circular-ELM proves effective in addressing

the visual quality assessment problem, in which the input

vector of a conventional multilayer perceptron (MLP) is

augmented by one additional dimension, the circular input.

Circular-ELM handles the actual mapping of visual signals

into quality scores, successfully reproducing perceptual

mechanisms. [37] proposed a novel model for ELMs,

which exploits random projection (RP) techniques. A hid-

den layer performs an explicit mapping of the input space

to a feature space; the mapping is not subject to any opti-

mization, since all the parameters in the hidden nodes are

set randomly. The output layer includes the only degrees of

freedom, i.e., the weights of the links that connect hidden

neurons to output neurons. The variants of ELM mentioned

above all work on determine data.

[38] proposed classification algorithms based on ELM to

conduct classification over uncertain data. Using a bound-

based approach, they implemented the binary and multi-

class classification over uncertain data objects. They also

extended the proposed algorithms to classification over

uncertain data in a distributed environment based on OS-

ELM and Monte Carlo theory. However, this algorithm is

suitable for static data. This means that the algorithm don’t

have the ability to incremental updating. If there are

changes in the underlying data objects, the algorithm must

be executed from scratch, leading to performance degra-

dation when operated on uncertain data streams.

Problem Definition

Uncertain Data Streams Model We assume that the

uncertain data streams consist of a set of n d-dimensional

uncertain tuples x1; x2; � � � ; xi; � � � ; xn, arriving with time

stamp T1; T2; � � � ; Ti; � � � ; Tn, for any i\n; Ti\Tn. Each

uncertain tuple has m possible instances and existence

probabilities i.e. xi ¼ fðx1
i ; px1

i
Þ; ðx2

i ; px2
i
Þ; � � � ; ðx j

i ; px
j
i
Þ;

� � � ; ðxm
i ; pxm

i
Þg,

Pm
j¼1 px

j
i
¼ 1, all instances are mutually

independent. Each instance of uncertain tuple xi is a

152 Cogn Comput (2015) 7:150–160
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d-dimensional vector. Thus each instance can be be viewed

as a multi-dimension data that is input into ELM.

As an example, Table 1 shows partial uncertain tuples in

streams, x1; x2; x3 and x4, the instances of each uncertain

tuple are shown in column instances, and the probabilities

of instances are shown in column probability. Figure 1

maps these uncertain tuples into a 2D coordinate. For

simplicity, we only consider two attributes in the example.

Let the shaded area and the white area represent two

classes, respectively, and each of the instances of uncertain

tuple is to be classified into the corresponding category.

When all instances of the same uncertain tuple are classi-

fied into the same class, then the uncertain tuple should

belong to that particular class, as x1; x2; x3. However, when

instances in the same uncertain tuple are classified into

different classes, then we will consider probability of each

instance, as x4. For an uncertain dataset, we need to con-

sider all instances to determine which class the uncertain

tuple belongs to.

Concept drift: Comparing with the old dataset, in the

new dataset, the related features are changed, which will

lead to the concept of the characteristics to be different.

Specially, the concept drift discussed in this paper refers

that the classification disappears, new classification emer-

ges, or the old classification shifts too much.

Binary Classification of ELM

For example in Fig. 1, instances in all uncertain tuples are

learned using ELM to obtain binary classes.

Theorem 1 Let instance x
j
i denote the j -th instance of

uncertain tuple xi; px
j
i

is probability associated with x
j
i .

Class set consists of two classes n and m . If px
j
i
� 0:5 and

x
j
i belongs class n , then tuple xi is in class n, otherwise, xi

belongs class m.

For binary classification case, ELM needs only one

output node (m ¼ 1), and the decision function of ELM

classifier is:

f ðxÞ ¼ sign
XL

j¼1

biGðai; bi; xÞ
 !

