
A Class Incremental Extreme Learning Machine for Activity
Recognition

Zhongtang Zhao • Zhenyu Chen • Yiqiang Chen •

Shuangquan Wang • Hongan Wang

Received: 12 August 2013 / Accepted: 17 March 2014 / Published online: 3 April 2014

� Springer Science+Business Media New York 2014

Abstract Automatic activity recognition is an important

problem in cognitive systems. Mobile phone-based activity

recognition is an attractive research topic because it is

unobtrusive. There are many activity recognition models

that can infer a user’s activity from sensor data. However,

most of them lack class incremental learning abilities. That

is, the trained models can only recognize activities that

were included in the training phase, and new activities

cannot be added in a follow-up phase. We propose a class

incremental extreme learning machine (CIELM). It (1)

builds an activity recognition model from labeled samples

using an extreme learning machine algorithm without

iterations; (2) adds new output nodes that correspond to

new activities; and (3) only requires labeled samples of

new activities and not previously used training data. We

have tested the method using activity data. Our results

demonstrated that the CIELM algorithm is stable and can

achieve a similar recognition accuracy to the batch learning

method.

Keywords Extreme learning machine � Incremental

learning � Activity recognition � Mobile device

Introduction

Recently, the design and implementation of cognitive

systems that can perceive, learn, memorize, decide, act,

and communicate have attracted a lot of attention in both

academia and industry [1, 2]. There are several important

input modalities for natural interaction with intelligent

systems. They include context-sensitive keyword [3], gaze

[4], human speech and handwriting [5], and sensors [6].

Activity recognition in different kinds of cognitive systems

[7, 8] plays a key role in diverse practical applications such

as metabolic energy measurement and fall detection.

Automatically recognizing various physical activities (e.g.,

standing still, walking, running, going upstairs or down-

stairs) has many applications in healthcare [9], monitoring

of elderly people [10–12], energy expenditure [13], and so

on [14, 15]. Because of their inherent properties, acceler-

ometers are often used to measure movement for human

activity recognition. In particular, smart phone-based

activity recognition is a popular academic and industrial

research topic that uses an embedded accelerometer sensor

and has the obvious advantage of being unobtrusive to

peoples’ daily lives.

Most existing activity recognition methods collect and

label samples of some predefined sort of activity to train a

fixed activity recognition model. In [16, 17], the authors

used multiple accelerometers to classify different activities.

Chen [18] used a smart phone to detect six activities and

Z. Zhao

Zhengzhou Institute of Aeronautical Industry Management,

Zhengzhou 450015, China

Z. Zhao (&) � Z. Chen � Y. Chen � S. Wang

Pervasive Computing Center, Institute of Computing

Technology, CAS, Beijing 100190, China

e-mail: zhaozhongtang@ict.ac.cn

Z. Chen

e-mail: chenzhenyu@ict.ac.cn

Y. Chen

e-mail: yqchen@ict.ac.cn

S. Wang

e-mail: wangshuangquan@ict.ac.cn

H. Wang

Institute of Software, CAS, Beijing 100190, China

e-mail: wha@iel.iscas.ac.cn

123

Cogn Comput (2014) 6:423–431

DOI 10.1007/s12559-014-9259-y



find the change point between different states. These

models achieved high recognition accuracies, because their

test and training samples were from the same data and

followed the same distribution. These literatures did not

consider the incremental activity recognition problem.

The fixed activity recognition model is not appropriate

for meeting the diverse demands of different people. It is

because that human beings learn motion activities as an

incremental process. As a baby, we learn to sit, stand, and

toddle. As a child, we learn to walk along the road, run

back and forth, ride a bicycle, and so on. When we mature

into adults, we may learn to how to drive a car. From the

perspective of sports medicine, an individual’s activities

can reflect their physical condition. To address this prob-

lem, some existing methods retrain a new model by com-

bining the original known activities with new activities [19,

20]. There are also some incremental learning methods.

GAP-RBF [21] used feedforward networks with radial

basis function (RBF) nodes. It pruned insignificant nodes

from the networks. GAP-RBF attempted to simplify the

sequential learning algorithms and increase learning speed.

