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Abstract In this paper, we propose a risk-sensitive hinge

loss function-based cognitive ensemble of extreme learning

machine (ELM) classifiers for JPEG steganalysis. ELM is a

single hidden-layer feed-forward network that chooses the

input parameters randomly and estimates the output

weights analytically. For steganalysis, we have extracted

548-dimensional merge features and trained ELM to

approximate the functional relationship between the merge

features and class label. Further, we use a cognitive

ensemble of ELM classifier with risk-sensitive hinge loss

function for accurate steganalysis. As the hinge loss error

function is shown to be better than mean-squared error

function for classification problems, here, the individual

ELM classifiers are developed based on hinge loss error

function. The cognition in the ensemble of ELM obtains

the weighted sum of individual classifiers by enhancing the

outputs of winning classifiers for a sample, while penaliz-

ing the other classifiers for the sample. Thus, the cognitive

ensemble ELM classifier positively exploits the effect of

initialization in each classifier to obtain the best results.

The performance of the cognitive ensemble ELM in per-

forming the steganalysis is compared to that of a single

ELM, and the existing ensemble support vector machine

classifier for steganalysis. Performance results show the

superior classification ability of the cognitive ensemble

ELM classifier.

Keywords Extreme learning machine � JPEG

steganography � Undetectable data hiding � Steganalysis

Introduction

Recent advancements in communication technologies (i.e.,

Internet, mobile communication) permit easy intrusion to

information communicated, and hence, important infor-

mation has to be protected from threats and malicious

actions. Steganography provides a high level of security for

secret information transmitted over these communication

channels. In steganography, secret messages are embedded

in digital media files, such as images, video, or audio, by

slightly modifying them. These digital media files are

commonly referred to as cover objects, and the modified

steganographic signal is statistically undetectable from the

original cover signal.

Steganalysis is a powerful tool to detect the presence of

secret hidden data in an object. The steganalysis problem

can be formulated as a supervised classification problem

and solved using machine learning approaches. The per-

formance of machine learning approaches for steganalysis

is highly influenced by the feature extraction and the nature

of the classification algorithm. Earlier work uses higher

order moments of coefficients obtained by transforming an

image using quadratic mirror filters [8], 18 binary simi-

larity metrics [1], 23 discrete cosine transform features

[10], 27 higher order moments of wavelet coefficients [11],

etc. However, for efficient steganalysis, using a higher

dimensional feature vector becomes essential. The feature
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set designed for JPEG images described in [26] used 274

features and was later extended to twice its size [22] by

Cartesian calibration, while 324- and 486-dimensional

feature vectors were proposed in [42] and [4], respectively.

Other higher dimensional feature extraction techniques for

steganalysis can be found in [5, 23, 25, 43, 44].

The functional relationship between the features and

class label can be approximated using machine learning

approaches. The high dimensional features and growing

image database require a machine learning approach which

requires smaller training time with better generalization

ability. The recently developed neural network learning

algorithm, namely extreme learning machine (ELM) [14,

15], is computationally less intensive and has the better

generalization ability. Hence, in this work, we use ELM for

steganalysis. The ELM is a feed-forward neural network

with a single hidden layer, where the input weights and

bias are selected randomly, and the output weights are

estimated analytically. ELM has been developed based on

the earlier findings that a neural network with at most

N hidden neurons is sufficient to learn a function with

N samples [13, 16, 17, 20]. It has been shown that the

learning mechanism in ELM is similar to brain learning

without the need of knowing the actual activation function

of living brain neurons [20].

Extreme learning machine [14, 15] is a single hidden-

layer feed-forward neural network that assumes randomly

generated input parameters, based on which the output

weights are calculated analytically. Thus, ELM requires

lesser training time and is hence computationally efficient.

Several variants of the ELM algorithm are available in the

literature, and an extensive review of the ELM methods is

presented in [18]. The ELM classifiers available in the

literature include the k-fold selection scheme ELM [31,

32] and the real-coded genetic algorithm ELM [31].