¼ signðb � hðxÞÞ

For an uncertain data tuple, its instances are classified into

different classes, i.e., in tuple x4. Let cs and cw be class

labels of the shaded area and the white area, respectively.

x1
4 and x3

4 are in class cw; x2
4 is in class cs. The membership

of class will be determined by the class, which has a high

probability. To simplify this computing, we construct a

function as follows:

f ðxiÞ ¼
1; px

j
i
� signðb � hðxÞÞ� 0:5

0; px
j
i
� signðb � hðxÞÞ\0:5

(

Multiclass Classification of ELM

In this subsection, we introduce multiclass classification of

ELM, the decision function is:

f ðxÞ ¼ sign hðxÞHT 1

C
þ HHT

� ��1

T

 !
ð14Þ

The expected output vector is:

Table 1 Example of partial uncertain data tuple

Uncertain tuple # Instance # Probability

x1 x1
1 ¼ ð6; 6Þ; x2

1 ¼ ð7; 6Þ; x3
1 ¼ ð6; 7Þ px1

1
¼ 0:6; px2

1
¼ 0:2; px3

1
¼ 0:2

x2 x1
2 ¼ ð6; 2Þ; x2

2 ¼ ð8; 1Þ; x3
2 ¼ ð9; 3Þ px1

2
¼ 0:5; px2

2
¼ 0:3; px3

2
¼ 0:2

x3 x1
3 ¼ ð2; 3Þ; x2

2 ¼ ð2; 2Þ; x2
3 ¼ ð3; 2Þ px1

3
¼ 0:2; px2

3
¼ 0:7; px3

3
¼ 0:1

x4 x1
4 ¼ ð3; 8Þ; x2

4 ¼ ð6; 8Þ; x3
4 ¼ ð4; 7Þ px1

4
¼ 0:6; px2

4
¼ 0:1; px3

4
¼ 0:3

1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6

7

8

9

10

1
1x 2

1x

3
1x

2
2x

1
2x

3
2x

2
3x

3
3x

1
3x

2
4x1

4x
3
4x

Fig. 1 Mapping uncertain tuples to a 2D-space
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T ¼
t1

..

.

tL

2
664

3
775

For multiclass cases, m is the number of classes and output

nodes of hidden layer. The predicted class label of a given

testing sample is the index number of the output node,

which has the highest output value for the given testing

sample. Let fkðx j
i Þ denote the output function of the k-th

ð1� k�mÞ output node, i.e., f ðx j
i Þ ¼ ½f1ðx

j
i Þ; . . .; fmðx j

i Þ�,
then the predicted class label of sample x

j
i is:

labelðx j
i Þ ¼ arg max

s2ð1;...;mÞ
fsðx j

i Þ

For multiclass classifier with multioutputs, it is obviously

that the Theorem 1 cannot be applied to uncertain multi-

class classification. For example, we assume that uncertain

tuples are classified into three categories. If all probabilities

in three classes are smaller than 0.5, Theorem 1 binary

classification cannot be used for multiclass classification.

Therefore, we revise Theorem 1 as follows:

Definition 1 (Probability of a classification instance) Let

x
j
i denote the j-th instance of uncertain tuple xi; px

j
i

is

probability associated with x
j
i . Given a number of classes L,

ELM can classify the instance x
j
i into L classes. If the

instance x
j
i belongs to the class cl; ð1� l� LÞ; pcl

x
j
i

is

probability of instance x
j
i belonging to the class cl, then

pcl

x
j
i

¼ px
j
i
.

Definition 2 (Probability of classification uncertain tuple

) Let Sxi
be the set of instances of uncertain tuple xi, each

uncertain tuple has m possible instances and existence

probabilities, i.e., xi ¼ fðx1
i ; px1

i
Þ; ðx2

i ; px2
i
Þ; . . .; ðx j

i ; px
j
i
Þ,

. . .; ðxm
i ; pxm

i
Þg;
Pm

j¼1 px
j

i
¼ 1, all instances are mutually

independent. Let pcl
xi

be the probability of uncertain tuple xi

belonging to the class cl; pcl
xi

is sum of probabilities the

instances which belong to class cl, then

pcl

xi
¼
X

x
j
i
2Sxi

pcl

x
j
i

Definition 3 (Classification of uncertain data) Let Sc be

the set of L classes, cl be the class label, ð1� l� LÞ. xi is

uncertain tuple. If pcl
xi
�8pcj

xið1� j� L; j 6¼ lÞ, then uncer-

tain tuple xi belongs class cl.

For example, in Table 1, according to Definition 2 and

Definition 3, let cs and cw be class labels of the shaded area

and the white area, respectively. pcs
x4
¼ pcs

x2
4

¼ px2
4
¼ 0:1, and

pcw
x4
¼ pcw

x1
4

þ pcw

x3
4

¼ px1
4
þ px3

4
¼ 0:6þ 0:3 ¼ 0:9, then x4

belongs to class cw.