However, it requires information about the input sampling

distribution or input sampling range, and the learning speed

may still be slow for large applications. Fuzzy ARTMAP

(FAM) [22] is a variant of an adaptive resonance theory

map (ARTMAP) network, which is an incremental learning

network based on adaptive resonance theory. It incorpo-

rates fuzzy set theory to govern the dynamics of ARTMAP.

The major drawbacks of FAM are that it is sensitive to

noise in the training dataset and often suffers from over-

fitting. This decreases its classification accuracy and gen-

eralization ability. The resource allocation network (RAN)

[23] and its extensions are sequential learning algorithms

that have also become popular feedforward networks.

However, these sequential learning algorithms can only

process one sample at a time, and not in larger sections. In

[24], an online sequential extreme learning machine

(OSELM) was introduced. OSELM can handle the training

data in a sequential manner. At any time, only the newly

arrived sample or a set of samples (instead of the entire past

dataset) are used to train the incremental model. After the

learning procedure, the current section of data is immedi-

ately discarded. However, RAN and OSELM cannot train

using new classes of incremental data and integrate the

results into an existing model.

It is not feasible to retrain a model on resource limited

devices; they cannot store large amounts of training data

and have low computing power. In this paper, we propose a

class incremental extreme learning machine (CIELM).

First, we train an ELM classifier using labeled samples of

some predefined kinds of activities. Then, labeled samples

of new activities are selected, and an incremental learning

method is used to update the original ELM classifier.

The remainder of this paper is organized as follows. In

‘‘The Class Incremental Extreme Learning Machine for

Activity Recognition’’ section, we present details of the

CIELM. In ‘‘Experiments’’ section, and we give the results

of our experiments. Section ‘‘Conclusion and Future

Work’’ concludes the paper.

The Class Incremental Extreme Learning Machine

for Activity Recognition

The proposed CIELM can be incrementally built in a

similar manner to a human’s cognitive processes. As

illustrated in Fig. 1, CIELM has three main steps:

1. some activity samples are collected and labeled;

2. an ELM activity classifier is trained on these labeled

samples (called ELM_1);

3. ELM_1 is increasingly adapted to a new classifier

(ELM_2) using an incremental learning algorithm and

labeled data of the known and new classes.

The ELM structure is changed after the adaption phase.

Output neutrons that correspond to the new classes are

added. They are represented by the dotted circles in Fig. 1.

Fig. 1 CIELM framework

424 Cogn Comput (2014) 6:423–431

123



Brief Description of ELM

ELM is a recently developed neural network algorithm. It

is known to perform well for complex problems and reduce

computation time when compared with other machine

learning algorithms. The ELM algorithm does not train the

input weights or the biases of neurons. It acquires the

output weights by using the least-squares solution and

Moore–Penrose inverse of a general linear system. The

final result is derived by selecting the maximum output

value and its corresponding index.

Figure 2 shows the ELM network structure with a single

hidden layer. The learning phase of the ELM algorithm can

be summarized as in Algorithm 1.

In the offline phase, an ELM classifier can be trained

using the labeled activity samples. After the classifier is

deployed on a smart phone, it can be used to classify the

users’ activities in the online phase.

OSELM Algorithm

The ELM described in ‘‘Brief Description of ELM’’ section

is a batch learning algorithm. It assumes that all the data

are available for training. However, in real applications, the

training data may arrive in sections or as individual sam-

ples. Therefore, the batch ELM algorithm must be modified

so that it can deal with the online sequential problem [24].

Step 1 Given a chunk of the initial training set:

@0 ¼ fðxi; tiÞgN0

i¼1, where xi ¼ hf 1
i ; f

2
i ; . . .; f n

i i, n

is the feature number of the input data and also

the input node number of the ELM. We select the

activated function Gða; b; xÞ and hidden node

number ~N and assign random input weights a ¼
faijai 2 Rng ~N

i¼1 and biases b ¼ fbijbi 2 Rg ~N
i¼1.