Similarly, a few fast-learning ELM classifiers have been

developed in the complex domain, and they include the

phase-encoded complex-valued ELM and the bilinear

branch-cut complex-valued ELM [34], the fast-learning

fully complex-valued neural classifier [35], the circular

complex-valued ELM classifier [36], and meta-cognitive

ELM [37]. Recently, it has been shown in [19] that ELM

provides a unified learning platform with a widespread

type of feature mappings and can be applied to solve both

regression and multi-class classification applications

directly. Regression and multi-class classification prob-

lems can be solved by using Fuzzy ELM [27] and

incremental learning [9]. ELM is successfully used in

intrusion detection [6], bioinformatics [29, 45], image/

video processing [7, 31, 40], and control [28]. The gen-

eralization performance of the cognitive ensemble of

ELM classifier is better than a single ELM classifier [38]

for various applications.

In general, machine learning algorithm uses perception

to extract the knowledge from the data. Proposed learning

algorithm selects appropriate samples based on the current

knowledge to learn efficiently. This process emulates the

human metacognition. The proposed approach uses an

ELM ensemble to learn the samples (knowledge repre-

sentation using ELM classifier). The ensemble process uses

appropriate sample/classifier selection based on the

knowledge content in the current ELM classifier. The self-

regulation in sample selection enables proposed classifier

to perform better than other classifiers. Cognitive principals

have been used for classification of social media affective

information [12], of natural language concepts [2], of

handwritten text [3], and offline–online personal photos

[46].

However, as one would expect, owing to the random

initialization of the input parameters, the performance of

ELM algorithm is affected by the choice of the input

parameters. Hence, there is a need for a cognitive machine

learning algorithm with self-realization [21] that is capable

of learning from observations of its own knowledge [39].

Moreover, it has been shown in the literature that the risk-

sensitive hinge loss error function estimates the posterior

probability more accurately than the mean-squared error

function in classification problems. In this paper, we

address the above requirements by developing a cognitive

ensemble of ELM classifiers based on the risk-sensitive

hinge loss error function and use the classifier to perform

steganalysis. The input parameters of each individual ELM

classifier in the cognitive ensemble are initialized in dif-

ferent regions of the domain considered. Thus, their per-

formance varies widely. Samples that are repeatedly

correctly classified are labeled as winning samples, and

samples that are misclassified by the majority of the clas-

sifiers are labeled as losing samples. Based on the region of

initialization, the losing samples are classified correctly

only by a few classifiers. Hence, a cognitive ensemble of

ELM classifiers combines the outputs of individual clas-

sifiers by obtaining the weighted sum of outputs of these

classifiers for all the samples. In this process, the classifiers

that classify only the winning samples correctly are dis-

carded from the pool. Since the cognitive ensemble of

ELM classifiers is capable of choosing the participating

networks and their weights, it is referred to as, ‘‘cognitive

ensemble of ELM classifier.’’ This cognition enables

improved performance of the cognitive ensemble of ELM

classifier compared to each individual ELM.

We study the performance of the cognitive ensemble of

ELM classifiers on a set of benchmark binary classification

problems from the UCI machine learning repository [41],

in comparison with support vector machine classifier and

ELM classifier. Next, we use the cognitive ensemble ELM

to solve steganalysis problems. Here, the performance of
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the cognitive ensemble of ELM classifier is compared to

SVM, ELM and the ensemble of base classifier that is the

best performing classifier available in the literature for this

data set. To understand the statistical significance of the

classifiers, we also perform a binomial test using the

cognitive ensemble of ELM classifiers as the base clas-

sifier. Performance study results also show that the cog-

nitive ensemble of ELM classifiers outperforms the single

ELM and ensemble of support vector machine classifier

[24].

The paper is organized as follows. In ‘‘Cognitive

Ensemble of Extreme Learning Machine Classifier’’ sec-

tion, the algorithm of ELM classifier is presented and the

hinge loss error based cognitive ensemble of ELM classi-

fier is introduced. ‘‘Performance Study of Cognitive

Ensemble of ELM Classifier’’ section presents the perfor-

mance study of the cognitive ensemble ELM with other

classifiers available in the literature on benchmark classi-

fication problems and steganalysis data sets. Finally, fourth

section summarizes the main ‘‘Conclusions’’ from the

study.

Cognitive Ensemble of Extreme Learning Machine

Classifier

In this section, we first present the learning algorithm of

ELM classifier and next describe the risk-sensitive hinge

loss function-based cognitive ensemble ELM.

Extreme Learning Machine

ELM is a single hidden-layer feed-forward neural network.