Theorem 2 Let xi be an uncertain tuple, which consist of

m instances and existence probabilities, i.e., xi ¼ fðx1
i ;

px1
i
Þ; ðx2

i ; px2
i
Þ; . . .; ðx j

i ; px
j
i
Þ; . . .; ðxm

i ; pxm
i
Þg;

Pm
j¼1 px

j
i
¼ 1,

and all instances are mutually independent. Let pcl
xi

be the

probability of uncertain tuple xi belongs to the class cl. If

pcl
xi
� 0:5, then uncertain tuple xi belonging to the class cl.

According to the Theorem 2, when a calculated classi-

fication probability for a certain class exceeds 0.5, proba-

bilities for the other classes do not need to be calculated.

Thus, unnecessary calculations are then avoided, thereby

enhancing efficiency. Based on the definition of classifi-

cation of data stemming from uncertain data, we define the

problem as follows:

Problem: Given uncertain data streams containing

training data and testing data, output the class label for

each uncertain data tuple while considering the risk of

concept drift.

Classification Algorithm

In this section, we first introduce the weighted ensemble

classifier based on ELM (WEC-ELM) algorithm, which is

suitable for application in uncertain data and in the pre-

sence of concept drift. Secondly, we propose the uncer-

tainty classifier based on ELM (UC-ELM) algorithm,

which not only considers the value of the tuple, but also

consider the uncertainty of the tuple.

Ensemble Classifier Based on ELM

In this section, a weighted ensemble classifier for uncertain

data streams based on the ELM (WEC-ELM) algorithm is

proposed. It consists of a number of component classifiers.

The ordinary methods do not set the weights of training

data; this section briefly describes the differences between

existing methods. We use the ensemble classifier to dis-

tinguish the weighted training data, some tuples are clas-

sified correctly, and some are classified wrongly. The

tuples that are classified incorrectly may represent the

direction of the concept drift. These tuples need to be

distinguished when the new classifier is created.

While concept drift occurs, a new component classifier

needs to be trained and added to the ensemble classifier. If

the number of component classifiers reached a preset

maximum, the worst-performing component classifier is

removed from the ensemble classifier, and a new

154 Cogn Comput (2015) 7:150–160
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component classifier is created by as trained by the new

tuple. The standards to judge the classifier performance are

accuracy of the previously classified data.

We first introduce the definition of the weight of a

classifier and the weight of an instance which employs the

idea of [39] as follows:

Definition 4 (Error rate) Let x
j
i be instance, Cn be the

classifier label, Err
x

j
i

Cn
is error rate of Cn. If the instance x

j
i is

classified incorrectly by classifier Cn then Err
x

j
i

Cn
¼ 1,

otherwise, Err
x

j
i

Cn
¼ 0.

Definition 5 (Error of a classifier) Let Wx
j
i

be the weight

of uncertain instance x
j
i ; k be the number of instances of

current data chunk, ECn
be the error of classifier Cn, then

ECn
¼
Pk

i¼1 Wx
j
i
� Err

x
j
i

CnPk
i¼1 Wx

j
i

Before the instance is classified, the weight of instance

Wx
j
i

is 1, so

ECn
¼
Pk

i¼1 Err
x

j
i

Cn

k

The number of instances which are classified incorrectly by

classifier Cn is larger; the error of classifier Cn is larger.

Otherwise, if the classifier Cn classify all instances cor-

rectly, then the error of classifier Cn is 0. If the classifier Cn

classify all instances incorrectly, then the error of classifier

Cn is 1, i.e., ECn
¼ 1. The weight of each classifier is

inversely proportional to the Error of classifier:

Definition 6 (Weight of classifier) Let WCn
be the weight

of classifier Cn; MSEr be random prediction mean square

error of classifier and ECn
be the error of classifier Cn, then

WCn
¼ MSEr � ECn

where MSEr ¼
P

Cn
PðCnÞð1� PðCnÞÞ2; PðCnÞ is the

proportion of each class in the data distribution. It follows

that PðCnÞ 2 ð0; 1Þ. The idea of fuzzy math is imported to

calculate the fuzzy rate of instance classification:

Definition 7 (Fuzzy instance classification) Let WCn
be

the weight of classifier Cn; N be number of classifiers and

fx
j

i
be the fuzzy classification, then

fx
j
i
¼ 1�

PN
n¼1 WCn

� Err
x

j
i

CnPN
n¼1 WCn

We update the weight of instance based on the classified

result.

