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Abstract This paper proposes an efficient finger vein

recognition system, in which a variant of the original

ensemble extreme learning machine (ELM) called the

feature component-based ELMs (FC-ELMs) designed to

utilize the characteristics of the features, is introduced to

improve the recognition accuracy and stability and to

substantially reduce the number of hidden nodes. For fea-

ture extraction, an explicit guided filter is proposed to

extract the eight block-based directional features from the

high-quality finger vein contours obtained from noisy, non-

uniform, low-contrast finger vein images without intro-

ducing any segmentation process. An FC-ELMs consist of

eight single ELMs, each trained with a block feature with a

pre-defined direction to enhance the robustness against

variation of the finger vein images, and an output layer to

combine the outputs of the eight ELMs. For the structured

training of the vein patterns, the FC-ELMs are designed to

first train small differences between patterns with the same

angle and then to aggregate the differences at the output

layer. Each ELM can easily learn lower-complexity pat-

terns with a smaller network and the matching accuracy

can also be improved, due to the less complex boundaries

required for each ELM. We also designed the ensemble

FC-ELMs to provide the matching system with stability.

For the dataset considered, the experimental results show

that the proposed system is able to generate clearer vein

contours and has good matching performance with an

accuracy of 99.53 % and speed of 0.87 ms per image.

Keywords Extreme learning machine � Ensemble �
Feature component � Finger vein recognition � Guided

directional filter

Introduction

Recently, a newly emerging biometrics technology based

on human finger veins has attracted more and more atten-

tion, since the finger veins are located internally within the

living body, thus providing a recognition system with high

accuracy and immunity to forgery and the interference

from the outer skin (e.g., from skin disease, humidity,

dirtiness, etc.).

Finger vein systems have advantages of low cost, easy

collection with contactless operation, and small devices.

Finger vein patterns are viewable with reflected light due to

the peak absorption of infrared illumination by oxygenated

and de-oxygenated hemoglobin in the blood relative to the

surrounding flesh at specific frequencies [1]. In practice,

however, finger vein images suffer from a specific selectivity

in imaging modes, or changes in the physical conditions and
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blood flow, which make them become unstable and have low

contrast, or cause the veins to have various apparent thick-

nesses and brightness, as shown in Fig. 1. This makes it

difficult to achieve reliable and accurate finger vein recog-

nition and causes high generalization requirements for fea-

ture extraction and matching algorithms.

Vein extraction has been widely researched, usually

based on the intensity characteristics in the cross-sectional

profiles, since a vein pattern point is darker than its sur-

roundings. Miura et al. proposed repeated line tracking [1]

and the maximum curvature detection method [2, 3] based

on the cross-sectional profiles. Hoover et al. [4, 5] proposed

an approximated Gaussian-shaped model to simulate the

profile curve. Although these methods can extract the veins

from a low-contrast image, they are sharply affected by the

temporal change of the widths of the veins. Intensity

thresholding-based methods [6] are easily affected by the

image brightness due to the threshold tuning problem.

In the matching phase, the similarities between the

registered image and testing image are calculated based on

the certain distance [7], chi-square distance [8], or machine

learning methods. Over the past few decades, lots of cog-

nitive-inspired computation works are contributed for the

image processing and pattern recognition [9–12], including

neural networks [13–15], genetic algorithms, support vec-

tor machine [16], and a new type of feed-forward classifier,

extreme learning machines (ELM) [17–20]. The ELM has

recently attracted more and more attention as an emergent

technology that overcomes some of the challenges faced by

other classifiers. The ELM works well for generalized

single hidden layer feed-forward networks (SLFNs). The

essence of the ELM is that the hidden layer of SLFNs need

not be tuned. Compared with the traditional classifiers, the

ELM provides better generalization performance at a much

faster learning speed with less human intervention [21–24].