The input weights and bias of the hidden neurons in ELM

are assigned randomly, and the output weights are com-

puted analytically. ELM provides a unified framework to

solve both regression and classification problems [19]. As

steganalysis is solved as a classification problem, in this

paper, ELM has been used as a classifier. The classification

problem can be defined as follows: Given a training data

set with N samples, x1; c1ð Þ; . . .; xt; ctð Þ; . . .; xN ; cNð Þ
� �

,

where xt 2 Rm are the m-dimensional real-valued input

features of t-th observation and ct 2 f1; 2; . . .;Cg is its

class label. The coded class label yt are obtained using:

yt
k ¼

1; if ct ¼ l;

�1; otherwise;

�
k ¼ 1; 2; . . .;C ð1Þ

Now, the classification problem can be viewed as approx-

imating the decision function (F) that maps the input fea-

tures to the coded class labels, i.e., F : Rm ! C
C as close

as possible, and then predicting the class labels of new,

unseen samples with certain accuracy.

As there are m input features and C classes, the ELM

used to solve the problem has m input neurons and C output

neurons. Let the number of hidden neurons be L. The

neurons in the input and output layer of the ELM are linear,

while the neurons in the hidden layer of ELM employ

Gaussian activation function. Thus, the response of the j-th

hidden neuron for the t-th sample (ht
j) is given by:

ht
j ¼ exp � ðxt � ajÞTðxt � ajÞ

2b2
j

 ! !

j ¼ 1; . . .; L ð2Þ

where aj 2 Rm and bj 2 R are the center and width of the

j-th hidden neuron, respectively.

Then, the predicted coded class label ŷt
k of the k-th

hidden neuron of the t-th sample is computed as:

ŷt
k ¼

XL

j¼1

bkj � ht
j; k ¼ 1; . . .;C ð3Þ

where bkj is the weight connecting the j-th hidden neuron

and the k-th output neuron.

The above equation can be written in the matrix form as

Ŷ ¼ bH; ð4Þ

where H is the hidden-layer output matrix as shown below:

HðA;B;XÞ ¼

Gða1; b1; x
t
1Þ . . . Gða1; b1; x

t
NÞ

..

.
. . . ..

.

GðaL; bL; x
t
1Þ . . . GðaL; bL; x

t
NÞ

0

BB@

1

CCA

ð5Þ

The optimum output weight W can be computed analyti-

cally as:

W� ¼ YHy ð6Þ

From the predicted coded class labels, the class label of

each sample can be estimated as:

bct ¼ arg max
k¼1;...;C

byt
k ð7Þ

Thus, for a given training data set x1; y1ð Þ; . . .; xN ; yNð Þ
� �

,

and the number of hidden neurons L, the learning algorithm

of ELM is summarized below:

1. Randomly generate hidden neuron centers, A 2 RL�m

and the Gaussian width of the hidden neurons,

b 2 RðL�1Þ

2. Compute the hidden-layer output matrix H.

3. Calculate the output weights:

b ¼ YHy ð8Þ

where Hy is the Moore–Penrose generalization inverse

of responses of the hidden neurons.
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However, the generalization performance of the ELM is

dependent on the randomly chosen centers and hidden

neuron bias, especially in applications like steganalysis,

where the dimension of the input feature is large. Hence, in

this paper, we propose the cognitive ensemble of ELM

classifiers using risk-sensitive hinge loss function.

Risk-Sensitive Hinge Loss Function-Based Cognitive

Ensemble of ELM

In this section, we present a cognitive ensemble of ELM

classifiers for steganalysis. The performance of the ensemble

classifiers depends on the choice of classifiers and weightage

of each classifier. First, we present the cognition for selection

of classifiers. Next, we present gradient descent-based risk-

sensitive hinge loss (RSHL) ensemble.

Cognition: Selection of Classifiers

As the performance of the ELM classifier is affected by the

random choice of centers and width, a cognition exploits the

effect of initialization in the performance of ELM classifiers

to develop a cognitive ensemble of ELM classifier. We train

a pool of n ELM classifiers, each with initializations in dif-

ferent regions of the input space to ensure that Gaussian

centers is distributed in the entire range of the input space.

The cognition of the ensemble computes the outputs of these

n classifiers on the N training samples, and the samples that

are correctly classified are listed. Samples that are repeatedly

correctly classified are labeled as winning samples, and

samples that are misclassified by the majority of the classi-

fiers are labeled as losing samples. The classifiers that clas-

sify only the winning samples correctly are discarded from

the pool. Finally, the ensemble output is obtained as the

weighted sum of the outputs of the participating classifiers

for all the samples as shown in Fig. 1. The cognition in the

ensemble of ELM classifier computes the weightage of each

classifier using RSHL.