Definition 8 (Weight of an instance) Let WCn
be the

weight of classifier and Cn; fx j

i
be the fuzzy classification,

then

Wx
j

i
¼ Wx

j

i
� ð1� fx j

x
Þ ¼ Wx

j

i
�
PN

n¼1 WCn
� Err

x
j
i

CnPN
n¼1 WCn

For each instance, the weight will be updated according

to the fuzzy rate for correctly classified. The weight of the

instance which is classified incorrectly is small, and the

weight of instance which is classified wrongly is larger. We

should pay attention to the instances which have larger

weight, they may represent the direction of concept drift.

When we need to retrain the classifier, the instances which

have larger weight should be preferred. Figure 2 shows the

framework of WEC-ELM, and the update is as follows:

Initialize: We assume that the data streams arrive within

chunks, the number of tuples in each chunk is k. The first N

chunks are selected to train N component classifiers based

on ELM which form the ensemble classifier together.

Update: When the uncertain data chunk SNþ1 arrives,

the weight of each instance before being classified is 1.

Each instance in data chunk SNþ1 is classified using N

existing component classifiers; the error rate ECn
is com-

puted according to the Definition 5. The maximum error

rate is the maximum value of error rate of N Component

Classifiers. If the maximum error rate is larger than a user-

specified threshold E, it means that the component classi-

fier whose error rate is the maximum error rate which is not

suitable for the current data, in other words, the concept

drift may occur. The component classifier with the largest

error rate will be deleted, and a new component classifier is

created to take its place. The new weights of N classifiers

W
0

Cn
ð1� n�NÞ are calculated according to the Defini-

tion 6. Next, the weight of each instance is updated

according to the Definition 8. In order to get a better

classifier, we use the instances in set S
0
Nþ1 to train the new

classifier. The set S
0
Nþ1 consists of those instances whose

weights are larger than a user-specified threshold Winstance.

The new component classifier instead of being deleted is

added to the integrated classifier, ready for classifying the

next chunk uncertain data.
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Uncertainty Classifier Based on ELM

In the field of uncertain data mining, tuple values are not

the only issue to be considered. The presence of uncer-

tainty can significantly affect the results of mining process

[11]. The uncertainty classifier based on ELM (UC-ELM)

takes both the value and the uncertainty of the tuple into

account. Our method employs a two phase classification

approach. First of all, according to the value of uncertain

tuple, the K-classes set is composed, and next, it is decided

which class absorbs the new tuple based on the uncertainty

of the tuple. The definitions of instance uncertainty and

tuple uncertainty [11] are as follows:

Definition 9 (Instance uncertainty) We assume that the

uncertain tuple xi consists of some possible instances; each

possible instance consists of d-dimension value and prob-

ability of existence, i.e., xi ¼ fðx1
i ; px1

i
Þ; ðx2

i ; px2
i
Þ,

. . .; ðx j
i ; px

j
i
Þ; . . .; ðxm

i ; pxm
i
Þg, where

Pm
j¼1 px

j
i
¼ 1, all

instances are mutually independent. The instance uncer-

tainty is defined are as follows:

Uðx j
i Þ ¼ log2

1

px
j
i

 !
¼ � log2ðpx

j
i
Þ

Definition 10 (Tuple uncertainty) We assume that the

uncertain tuple xi has m possible instances and existence

probabilities, where xi ¼ fðx1
i , px1

i
Þ, ðx2

i ; px2
i
Þ; . . .; ðx j

i ; px
j
i
Þ;

. . .; ðxm
i ; pxm

i
Þg, and

Pm
j¼1 px

j
i
¼ 1, the uncertainty of tuple xi

is the expected value of its possible instance, denoted as

follows:

UðxiÞ ¼ �
Xm

i¼1

px
j
i
� log2ðpx

j
i
Þ

The uncertainty of a class is determined by the uncer-

tainties of the tuples belonging to that the class:

Definition 11 (Class uncertainty) We assume that the

class cn consists of l uncertain tuples, the uncertainty of

class cn is the average value of the uncertainty of each tuple

in the class cn, defined as follows:

UðcnÞ ¼
Pl

i¼1 UðxiÞ
l

In order to avoid unnecessary computation, we will not

compare all classes to decide which class will absorb the

new tuple. Instead, we proposed a two phase method to

handle this problem, choosing the optimal cluster.