In this paper, we propose a novel finger vein recognition

system that is more robust to the variation of the external

factors such as lighting and user positioning, and shows

improved stability, complexity, and recognition accuracy,

thus rendering the system more practical in real-world

applications and enabling it to deal with the increasing size

of the datasets. For feature extraction, a novel explicit gui-

ded directional filter is proposed to obtain high-quality fin-

ger vein contours from noisy, non-uniform, low-contrast

images without introducing any segmentation process. This

filter enhances an input image with the help of a supervisor

image that instructs the filter to preserve the vein patterns

and reduce the impacts of the background, such as haze and

illumination. After the guided directional filter, the veins are

sufficiently magnified to directly extract the average abso-

lute deviation (AAD) features, which are the strengths of the

directional block information with eight different angles,

even from images with thin, vague ridges and non-uniform

backgrounds. Finally, a variant of the original ensemble

ELM called the feature component-based ELMs (FC-ELMs)

is introduced. FC-ELMs are designed to utilize the charac-

teristics of the AAD features; and improve the recognition

accuracy, speed, and stable generalization for large datasets;

and substantially reduce the number of hidden units.

Related Study: Ensemble Extreme Learning Machine

The ELM algorithm was first proposed by Huang et al. [21,

22, 25] based on the single-layer feed-forward network

(SLFN). The main concept of the ELM is that hidden node

parameters are randomly generated without tuning. Con-

sider a set of N arbitrary distinct samples ðxi; tiÞ, where

xi ¼ ½xi1; xi2; . . .; xin�T 2 Rn and ti ¼ ½ti1; ti2; . . .; tim�T 2
Rm; xi is an n� 1 input vector and ti is an m� 1 target

vector. For the given training samples

ðxi; tiÞf gN
i¼12 Rn � Rm, the output of an SLFN with L hid-

den nodes can be represented by

fSðxjÞ ¼
XL

i¼1

biKðai; bi; xjÞ ¼ tj; j ¼ 1; . . .;N ð1Þ

where ai and bi are the hidden node parameters, which

could be randomly generated. Kðai; bi; xjÞ is an activation

function and bi is the weight connecting the ith hidden node

to the output nodes, which can be written compactly as:

Hb ¼ T ð2Þ

H is called the hidden layer output matrix of the network.

Given the randomly generated hidden node parameters

ðai; biÞ and the training inputs xi, the hidden layer output

matrix H can be computed simply.

Hða1; . . .; aL; b1; . . .; bL; x1; . . .; xNÞ

¼

Kða1; b1; x1Þ � � � KðaL; bL; x1Þ
..
.

� � � ..
.

Kða1; b1; xNÞ � � � KðaL; bL; xNÞ

2
664

3
775

N�L

b ¼ ðb1; . . .; bLÞT and T ¼ ðt1; . . .; tLÞT

ð3Þ

Therefore, training the SLFNs simply amounts to solving

the linear system of output weights b. With the computed

H and given output T , the output weight b is estimated as:

b ¼ HyT ð4Þ

where Hy is the Moore–Penrose generalized inverse of the

hidden layer output matrix H. There are several methods of

calculating the Moore–Penrose generalized inverse of H,

such as the SVD-based method. The single ELM network

shown in Fig. 2a is widely used for real-time applications

due to its simple steps and very high speed.
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Hansen and Salamon [26] proposed that the single net-

work performance can be improved by using an ensemble

of neural networks with a plurality consensus scheme. An

integration of several ELMs connected in parallel was first

proposed by Lan et al. [27]. It was confirmed that the

method worked well for both stationary and non-stationary

time series prediction [28, 29] and sales prediction [30]

with better generalization performance.

The average of the ELM outputs was used as the final

decision. Assume that the output of each ELM network is

f
ðjÞ
s ðXÞ; j ¼ 1; . . .;M. The final output of the ensemble

ELMs (E-ELMs) shown in Fig. 2b can be represented as:

fEðXÞ ¼
XM

j¼1

wj � f ðjÞs ðXÞ; wj ¼
1

M
ð5Þ

where fEðXÞ is the output of the whole system with input X.