Estimation of Weights for Risk-Sensitive Hinge Loss

Error Function-Based Cognitive Ensemble of ELM

In this section, we present the cognition that performs gradient

descent-based estimation of the weights (vl) for the partici-

pating classifiers of the ensemble obtained as shown in section

‘‘Cognition: Selection of Classifiers’’. Let byt
1; . . .; byt

l; . . .; byt
n

be the outputs of the n ELM classifiers in the pool for the t-th

sample. Then, the total output is obtained as follows:

byt ¼ v1byt
1 þ � � � þ vlbyt

l þ � � � þ vnbyt
n ð9Þ

Thus, the overall performance of the cognitive ensemble of

ELM classifier is better than each individual ELM classifier

in the pool. The weights vs ¼ ½vs
1 � � � vs

l � � � vs
n�

T
are obtained

by a gradient descent-based procedure as

vs
l ¼ vs

l þ ges
lby

s
l þ bgds; l ¼ 1; . . .; n ð10Þ

where, ds ¼ ges�1
l bys�1

l þ bgds�1 ð11Þ

Here, g; b are the learning rate constants, ds is the adaptive

factor for s-th iteration, which keeps the portion of updates

ges�1
l bys�1

l from the previous iteration, vs
l is the weight of

the l-th classifier for the s-th iteration, and es
l is the error of

the l-th classifier for the s-th iteration.

It has been shown in [30, 48] that hinge loss function

predicts the posterior probability better than mean square

error. Further, it has also been shown in [30] that a hinge

loss error function with a risk factor plays a vital role in

minimization of error for classification problems by

penalizing the misclassification heavily and by minimizing

the effect of imbalance in the training set. Therefore, in this

paper, we adapt the risk-sensitive hinge loss error function

[30] with a constant risk factor of 2, as shown below:

et
lk
¼

0 if byt
lk
� yt

lk
[ 1

yt
lk
� byt

lk
if 0\byt

lk
� yt

lk
� 1

2 � ðyt
lk
� byt

lk
Þ if � 1\byt

lk
� yt

lk
� 0

�2 � ðyt
lk
� signðbyt

lk
ÞÞ otherwise

8
>>><

>>>:

ð12Þ

The learning algorithm of the cognitive ensemble of ELM

classifiers can be summarized as shown below:

• Train n individual ELM classifiers:

• Choose the number of hidden neurons (L), the

center of Gaussian activation function (ak) and the

Gaussian width (bk) randomly.

• Estimate the output weight W using Eq. (6).

• Obtain the hinge output of the network.

• Develop the cognitive ensemble of ELM classifiers:

• Define the samples that are correctly classified by

most classifiers as winning samples.

• If a network predicts only the winning samples

correctly, delete the network.

Fig. 1 Cognitive ensemble of ELM classifier
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• Estimate using RSHL:

• Obtain the weighted sum of the participating

classifiers using Eq. (9).

• Update the weights of the participating classifiers

using Eqs. (10) and (11).

From the algorithm, it can be seen that the cognitive

ensemble of ELM classifier positively exploits the effect of

initialization on individual ELM classifiers to obtain a

better performing classifier. In the next section, we use the

cognitive ensemble of ELM classifiers for steganalysis and

compare its performance to the performance of an indi-

vidual ELM classifier and the best results available in the

literature for this problem.

The computational complexity of proposed cognitive

ELM ensemble is OðnL3Þ; where, n is the number of

classifiers and L is the number of hidden neurons.

Performance Study of Cognitive Ensemble of ELM

Classifier

In this section, we study the performance of the cognitive

ensemble of ELM classifiers in comparison with other

classifiers available in the literature. First, we evaluate the

performance of the classifiers on benchmark binary clas-

sification problems and then use the classifier to solve a

steganalysis problem. In our study, the number of hidden

neurons in individual ELM classifier for all the problems

considered in the study is chosen using the constructive–

destructive procedure for selection of neurons, described in

[33] and shown below.

Step 1 Select network with minimal configuration

(L ¼ mþ C). Initialize the iteration count

(count ¼ 1).

Step 2 Train the network until gtr [ gdesired.

Step 3 Calculate the testing efficiency (gte).

Step 4 If gtr\B (where B is a desired accuracy), then

increase the number of hidden neurons and go to

Step 2, else stop.