The hidden layer output matrix, H0, can be

calculated using

H0 ¼

Gða1; b1; x1Þ � � � Gða ~N ; b ~N ; x1Þ
..
. . .

. ..
.

Gða1; b1; xN0
Þ � � � Gða ~N ; b ~N ; xN0

Þ

2
664

3
775

N0� ~N

:

ð1Þ

Then, the output weight b0 can be calculated

using

b0 ¼ K�1
0 HT

0 T0; ð2Þ

where K0 ¼ HT
0 H0, and T0 ¼ ½t1; t2; . . .; tN0

�T.

Step 2 Suppose that we are given another chunk of data

@1 ¼ fðxi; tiÞgN0þN1

i¼N0þ1. Then, using the parameters

a; b;G; and ~N in Step 1, H1 can be calculated

using

H1¼

Gða1;b1;xN0þ1Þ � � � Gða ~N ;b ~N ;xN0þ1Þ
..
. . .

. ..
.

Gða1;b1;xN0þN1
Þ � � � Gða ~N ;b ~N ;xN0þN1

Þ

2
664

3
775

N1� ~N

:

ð3Þ

results:

K1 ¼
H0

H1

� �T
H0

H1

� �
¼ HT

0 HT
1

� � H0

H1

� �
¼ K0 þ HT

1 H1:

ð4Þ

Therefore, if we combine the datasets @0 and @1

to train the ELM, b1 can be calculated using

b1 ¼ K�1
1

H0

H1

� �T
T0

T1

� �
¼ b0 þ K�1

1 HT
1 ðT1 � H1b0Þ:

ð5Þ

As seen in Eq. (5), b1 is a function of b0;K1; and

H1, and not a function of the dataset @0. Hence,

we do not need to store the current data chunk

after b has been calculated.

Class Incremental Extreme Learning Machine

As mentioned in ‘‘OSELM Algorithm’’ section, the

OSELM model can be incrementally updated using indi-

vidual samples or data chunks. The labels of the

Fig. 2 ELM network structure

Cogn Comput (2014) 6:423–431 425

123



incremental samples are the same as those in the training

dataset. However, in reality, the user may form some new

activities that the model needs to recognize. This case

cannot be solved by OSELM. To address this problem, we

extended OSELM so that it can be incrementally trained.

Suppose that we have a given labeled dataset S ¼
fðxðiÞs Þ; ðyðiÞs Þji ¼ 1; 2; . . .;N0g and a new dataset

D ¼ fðxðiÞd Þ; ðy
ðiÞ
d Þji ¼ 1; 2; . . .;N1g. Without loss of gener-

ality, we can simplify the description by assuming that

there is only one new class label in D, and it is

‘1þmaxfðyðiÞs Þji ¼ 1; 2; . . .;N0g’.
According to the ELM algorithm, after the training

phase on the dataset of S is completed, the output weight

can be calculated using

b0 ¼ K�1
0 HT

0 T0; ð6Þ

where

H0 ¼
Gða1; b1; x

ð1Þ
s Þ � � � Gða ~N ; b ~N ; x

ð1Þ
s Þ

..

. . .
. ..

.

Gða1; b1; x
ðN0Þ
s Þ � � � Gða ~N ; b ~N ; x

ðN0Þ
s Þ

2
664

3
775

N0� ~N

;

ð7Þ

T0 ¼

tT
1

..

.

tT
N0

2
664

3
775

N0�m

; ð8Þ

m is the number of sample classes in dataset S, and

K0 ¼ HT
0 H0: ð9Þ

From the dataset of D and the function of the ELM algo-

rithm, H1 can be calculated using

H1 ¼
Gða1; b1; x

ð1Þ
d Þ � � � Gða ~N ; b ~N ; x

ð1Þ
d Þ

..

. . .
. ..

.

Gða1; b1; x
ðN1Þ
d Þ � � � Gða ~N ; b ~N ; x

ðN1Þ
d Þ

2
664

3
775

N1� ~N

:

ð10Þ

The labels of the samples in D can be represented by a

multidimensional vector of dimension mþ 1, where m is

the column number of T0.

T1 ¼
0 � � � 0 1

..