We expect the ensemble ELM to work better than the

single ELM, because the randomly generated parameters

make each ELM network in the ensemble distinct. The

variance of the ensemble network is lower than the average

variance of all of the single networks. Let f ðxÞ denote the

true output of the predicted input and bfiðxÞ be the estimated

value of network i. Then, the error eiðxÞ between the pre-

dicted bfiðxÞ and true output f ðxÞ is expected to be at a

minimum:

eiðxÞ ¼ bfiðxÞ � f ðxÞ
���

��� ð6Þ

Then, the expected square error of a single network

becomes

E½eiðxÞ2� ¼ E bfiðxÞ � f ðxÞ
n o2
� �

ð7Þ

The average error made by M networks is given by

Eavg ¼
1

M

XM

i¼1

E½eiðxÞ2� ð8Þ

Similarly, the expected error of the ensemble is

given by

Eens ¼ E
1

M

XM

i¼1

bfiðxÞ � f ðxÞ
( )2
2
4

3
5 ¼ E

1

M

XM

i¼1

eiðxÞ
( )2
2
4

3
5

ð9Þ

If the errors eiðxÞ are nonzero, then

Eens ¼
1

M
Eavg ð10Þ

It can be shown that the ensemble ELM network produces

fewer errors than M single ELM (S-ELM). Since each of

the M S-ELM networks has different adaptabilities to the

new data, they can overcome the problem of networks that

cannot adapt well to the new data.

Proposed Finger Vein Recognition System

As shown in Fig. 3, the proposed finger vein recognition

system consists of two modules: a feature extraction

module and matching module based on the ELM. The

Fig. 1 Finger vein images with diverse qualities: a low-quality images affected by illumination and low contrast and b high-quality images

448 Cogn Comput (2014) 6:446–461
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feature extraction module consists of three main steps: pre-

processing, vein contour extraction, and AAD feature

extraction. The ROI image with a pre-defined smaller size

can speed up the overall feature extraction process. Vein

contour extraction using a guided directional filter extracts

high-quality vein contours in eight directions. Instead of

pixel-based features, the AAD strengthens the direction

information by extracting features on non-overlapping

blocks. The matching module was implemented using the

ensemble ELM network, which consists of eight small

ELM, each trained with the AAD sub-features with a pre-

defined angle, and an output layer to combine the outputs

of the eight ELMs.

Pre-processing

It is necessary to determine a reliable region of interest

(ROI) in a finger vein image with a pre-defined size but

adjustable position and rotation, due to the user’s informal

placement, distortion, and rotation. As the finger target is

brighter than the surrounding background pixels, convex

structure is formed at the profiles of the finger, which could

be detected by the open top-hat filter defined in Eq. (11).

F � B represents the opening morphology operation with

the structure B, which is the disk structure with a size of 5.

OTH tð Þ ¼ ðF � F � BÞðtÞ ð11Þ

Fig. 2 Architecture of extreme learning machine classier: a single ELM classifier and b ensemble ELM classifier

Fig. 3 Procedures of the proposed finger vein recognition system
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Since the finger profile can be approximated as a line, the

Hough transform is used to detect the positions and angles of

the finger lines, since it is tolerant of gaps in the edge

descriptions and is relatively unaffected by image noise [31].

The group of edge points x1; y1ð Þ; x2; y2ð Þ; . . .; xk; ykð Þf g is

transformed into a sinusoidal curve in the plane

h; qð Þ; q > 0; 0 6 h 6 pð Þ defined by:

q ¼ xi cos hþ yi sin h i ¼ 1; 2; . . .; kð Þ ð12Þ

The accumulator cells that lie along the curve are incre-

mented, and the resulting peak in the accumulator array

provides strong evidence that a corresponding straight line

exists in the image. As shown in Fig. 4c, two peaks

q1; h1ð Þ; q2; h2ð Þ are detected corresponding to the two

horizontal finger contour lines. When considering the fin-

ger curvature itself, a simple rotation correction will

involve a rotation of ðh1 þ h2Þ=2 degrees when two

detected peaks satisfy the condition:

ðh1 � pÞ þ ðh2 � pÞ > p
18

ð13Þ

Finally, the ROI is centered at the point ðCx;CyÞ ¼
ðwidth=2; ðq1 þ q2Þ=2Þ and cropped with a size of [256,

96] for the rotation-corrected images, as shown in Fig. 4d.