Performance Study on Benchmark Classification

Problems

We first evaluate the performance of the cognitive

ensemble ELM on benchmark binary classification prob-

lems from the UCI machine learning repository [41]. The

details of the data sets including the number of features, the

number of samples in training and testing, and the imbal-

ance factor of these data sets are presented in Table 1. The

imbalance factor (IF) is defined by:

IF ¼ 1� C

N
min

k¼1;...;C
Nk ð13Þ

where Nk is the number of samples in the class k. From the

table, it can be observed that all the data sets used in the

study are unbalanced data sets.

The results of the three classifiers, namely SVM, ELM,

and a cognitive ensemble of ELM classifiers for the binary

benchmark classification problems are presented in Table

2. From the table, it can be observed that the generalization

ability of cognitive ensemble of ELM classifier is better

than that of the SVM and ELM classifiers, although the

training performance is better or almost similar to those of

the SVM and ELM classifiers.

Hence, it is evident that the performance of a cognitive

ensemble of ELM classifier is better than individual ELM

classifier. Note that, for breast cancer and ionosphere

problems, cognitive ensemble ELM does not show

improvement ( see Table 2). Due to testing and training

efficiencies close to 100 %, presented method discards all

ELM networks except the one with the best performance.

Table 1 Description of benchmark data sets from UCI machine

learning repository

Problem No. of features No. of samples IF

Training Testing

Liver disorders 6 200 145 0.17

PIMA 8 400 368 0.225

Heart 13 70 200 0.14

Breast cancer 9 300 383 0.26

Ionosphere 34 100 251 0.28

Table 2 Experiment results for benchmark data

Problem SVM ELM Cognitive

ensemble of ELM

gTr gTe gTr gTe gTr gTe

Liver disorders 79.50 71.03 88.50 72.41 88.60 74.50

PIMA 77.00 77.45 84.3 76.63 84.6 80.40

Heart 87.14 75.5 90.00 76.50 90.11 80.51

Breast cancer 98.67 96.60 100.00 96.35 100.00a 96.35a

Ionosphere 97.00 91.24 94.00 89.64 94.00a 89.64a

Bold values indicate cases where the proposed technique has

improvement over the existing methods
a Note that, for breast cancer and ionosphere problems, cognitive

ensemble ELM does not show improvement (see Table 2). Due to

testing and training efficiencies close to 100 %, presented method

discards all ELM networks except the one with the best performance.

Thus, there is no room for further improvement using the cognitive

ensemble of ELM. Next, we describe the steganalysis data set and

present the performance study of the proposed classifier in solving

steganalysis
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Thus, there is no room for further improvement using the

cognitive ensemble of ELM. Next, we describe the steg-

analysis data set and present the performance study of the

proposed classifier in solving steganalysis.

Steganalysis Using Cognitive Ensemble of ELM

Classifier

In this section, we employ the cognitive ensemble of ELM

classifier to perform steganalysis. We first discuss the data

set used in steganalysis, followed by the performance study

of steganalysis using the cognitive ensemble of ELM

classifier in comparison with individual ELM classifier and

an ensemble of baseline classifier [24].

Merge Steganalysis Feature Data Set

In general, steganalysis method is based on analyzing

features extracted from JPEG images. The quality of the

extracted features predefines the performance of the binary

classifier. Extracted features have to be sensitive to modi-

fications due to data hiding, then steganalysis may correctly

identify the cover and stego images.

In our experiments, we used BCH-based steganographic

method proposed by Zhang et al. [47] for data hiding, and

steganalysis method based on 548 features [26, 24]. In our

experiments, steganalysis is performed by modifying the

image data set with the hiding message with a length of

0.2-bits per nonzero DCT coefficients (bnpc). Such an

experiment is capable of hiding reasonable amount of data

in respect of the number of available nonzero DCT coef-

ficients. Thus, JPEG image with small number of nonzero

DCT coefficients always contain small number of hidden

bits and vice versa.

In this paper, we used popular 548-dimension merged

feature set proposed by Pevny et al. [26] and improved by

Kodovsky [24]. Merged feature set contains 7 features

subsets, i.e., Fo ¼ ff1; f2; f3; f4; f5; f6; f7g see Fig. 2:

f1: Global histogram Hl of all 64� nb (nb is the number

of 8� 8 blocks of JPEG image).

f2: 5 Local histograms of the AC coefficients hij ¼
fhij

L; . . .; hij
Rg located in the five fist positions according to

the zigzag scan, i.e., ði; jÞ 2 fð1; 2Þ; ð2; 1Þ; ð3; 1Þ; ð2; 2Þ;
ð1; 3Þg.
f3: 11 Dual histograms.

f4: 6 Inter-block dependency coefficients.

f5: 2 Blockness coefficients.

f6: 3 Co-occurrence matrix of neighboring DCT

coefficients.

f7: 81 Markov coefficients.