. . .
. ..

. ..
.

0 � � � 0 1

2
64

3
75

N1�ðmþ1Þ

: ð11Þ

If we combine datasets S and D to train ELM, b1 can be

calculated using

b1 ¼ K�1
1

H0

H1

� �T
T0 �M

T1

� �
; ð12Þ

where

K1 ¼
H0

H1

� �T
H0

H1

� �
¼ K0 þ HT

1 H1;

M ¼
1 � � � 0 0

..

. . .
. ..

.
0

0 � � � 1 0

2
64

3
75

m�ðmþ1Þ

:

M is a transform matrix that adds one column of zeroes on

the right of matrix T0. Therefore, T0 �M and T1 have the

same number of columns.

Using Eq. (12) we can derive another form of b1:

b1 ¼ b0M þ K�1
1 HT

1 ðT1 � H1b0MÞ
¼ b0M þ ðK0 þ HT

1 H1Þ�1
HT

1 ðT1 � H1b0MÞ:
ð13Þ

It can be seen from Eq. (13) that b1 can be calculated

without the dataset S and can be achieved through incre-

mental training. By introducing matrix M, we have chan-

ged the ELM structure. This means that we have added one

or more output neurons to the initial ELM structure.

Experiments

Class incremental learning has many applications in the

activity recognition field. We incrementally learn to per-

form motion activities as we mature. Thus, we have used a

class incremental extreme learning machine to enable the

existing model to distinguish new activities using the small

amount of storage and computing power available on a

smart phone.

Sample Preparation

We have considered three benchmark problems for these

classification experiments: activity data from our research

group and two datasets (image segments and satellite

images) from UCI.1 We used the activity dataset to show

that CIELM performs well for the activity recognition

problem. The experiments on the UCI datasets demon-

strated that CIELM can be used in other applications.

Activity Data Preparation

In our experiments, Nokia N95 8GB mobile phones were used to

collect accelerometer data. An activity database was built from

the collected data. There were 12 participants and 5 activities

1 UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/.

426 Cogn Comput (2014) 6:423–431

123

http://archive.ics.uci.edu/ml/


(standing still, walking, running, and going upstairs or down-

stairs). The data collection procedure was designed as follows:

1. Standing still for at least 1 min at the first floor of a

14-story building.

2. Climbing up the stairs for at least eight stories.

3. Standing still for at least 1 min.

4. Climbing downstairs to the first floor.

5. Standing still for at least 1 min.

6. Walking outside of the building to a playground.

7. Standing still for at least 1 min.

8. Running for at least 3 min.

9. Standing still for at least 1 min.

The N95 phone collected the data while in the subject’s right

trouser pocket. A sliding window with a 50 % overlap was

used to extract the features. The sampling frequency of the

N95 accelerometer sensor was set to approximately 32 Hz

using the Nokia accelerometers plug-in API. Our chosen

window size was two seconds, and the overlap time was one

second. Thus, a complete activity could be included in the

window. Previous work has demonstrated that feature

extraction using windows with 50 % overlaps was successful

[25].

An accelerometer detects changes in capacitance and

transforms them into an analog output voltage that is pro-

portional to acceleration. For a triaxial accelerometer, the

output voltages can be mapped into acceleration along three

axes, ax; ay; az. As ax; ay; az are the orthogonal decomposi-

tions of real acceleration, the magnitude of the synthesized

acceleration is a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

x þ a2
y þ a2

z

q
[19], where a is the

magnitude of the real acceleration with no directional infor-

mation. Thus, the acceleration magnitude-based activity rec-

ognition model is orientation-independent.

Using a data series of acceleration magnitude, 16 statistical

features [26] were extracted from a sliding window of 64

samples with a 50 % overlap between consecutive windows.

These features were maximum, minimum, mean, standard

deviation, mode, mean-crossing rate, range, signal magnitude

area, four amplitude statistical features, and four shape sta-

tistical features of the power spectral density (PSD), as in [19,

27]. Additionally, using an FFT transformation of the series of

acceleration magnitudes, all frequency components from 1Hz

to 64Hz were extracted and added to the feature vector (a total

of 80 features). To eliminate scaling effects, all the features

were normalized using the z-score normalization algorithm.