Definition 12 (K-classes) We assume that there are L

classes in the classes set, Pcn
xi

denotes the probability of the

tuple xi belongs to the class cn ð1� n� LÞ. Based on Pcn
xi

,

the L classes in descending order select the top k classes as

the K-classes set.

Figure 3 shows the framework for UC-ELM, which

consists of two phases:

Initialize: The first N uncertain tuples to arrive are seen

as the initialisation data set. The uncertain tuples in the

initialization data set are used to train the ELM classifier.

Update: When a new uncertain tuple xnew arrives, the

uncertainty of tuple xnew is calculated by Definition 10.

Each instance of tuple xnew is classified by the ELM

classifier. Using Definition 2, we obtain the probability of

the new tuple xnew belonging to each class. According to

the Definition 12, the classes in descending order accord-

ing to the probability of the new tuple xnew belongs to each

class select the top k classes as K-classes set; then, we

retrieve the K-classes set for tuple xnew. According to the

Definition 11, we select a class, which will reduce the

uncertainty the most. In other words, the goal is to select

one class with maximum value of 4UðcÞ ¼ UðcÞ
�Uðc

S
fxigÞ, where c is any class in the K-classes set,

then the tuple xnew is absorbed by that class. The uncer-

tainty of the class is updated after absorbing the new tuple

1+NS
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Fig. 2 Ensemble classifier framework
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xnew. In order to solve the concept drift, a counter n is

initialized to 0. Furthermore, let pc
xnew denote the proba-

bility of xnew belonging the class which absorbs the new

tuple xnew, if pc
xnew\u, then n ¼ nþ 1, where u is user-

specified threshold. Until n ¼ N, where N is another user-

specified threshold; we believe concept drift will occur, and

the existing classifier is not suitable for current data; then,

the classifier is deleted. Based on the recent training data

set, a new classifier is trained.

Performance Verification

This section compares the performance of several algo-

rithms (Support Vector Machine (SVM) [40], Dynamic

Classifier Ensemble (DCE) [41], WEC-ELM, and UC-

ELM,) in the real-world benchmark regression and multi-

class classification data sets. We assume that all data arrive

as chunks from a stream. All the evaluations are carried out

in Windows 7, MATLAB R2012B, running on a Intel

Core(TM) i5-2450M running at 2.50GHz and 4GB RAM.

Data Set and Experimental Setup

Because there is no real uncertain data set available, the

data sets we used in the experiments are synthesized from

real data sets. The values of each tuple of certain data set

are fitted to four instances with four probabilities,

respectively, and the expected value of the four values of

instances is equal to the original value in the certain data

set. All source data sets were taken from the UCI machine

learning repository. Table 2 describe the data sets in detail.

• Magic04: 3,000 uncertain tuples are synthesized, each

of which consists of 4 instances; the probability of each

instance is randomly generated where the sum of

probabilities of the instances in the same tuple is 1. The

first 500 tuples are used as training data and are divided

into 5 chunks; each of which contains 100 tuples, to

train 5 classifiers, respectively. The others are used as

testing data and arrive in a stream pattern, where each

chunk contains 100 tuples.

• Waveform: 1,200 uncertain tuples are synthesized, each

of which consists of 4 instances; the probability of each

instance is randomly generated where the sum of

probabilities of the instances in the same tuple is 1. The

first 750 tuples are used as training data and are divided

into 5 chunks; each of which contains 150 tuples, to

train 5 classifiers, respectively. The others are used as

testing data and arrive in a stream pattern, where each

chunk contains 150 tuples.

• Pendigits: 2,000 uncertain tuples are synthesized, each

of which consists of 4 instances; the probability of each

instance is randomly generated where the sum of

probabilities of the instances in the same tuple is 1. The

first 1,000 tuples are used as training data and are

divided into 5 chunks; each of which contains 200

tuples, to train 5 classifiers, respectively. The others are

used as testing data and arrive in a stream pattern,

where each chunk contains 200 tuples.