Guided Directional Filter for Vein Contour Extraction

Since finger vein images are not always of high quality,

due to the varying tissues and bones, or uneven illumina-

tion, an efficient enhancement method is necessary to

recover those influencing factors that make the veins

appear different in terms of their thickness and brightness

at each acquisition. As the finger vein network is composed

of a series of ridges in a particular orientation, a properly

tuned directional filter, such as the even symmetric Gabor

filter [32], has proved to provide excellent performance for

ridge extraction. A guided directional filter is constructed

using an even symmetric Gabor filter and the guided filter

[33]. Using a supervisor image that can be the input image

itself or another image, the guided filter instructs the filter

to preserve the vein pattern and reduce the impact of the

background.

The key assumption of the guided filter is the existence

of a local linear model between the supervisor image S and

the filtered image. In each window, wk centered at pixel k,

and the guided image Gu is linearly transformed by S with

the coefficients ðak; bkÞ, which can be represented as:

Gui ¼ akSi þ bk; i 2 wk ð14Þ

This local linear model ensures that Gu has an edge only if

S has an edge, because OGu ¼ aOS. This has been proven

to be useful in image matting, image super-resolution, and

haze removal [33]. The relationship between S; I and Gu

can be described in the form of image filtering as follows:

GuiðI; S;w; eÞ ¼
X

j

WijðS;w; eÞIi ð15Þ

The kernel weight can be explicitly expressed by:

WijðS;w; eÞ ¼
1

wj j2
X

k:ði;jÞ2wk

ð1þ ðSi � lkÞðSj � lkÞ
r2

k þ e
Þ ð16Þ

where lk and r2
k are the mean and variance values of

window k, respectively. It can be proven that the kernel

weights
P

j

Wij Sð Þ are equal to 1 without any extra nor-

malization. Then, the guided directional filter can be rep-

resented by the following general form:

GðI; f0; hk; dÞ ¼ GaðI; f0; hk; dÞ � GuðI; S;w; eÞ ð17Þ

where,

GaðI; f0; hk; dÞ ¼ exp � 1

2

I2
xhk
þ I2

yhk

d2

 !( )
cosð2pf0Ixhk

Þ

where;
Ixhk

Iyhk

" #
¼

cos hk sin hk

� sin hk cos hk

� �
Ix

Iy

� �

ð18Þ

where � denotes a convolution in two dimensions, while

hk ¼ kp=8, and k ¼ ð1; 2; . . .; 8Þ denote the orientation, and

Fig. 4 The procedure of pre-processing: a the captured image, b the edge image by the top-hat filter, c accumulator array obtained by Hough

transform, d finger contour line and ROI detection

450 Cogn Comput (2014) 6:446–461
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f0 is the center frequency of the Gabor filter. The bank of

guided directional filters, as shown in Fig. 7, generates

eight filtered components. Since the linear edge preserving

coefficient, ak, will decrease with increasing e in Eq. (16), e
is considered as the degree of edge preservation. As shown

in Fig. 5, the edge preservation performance is enhanced

with increasing e and window size, w.

Meanwhile, the haze removal and vein enhancement

performance vary depending on the supervisor image. A

proper supervisor image will benefit the vein extraction

process, as demonstrated in Fig. 6e–g, where the supervi-

sor image is the same as the input image in Fig. 6e, f, and

the supervisor image in Fig. 6g is the image enhanced by

the guided filter. Although Fig. 6g shows a darker and

clearer vein contour because of the use of the iteratively

enhanced supervisor image than Fig. 6e and g, it may

achieve more effective for other matching methods such as

local binary pattern-based methods. When using a direc-

tional filter for further vein extraction, much more noise is

obtained than the image in Fig. 6f, because the additional

enhancement also enhances the noise simultaneously. To

optimize the setting of the guided filter, the performance of

vein contour extraction is quantitatively evaluated by

matching performance in ‘‘Vein Contour Extraction Per-

formance’’ section. Compared with the typical enhance-

ment methods, the guided Gabor filter performed superior

accuracy when e ¼ 12; w ¼ 15, and S ¼ I.