The numbers of samples for each activity are listed in

Table 1.

UCI Dataset Preparation

The image segmentation problem consists of a database of

images drawn randomly from seven outdoor images. It

consists of 2,310 regions of 3� 3 pixels. The goal is

classify each region as belonging to one of the seven

classes using 19 extracted attributes.

The satellite image problem consists of a database of

images generated from a landsat multispectral scanner. One

frame of landsat multispectral scanner imagery consists of

four digital images of the same scene in four different

spectral bands. The database is a (tiny) subarea of a scene,

consisting of 82� 100 pixels. Each image in the database

corresponds to a region of 3� 3 pixels. The aim is to

classify the central pixel in a region into one of six cate-

gories (red soil, cotton crop, gray soil, damp gray soil, soil

with vegetation stubble, and very damp gray soil) using 36

spectral values for each region.

The datasets used in our experiments are described in

Table 2. Before being used, they were normalized using the

z-score method.

Experimental Results

We evaluated the CIELM’s performance using the datasets

described in Tables 1 and 2. We used four evaluations:

model selection, CIELM’s performance according to the

incremental data chunk size, stability test for activity rec-

ognition, and a performance comparison between batch

learning and the CIELM. All the simulations were imple-

mented in MATLAB2009a running on an ordinary PC with

2.6 GHz CPU. The ELM source code was downloaded

from Professor Huang’s homepage.2 We used the sigmoid

activation function.

Table 1 Activity samples

Name Label Number of samples

Still 1 5,256

Walking 2 4,012

Running 3 3,756

Upstairs 4 1,656

Downstairs 5 1,611

Table 2 UCI datasets

Dataset ] Attributes ] Classes ] Data

Image segment 19 7 2,310

Satellite image 36 6 6,435

2 Source codes and some references for ELM can be found at www.

ntu.edu.sg/home/egbhuang.

Cogn Comput (2014) 6:423–431 427

123

http://www.ntu.edu.sg/home/egbhuang
http://www.ntu.edu.sg/home/egbhuang


Model Selection

Model selection refers to the estimations of optimal

architecture of the network and optimal parameters of the

learning algorithm. It is problem-specific, and must be

predetermined. For the CIELM, we only need to determine

the optimal number of hidden nodes.

We used the training and validation methods to select

the optimal number of hidden nodes. The total dataset was

divided into two equal subsets such that the samples of

each activity were divided into two equal subsets. We

varied the number of hidden nodes between 1 and 300. The

performance corresponding to each number is illustrated in

Fig. 3.

As shown in Fig. 3, the recognition accuracy improved

as the number of hidden nodes increased from 1 to 100. For

the activity dataset, when the number of hidden nodes was

larger than 100, the recognition accuracy remained stable

with no significant changes. The same effect can be seen

for the image segment and satellite image datasets when

the number was larger than 50. Using more hidden nodes

may achieve a high recognition accuracy, but there is an

increased risk of overfitting. To achieve a trade-off

between recognition accuracy and overfitting, we have

used 100 hidden nodes for the activity recognition problem

and 50 for the two UCI problems.

Change in CIELM’s Performance According

to Incremental Data Chunk Size

In this experiment, we evaluated CIELM’s performance

according to the incremental data chunk size. As our

activity data were collected from 12 objects, we repeated

our experiment for 12 times (one for each object). Each

trial had two steps. First, the activity data for standing still,

walking, running, and going upstairs were used to train the

model M1. Then, the going downstairs data were divided

into two sections (part_a and part_b). part_a was divided

into equal size chunks and used to incrementally update

M1. part_b was used to evaluate the new model after each

dataset was added to the model. To observe the relationship

between model performance and chunk size, we varied the

size between 1 and 50 (’’ChkSize’’ in Fig. 4). We took the

average values of the 12 trials.

Three conclusions can be made from Fig. 4. First, the

activity recognition accuracy increased with the number of

model updates, and this situation did not change with

varying chunk size. Second, a larger chunk size resulted in

a better recognition result. Third, more updates resulted in

a better recognition result.