• Letter: 5,000 uncertain tuples are synthesized, each of

which consists of 4 instances; the probability of each

instance is randomly generated where the sum of

probabilities of the instances in the same tuple is 1. The

first 1,000 tuples are used as training data and are

divided into 5 chunks; each of which contains 200

tuples, to train 5 classifiers, respectively. The others are

used as testing data and arrive in a stream pattern,

where each chunk contains 200 tuples.

• Pageblocks: 1,300 uncertain tuples are synthesized,

each of which consists of 4 instances; the probability of
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Table 2 Uncertain data set

Dataset Number of

tuples

Number of

instances

Number of

classes

Magic 04 3,000 4 2

Waveform 1,200 4 3

Pendigits 2,000 4 10

Letter 5,000 4 26

Pageblocks 1,300 4 5
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each instance is randomly generated where the sum of

probabilities of the instances in the same tuple is 1. The

first 500 tuples are used as training data and are divided

into 5 chunks; each of which contains 100 tuples, to

train 5 classifiers, respectively. The others are used as

testing data and arrive in a stream pattern, where each

chunk contains 100 tuples.

In the experiments, we employ SVM [40] and DEC [41] as

a competitive method. DEC is a recently proposed classi-

fier ensemble for uncertain data streams classification. In

order to show the performance of the ELM classifier, we

use three different activate the functions (sig, hardlim and

sin) to execution algorithm in the experiments. The number

of classes of Magic04 is too small to run UC-ELM, so the

UC-ELM algorithm run on Waveform data set and Pen-

digits. The default parameter settings: E ¼ 70 %;K ¼ 2.

Efficiency Evaluation

Firstly, we evaluate the efficiency of our methods. Table 3

shows the training time among SVM, DEC, WEC-ELM

and UC-ELM. We can see that training time of WEC-ELM

and UC-ELM is shorter than SVM and DEC. Table 4

shows the testing time for SVM, DEC, WEC-ELM and

UC-ELM. As we expect, WEC-ELM and UC-ELM are

faster than DEC.

Accuracy Evaluation

Table 5 shows the accuracy rate for SVM, DEC, WEC-

ELM and UC-ELM with five data sets. We adopt the tra-

ditional learning principle in the training phase. We com-

pare the accuracy among SVM, DEC, WEC-ELM and UC-

Table 3 Training time

comparison of SVM, DEC,

WEC-ELM and UC-ELM

Datasets SVM DEC WEC-ELM UC-ELM

Sig Hardlim Sin Sig Hardlim Sin

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Magic 04 0.988 1.230 0.1310 0.1716 0.7662 – – –

Waveform 0.848 1.045 0.0624 0.0624 0.1256 0.0312 0.0312 0.0312

Pendigits 1.268 0.983 0.0942 0.0942 0.1584 0.0468 0.7509 0.0312

Letter 1.289 0.105 0.1032 0.1005 0.1382 0.0453 0.5528 0.0322

Pageblocks 1.118 0.979 0.6942 0.5942 0.892 0.0468 0.7509 0.0312

Table 4 Testing time

comparison of SVM, DEC,

WEC-ELM and UC-ELM

Datasets SVM DEC WEC-ELM UC-ELM

Sig Hardlim Sin Sig Hardlim Sin

Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)

Magic 04 1.5231 1.9561 1.3709 1.7129 1.4135 – – –

Waveform 0.7256 0.9685 0.2808 0.4680 0.4251 0.1408 0.2028 0.2184

Pendigits 1.6312 2.3262 0.6597 0.7843 0.7786 0.5408 0.7509 0.4160

Letter 1.389 1.1232 0.7032 0.6986 0.6856 0.6805 0.5123 0.5987

Pageblocks 1.002 1.989 0.5645 0.687 0.596 0.4689 0.5961 0.426

Table 5 Accuracy comparison

for SVM, DEC, WEC-ELM and

UC-ELM

Datasets SVM DEC WEC-ELM UC-ELM

Sig Hardlim Sin Sig Hardlim Sin

TR (%) TR (%) TR (%) TR (%) TR (%) TR (%) TR (%) TR (%)

Magic 04 75.23 74.65 76.17 73.62 64.37 – – –

Waveform 89.63 86.69 92.49 88.93 62.15 56.37 56.33 52.96

Pendigits 80.58 81.65 88.32 85.96 53.24 48.33 46.67 50.67

Letter 81.65 80.73 83.59 82.61 82.63 67.59 68.28 69.53

Pageblocks 76.32 79.59 80.57 82.62 82.12 60.21 62.17 62.36
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ELM as shown in Table 5. It can be seen that ELM can

always achieve comparable performance as SVM and

DEC. Seen from Table 5, different functions of ELM can

be used in different data set in order to have similar

accuracy in different size of data sets, although any output

function can be used in all types of data sets. We can see

that WEC-ELM and DEC performs as good as SVM.