Block-Based Average Absolute Deviation Feature

Extraction

The outputs of the guided directional filter form eight-vein

contour images are shown in Fig. 7a. The finger vein images

can be discriminated by the variation of the finger vein

contours in the eight directions. Instead of pixel-based fea-

tures, the directional filtered image is segmented with non-

overlapping blocks of size ½T1 � T2�. For instance, ð256�
96Þ=ðT1 � T2Þ features can be extracted from a normalized

Fig. 5 Enhancement

performance of the guided filter,

a input image I, b supervisor

image S, c–f enhanced images

under various w; e

Fig. 6 Performance

comparisons of vein contour

extraction based on enhanced

image obtained using: a original

image, b global histogram,

c local histogram with a block

size of [32, 16], d wavelet

normalization, e guided filter

when S ¼ I; e ¼ 0:052, and

w ¼ 15, f guided filter when

S ¼ I; e ¼ 12, and w ¼ 15,

g guided filter when S is the

enhanced image of Fig. 5f,

e ¼ 12 and w ¼ 15
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image with a size of 256� 96 based on the statistical

information. The selection of the splitting block size is

analyzed in the experimental section. Assuming that Fmn

represents the block matrix of a filter image, the statistics

based on a block (a component of F in the column m and row

n, where m ¼ 1; 2; . . .; 256=T1; n ¼ 1; 2; . . .; 96=T2) can be

computed. The AAD [34] dk
mn of the magnitudes of

GðI; f0; hk; dÞ corresponding to Fmn is calculated as:

dk
mn ¼

1

N

X

Fmn

GðI; f0; hk; d;w; eÞj j � lk
mn

�� ��

lk
mn ¼

1

N

X

Fmn

GðI; f0; hk; d;w; eÞj j

8
>>><

>>>:
ð19Þ

where N is the number of pixels in Fmn, and lk
mn is the

mean value of the magnitudes of GðI; f0; hk; dÞ in Fmn. The

feature vector for matching can be represented by:

X ¼ ½C1;C2; . . .;C8�, where,

Ck ¼

dk
11 . . . dk

1n

..

.
dk

ij
..
.

dk
m1 . . . dk

mn

2
664

3
775

t�s

k ¼ ð1; 2; . . .; 8Þ ð20Þ

Eight-dimensional AAD features X corresponding to the

eight contour images are obtained in this way as shown in

Fig. 7b when the non-overlapping block size is 16� 16.

For each normalized contour image with a size of [256,

96], 96 (½16� 6�) vectors can be extracted to match a query

image with a template.

Proposed Feature Component-Based Extreme Learning

Machines

In the face recognition system, the facial components

features derived from the eyes, nose, and mouth can be

separately extracted, while they are batched as one feature

set for recognition [35]. For the finger vein recognition, the

global feature is more highly sensitive to image variations

caused by user operation or environmental conditions, such

as finger rotation, translation, or illumination. In contrast to

general recognition systems based on structural component

features, which are extracted based on the local position or

properties of the objects, the proposed recognition system,

called feature component-based ELMs (FC-ELMs), selects

the feature components from the global features direc-

tionally, since the veins are composed of a series of

directional information.

In the finger vein recognition system, based on the

extracted eight component features, eight S-ELM networks

are constructed in a parallel manner, as shown in Fig. 8.

The parallel recognition systems based on the selected

independent feature components are linearly combined for

the final recognition decision. The eight directional com-

ponents in this paper, called C1; C2, ..., C8, are related to

the directional filter at 0�; 22:5�; . . .; 157:5�, respectively.

For each of the eight directional components, 96 AAD

features are extracted with the selected block size of

16� 16. One of the eight components Ck from the total

feature vector sets is assigned as the input for each S-ELM

network. Thus, the feature size of the each S-ELM network

is decreased to 1/8 of the feature vectors in S-ELM and

E-ELM models. The output of the FC-ELM model is

defined as follows:

fcðXÞ ¼
X8

k¼1

wk � f ðCkÞ; k ¼ 1; 2; . . .; 8 ð21Þ

where k denotes the kth component in the eight directions.