We can conclude that when the chunk size was 50, the

model accuracy gradually increased after four update

procedures.

We repeated this experiment using the satellite image

and image segmentation datasets. The experiment results

are illustrated in Figs. 5 and 6.

For the satellite image data, when the chunk size was 60,

80 % accuracy was achieved after 5 update procedures. For

the image segmentation data, when the chunk size was 6,

90 % accuracy was achieved after 4 update procedures.

Based on the results of these three experiments, we can

conclude that the CIELM algorithm’s performance is

problem-related. To optimize the model, we should pre-

determine the chunk size and number of updates.

Stability Test

In this section, we evaluated the stability of the CIELM.

We wished to determine whether it is new class-indepen-

dent. We wish to make each of the five kinds of activities

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Hidden Nodes

A
cc

ur
ac

y

activity dataset
image segment data
satimage data

Fig. 3 Model selection

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Times of Updating the Model (Activity DataSet)

A
cc

ur
ac

y

ChkSize=10
ChkSize=20
ChkSize=30
ChkSize=40
ChkSize=50

Fig. 4 CIELM’s performance using the activity data

428 Cogn Comput (2014) 6:423–431

123



(A, B, C, D, and E) a new class. Without loss of generality,

we can make A the new class. Samples of activities B, C,

D, and E were used to train the model. Samples of activity

A were divided into two parts: One part was used to

incrementally train the new model, and the other was used

to test it. For each subject, we used five trials. The process

was repeated for twelve subjects. The average results are

shown in Fig. 7.

It can be observed from Fig. 7 that the recognition

accuracy for the new class samples was more than 90 %,

regardless of the activity that was considered to be the new

class. Thus, we have demonstrated that CIELM is a per-

suasive method for activity recognition and is not sensitive

to the specific new class. When deployed on a smart mobile

terminal that has limited memory, computation, and power

resources, a personalized activity recognition model can be

achieved through incremental learning.

Batch Learning Compared with CIELM

In the following experiment, we compared the perfor-

mances of the batch learning and CIELM methods.

We can list the permutations of an activity set

Act = {Still, Walking, Running, Upstairs, Downstairs}.

For each subject, every activity permutation can be denoted

Per = {A,B,C,D,E}. Samples of the jthðj ¼ 1; 2; . . .; 5Þ
activity were divided into two equal parts. To simplify the

description, we represent them using TRj and TEj.

1. Batch learning: For every permutation, the batch learning

validation process consists of four steps. At the first step, an

ELM classifier is trained using the TR1

S
TR2 dataset and

tested using TE1

S
TE2. At the kthðk ¼ 2; 3; 4Þ step, an

ELM classifier is trained using TR1

S
TR2

S
� � �
S

TRkþ1

and tested using TE1

S
TE2

S
� � �
S

TEkþ1. The above

process is repeated for all subjects and all permutations,

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Times of Updating the Model (satimage data)

A
cc

ur
ac

y

ChkSize=10
ChkSize=20
ChkSize=40
ChkSize=50
ChkSize=60

Fig. 5 CIELM’s performance using the satellite image data

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Times of Updating the Model (image segment data)

A
cc

ur
ac

y

ChkSize=1
ChkSize=2
ChkSize=3
ChkSize=4
ChkSize=5
ChkSize=6

Fig. 6 CIELM’s performance using the image segmentation data

Fig. 7 Stability test

Fig. 8 Batch learning compared with CIELM

Cogn Comput (2014) 6:423–431 429

123



and the average is taken as the result. The results using the

batch learning method are shown in Fig. 8.

2. CIELM: As with batch learning, the incremental learning

validation process consists of four steps. At the first step,

an ELM classifier is trained using the TR1

S
TR2 dataset

and tested using TE1

S
TE2. At the kthðk ¼ 2; 3; 4Þ step,

the model trained from the ðk � 1Þth step is adapted by

our proposed incremental learning method using samples

from TRkþ1 and tested using TE1

S
TE2

S
� � �
S

TEkþ1.