Feature set Fo ¼ ff1; f2; f3; f4; f5; f6; f7g has 274 fea-

tures which is sufficient for efficient steganalysis. Later

Kodovsky et al. [24] extended feature set by including

another 274 features (i.e., Fc ¼ ffc
1; fc

2; fc
3; fc

4; fc
5; fc

6; fc
7g)

extracted from the cropped bitmap version of the examined

JPEG image. Thus, resulted feature set F ¼ fFo;Fcg =

ff1; f2; f3; f4; f5; f6; f7; fc
1; fc

2; fc
3; fc

4; fc
5; fc

6; fc
7g has 548

features. The image is cropped by 8 pixels in both vertical

and horizontal directions. JPEG compression divides bit-

map image into 8 by 8 blocks and processes each block

separately. Thus, each JPEG block of the cropped image

has four 4 by 4 sub-blocks from four neighboring non-

cropped JPEG blocks. Such design may amplify the arti-

ficial changes and may cause better detect-ability. For more

details, refer to [26] and [24]. In the next section, we

present a performance study of the proposed cognitive

ensemble of ELM classifier for steganalysis.

Performance Study on Steganalysis

In this section, we study the steganalysis capability of the

cognitive ensemble of ELM classifier, in comparison with

the best performing classifier available in the literature for

this data set. First, we perform a study based on the con-

structive–destructive procedure to fix the number of neu-

rons in the hidden layer of the ELM. Table 3 presents the

training and testing efficiencies of an ELM classifier for

different number of hidden neurons. Although a wide range

of neurons was chosen, we have presented the results only

for six different numbers of hidden neurons. From the

table, it can be seen that the best testing efficiency was

obtained when L ¼ 1;000: Hence, 1,000 hidden neurons

employing Gaussian activation function are used at the

hidden layer of each ELM of the cognitive ensemble of

ELM classifier used in our experiments.

Next, the performances of the different classifiers, namely

ensemble classifier proposed by Kodovsky et al. [24], single

ELM, and the cognitive ensemble of ELM are studied in the

steganalysis data set using 75 % of the total samples in the

training and the remaining 25 % of the samples in testing. To

enable fair comparison, 7 trials were conducted, in each of

which 75 % of the samples are randomly chosen for training

and the remaining 25 % is used to test the trained classifier.

The performance results of the 7 random trials of all the three

classifiers are presented in Table 4. From the table, it can be

observed that the cognitive ensemble of ELM classifier

outperforms the ensemble classifier [24] and the single ELM

classifier in all the 7 trials. Thus, it can be concluded that the

cognitive ensemble of ELM classifier is capable of per-

forming steganalysis much better than the single ELM and

ensemble classifiers [24].
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In our experiments, we found 48 classifiers achieve

better performance. Beyond 48, there is no much

improvement in results. We have conducted sevenfold

validation. We found that the average performance is

65.22 % in terms of testing accuracy; standard deviation is

0.71.

Conclusions

In this paper, we have presented a risk-sensitive cognitive

ensemble of ELM classifier for JPEG steganalysis. We have

trained several ELM classifiers using the 548-dimensional

merged feature set, and the cognitive ensemble of ELM

classifier is then constructed by obtaining the weighted sum

of the outputs of the individual ELM classifiers. The

cognition in the classifier estimates the weight of individual

ELM classifier through the gradient descent update based on

RHSL. Thus, the cognitive ensemble of ELM classifier

positively exploits the effect of randomness in each classifier

to obtain the best results. The performance of the cognitive

ensemble ELM is evaluated on 5 benchmark binary classi-

fication data sets from the UCI machine learning repository

and a practical steganalysis data set. In all these problems,

the performance of the proposed classifier is compared to

that of a single ELM and SVM. In addition, the performance

of the classifier in solving steganalysis is also compared with

the best performing classifier available in the literature for

this data set. Performance results obtained from the study

show the superior classification ability of the cognitive

ensemble of ELM classifier.
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