Table 6 shows the number of updates among SVM,

DEC, WEC-ELM and UC-ELM with five data sets. In

WEC-ELM algorithm, since concept drift occurs, at least

one component classifier is not suitable for the current data

because of the concept drift. The worst-performing com-

ponent classifier is deleted; the new component should be

trained based on the current data and be added to ensemble

classifier. In UC-ELM algorithm, when the counter is

maximum value, the classifier should be deleted; we should

train classifier according to current data. Due to the number

of updates of WEC-ELM is more than UC-ELM algorithm,

so UC-ELM is faster than WEC-ELM.

Uncertainty Evaluation

To the best of our knowledge, there is no existing standard

for the evaluation of uncertain data streams classification.

Due the nature of uncertain data, we propose the evaluation

criteria of uncertain data classification based on [11]. Given

a set of classes cl ð1� l� LÞ and corresponding uncertainty

is UðclÞ; UM denote the uncertainty of the result of clas-

sification, UM ¼ 1
L

PL
1 UðclÞ. UM is a positive number that

allows comparison of the variation of classes that have

significantly different tuples. In general, the smaller the

UM value is, the greater quality of the classification result,

as the Table 7 shows that the UC-ELM performs better

than the other methods. The UC-ELM takes into account

the uncertainty of the data tuples in order to decide the

assignment of uncertain tuples to classes.

Conclusions

In this paper, we studied the problem of classification based

on ELM over uncertain data streams. We first proposed a

weighted ensemble classifier based on ELM (WEC-ELM),

which can dynamic adjust the classifier and the weight of

training uncertain data to solve the problem of concept

drift. To get better classification results for uncertain data,

an uncertainty classification based on ELM (UC-ELM) is

proposed, which can balance the value and uncertainty of

tuples. Finally, experiments were conducted on real data,

which showed that the algorithms proposed in this paper

are efficient and are able to deal with data streams in a real-

time fashion.

An interesting direction for future work is classification

on high-dimensional uncertain data. Another direction for

future work is the classification for uncertain data streams

in distributive environment.
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Table 6 Number of updates

comparison of SVM, DEC,

WEC-ELM and UC-ELM

Datasets SVM DEC WEC-ELM UC-ELM

Sig Hardlim Sin Sig Hardlim Sin

Times Times Times Times Times Times Times Times

Magic 04 6 8 10 6 25 – – –

Waveform 1 1 1 1 3 0 1 1

Pendigits 2 3 1 3 5 1 2 4

Letter 3 3 5 5 4 4 3 4

Pageblocks 3 2 4 3 2 1 3 2

Table 7 Uncertainty

comparison of SVM, DEC,

WEC-ELM and UC-ELM

Datasets SVM DEC WEC-ELM UC-ELM

Sig Hardlim Sin Sig Hardlim Sin

Magic 04 0.96 0.95 0.92 0.91 0.95 – – –

Waveform 0.93 0.91 0.91 0.91 0.93 0.70 0.68 0.72

Pendigits 0.80 0.86 0.80 0.82 0.83 0.65 0.66 0.75

Letter 0.83 0.80 0.82 0.81 0.82 0.59 0.68 0.61

Pageblocks 0.79 0.83 0.81 0.82 0.82 0.52 0.59 0.62
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4. Chen L, Özsu MT, Oria V. Robust and fast similarity search for

moving object trajectories. In: Proceedings of the 2005 ACM

SIGMOD international conference on management of data, 2005.

5. Ljosa V, Singh AK. Apla: indexing arbitrary probability distri-

butions. In: ICDE 2007. IEEE 23rd international conference on

data engineering, 2007.

6. Taylor JG. Cognitive computation. Cogn Comput. 2009;1(1):

4–16.
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