The above process is repeated for all subjects and all

permutations, and the average is taken as the result. The

results of the incremental learning method are shown in

Fig. 8.

It can be seen from Fig. 8 that the batch learning and CI-

ELM methods performed similarly when new classes were

added to the model. When samples of the third activity

class were used, the accuracy decreased from more than

96 % to less than 94 %. However, when the fourth and fifth

activity classes were added, the recognition performance

decreased very slowly.

We can also see that the CIELM performs slightly worse

than the batch learning method. This is because batch

learning can learn more because it has a larger training set

than CIELM.

To evaluate the computational complexity of these two

algorithms, we considered the peak memory and total

execution time. We used a profile viewer to investigate the

two methods. The related peak memory and total execution

times are listed in Table 3.

As seen in Table 3, the CIELM algorithm uses less memory

and consumes less CPU time than the batch learning

algorithm.

Conclusion and Future Work

This paper proposed the CIELM algorithm to address the

class-related incremental learning problem. Our empirical

evaluations have shown the following. First, the CIELM

model can be used to learn new classes, changing the structure

of an existing ELM model by adding output nodes to the

network. Second, the number of added samples can affect the

performance of the classifier. Third, CIELM’s performance is

slightly worse than the batch learning method, which indicates

that there is a trade-off between the optimal model and

restricted resources.

Acknowledgments This work was supported in part by the Natural

Science Foundation of China (61070110, 90820303), Beijing Natural

Science Foundation (4112056, 4144085), Open Project of Beijing

Key Laboratory of Mobile Computing and Pervasive Device,

National Science and Technology Major Project (2012ZX07205-005),

and Scientific and Technological Project of He’nan Province (No.

132102310258).

References

1. Taylor JG. Cognitive computation. Cogn Comput. 2009;1(1):4–16.

2. Cambria E, Hussain A. Sentic computing: techniques, tools, and

applications. Springerbriefs in cognitive computation. Dordrecht:

springer; 2012.

3. Wöllmer M, Eyben F, Graves A, Schuller B, Rigoll G. Bidirectional

LSTM networks for context-sensitive keyword detection in a cog-

nitive virtual agent framework. Cogn Comput. 2010;2(3):180–90.

4. Mital P, Smith T, Hill R, Henderson J. Clustering of gaze during

dynamic scene viewing is predicted by motion. Cogn Comput.

2011;3(1):5–24.

5. Wang QF, Cambria E, Liu CL, Hussain A. Common sense

knowledge for handwritten Chinese recognition. Cogn Comput.

2013;5(2):234–42.

6. Roggen D, Magnenat S, Waibel M, Troster G. Designing and

sharing activity-recognition systems across platforms. IEEE

Robot Autom Mag. 2011;18:83–95.

7. Chen YQ, Chen ZY, Liu JF, Hu Derek H, Yang Q. Surrounding

context and episode awareness using dynamic Bluetooth data.

Pittsburgh, PA: UbiComp; 2012. p. 629–630.

8. Chen ZY, Chen YQ, Wang SQ, Liu JF, Gao XY, Campbell AT.

Inferring social contextual behavior from Bluetooth traces. Zur-

ich, Switzerland: UbiComp; 2013. p. 267–270.

9. Brajdic A, Harle R. Walk detection and step counting on

unconstrained smartphones. In: UbiComp’1; 2013. p. 225–234.

10. Chen ZY, Lin M, Chen FL, Lane ND, Cardone G, Wang R, Li

TX, Chen YQ, Choudhury T, Campbell AT. Unobtrusive sleep

monitoring using smartphones. In: PervasiveHealth’ 2013,

p. 145–152.

11. Lane ND, Xu Y, Lu H, Hu SH, Choudhury T, Campbell AT.

Enabling large-scale human activity inference on smartphones

using community similarity. Networks (CSN). UbiComp; 2011,

p. 355–364.

12. Lane ND, Xu Y, Lu H, Eisenmany SB, Choudhury T, Campbell

AT. Cooperative communities (CoCo): exploiting social net-

works for large-scale modeling of human behavior. IEEE Per-

vasive Mag. 2011;10(4):45–53.

13. Chen S, Lach J, Amft O, Altini M, Penders J. Unsupervised

activity clustering to estimate energy expenditure with a single

body sensor. In: BSN’13; 2013.

14. Stanford V. Wearable computing goes live in industry. IEEE

Pervasive Comput Mag. 2002;1(4):14–9.

15. Nachman L, Baxi A, Bhattacharya S, Darera V, Deshpande P,

Kodalapura N, Mageshkumar V, Rath S, Shahabdeen J, Acharya

R. Jog falls: a pervasive healthcare platform for diabetes man-

agement. In: Proceedings of the pervasive; 2010. p. 94–111.

16. Ravi N, Dandekar N, Mysore P, Littman ML. Activity recogni-

tion from accelerometer data. In: Proceedings of AAAI, 2005.

pp. 1541–1546.

17. Ward Jamie A, Lukowicz Paul, Gellersen Hans W. Performance

metrics for activity recognition. ACM Trans Intell Syst Technol

2011;2(1). doi:10.1145/1889681.1889687.

18. Chen YQ, Qi J, Sun Z, Ning Q. Mining user goals for indoor

location based services with low energy and high qos. Comput

Intell. 2010;26(3):318–36.

Table 3 Computational complexity comparisons

Method Peak_Memory (KB) Total_Time (s)

Batch learning 67,780.00 17.062

CIELM 37,108.00 3.016

430 Cogn Comput (2014) 6:423–431

123

http://dx.doi.org/10.1145/1889681.1889687


19. Chen YQ, Zhao ZT, Wang SQ, Chen ZY. Extreme learning

machine based device displacement free activity recognition

model. Soft Comput. 2012;16(9):1617–25.

20. Zhao ZT, Chen YQ, Liu JF, Shen ZQ, Liu MJ. Cross-people

mobile-phone based activity recognition. In: Proceedings of the

international joint conference on artificial intelligence(IJ-

CAI2011); 2011. Barcelona, Spain, July 16–22.

21. Huang GB, Saratchandran P, Sundararajan N. An efficient

sequential learning algorithm for growing and pruning RBF

(GAP-RBF) networks. IEEE Trans Syst Man Cybern B Cybern.

2004;34(6):2284–92.

22. Carpenter GA, Grossberg S, Rosen D. Fuzzy ART: fast stable

learning and categorization of analog patterns by an adaptive

resonance system. Neural Netw. 1991;4:759–71.

23. Platt J. A resource-allocating network for function interpolation.

Neural Comput. 1991;3:213–25.

24. Liang NY, Huang GB, Saratchandran P, Sundararajan N. A fast

and accurate online sequential learning algorithm for feedforward

networks. IEEE Trans Neural Netw. 2006;17:1411–23.

25. Bao L, Intille S. Activity recognition from user annotated

acceleration data. In: Proceedings of the 2nd international con-

ference on pervasive computing; 2004. pp. 1–17.

26. Figo D, Diniz PC, Ferreira DR, Cardoso JMP. Preprocessing

techniques for context recognition from accelerometer data. Pers

Ubiquit Comput. 2010;14:645–62.

27. Chen ZY, Zhao ZT, Wang SQ, Shen ZQ, Chen YQ. Online

sequential ELM based transfer learning for transportation mode

recognition. In: The 6th IEEE international conference on

cybernetics and intelligent systems (CIS 2013); 2013. Manila,

Philippines.

Cogn Comput (2014) 6:423–431 431

123


	A Class Incremental Extreme Learning Machine for Activity Recognition
	Abstract
	Introduction
	The Class Incremental Extreme Learning Machine for Activity Recognition
	Brief Description of ELM
	OSELM Algorithm
	Class Incremental Extreme Learning Machine

	Experiments
	Sample Preparation
	Activity Data Preparation
	UCI Dataset Preparation

	Experimental Results
	Model Selection
	Change in CIELM’s Performance According to Incremental Data Chunk Size
	Stability Test
	Batch Learning Compared with CIELM


	Conclusion and Future Work
	Acknowledgments
	References