Although each department will run independently, the

success of the project (fcðXÞ) is based on the proper

Fig. 7 Feature extraction

results: a vein contour features

on the eight directions, b block

(½16� 16�)-based average

absolute deviation features

452 Cogn Comput (2014) 6:446–461
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assignment (the component Ck), the efficiency of each

department (the performance of f ðCkÞ), and the department

cooperation between them (the adaptive weight wk). To

ensure the matching performance of the recognition sys-

tem, the principle employed for feature component

extraction is that each component has sufficient uniqueness

for recognition and robustness for the user operation or

illumination.

With the component correlation analysis, the proper

weight assignment to the component features will improve

their cooperation. An adaptive weights method is proposed

with the analysis of the independence and correlation of the

eight components based on the following two factors:

1. Not only the AAD features but also the component

distribution of each image will contribute to the

matching.

2. Those components with high confidence are assigned

larger weights to decrease the matching error.

Assuming that both the fingerprint and finger vein image

are convoluted with the proposed guided directional filter,

the fingerprint energy will be spread almost equally in each

direction, since the fingerprint ridges are connected in the

form of a circle. However, instead of the approximate

uniform distribution, the finger vein energy of the eight

components will behave more like a Gaussian distribution.

The main blood vessels, such as the main branches, flow

from one side to another in the vertical direction and form

an energy peak. The minor vessels exhibit more energy

degeneration than the main vessels, which are connected to

the main vessels randomly and less of the energy is

focused. The energy distribution in the eight directions for

the finger vein is shown in Fig. 9. The energy of each

component Ek is defined in Eq. (22).

Ek ¼
X

x;y

ð255� Gðx; y; kÞÞ2 ð22Þ

where Gðx; y; kÞ is the intensity value for pixel ðx; yÞ in the

kth filtered image. The dark vein contour with intensity

value 0 has the highest energy. The weights Wk for FC-

ELM are given inversely that a larger energy component

will have a smaller weight.

Wk ¼
1

n� 1
� 1� EkP

k¼1;2;...;n Ek

 !
ð23Þ

When the input features are the same, it was shown by

Eq. (10) that the ensemble ELM networks could decrease

the square error. Although the input features of the feature

component vary, the single component test demonstrated

that the matching accuracy of each component, which is

more than 94 %, is sufficient. In the single component test,

Component1 to Component8 are evaluated based on the

basic ELM network under the dataset [3, 3] for five trials.

The average training and testing results are shown in

Fig. 10 with the tuning of the hidden neurons. We found

that the components in 0�; 22:5�; 135�, and 157:5� per-

formed better than the components in 45�; 67:5�; 90�, and

112:5�. In other words, the major vein contributed less to

the matching than the minor vein, since most of the vein

image contains the major vein, thus decreasing the

uniqueness of the major vein. This also satisfies the

Shannon entropy theory, which can be approximately

defined as the degree of disorder or uncertainty.

To analyze the correlation of the directional compo-

nents, leave-one-out tests were also performed, as shown in

Fig. 11. The matching results for Componenti mean the

matching based on all of the components except for

Componenti. The results show that all of the components

contribute to the matching, and the matching performance

will be degraded when leaving out any of the component.

Component1 contributed the most, since the matching

Fig. 8 Overview of the finger vein recognition system based on the

proposed FC-ELM network

Fig. 9 Energy distribution of the dataset on the eight directional

components

Cogn Comput (2014) 6:446–461 453

123



performance is seriously degraded when it is deleted. To

evaluate the feature stability, the variances of six images

per individual were computed for both the eight single

component features and the global features shown in

Fig. 12. All of the component features have smaller vari-

ances than the global features, which means that the sta-

bility and robustness of the feature space are increased. The

stabilities of Component1; Component2; Component5, and

Component8 are improved by 20 % compared with the

global features.

The selected component features have better sufficient

accuracy for matching and higher stability than the global

features. In addition, similar to the ensemble ELM net-

works, with the randomly generated nodes for the eight

component features, the FC-ELM networks can improve its

stability to a leave comparable to that of the E-ELM

(M ¼ 10) network, as shown in ‘‘Performance of S-ELM,

TER, E-ELM, FC-ELM, and EC-ELM’’ section.

Proposed Ensemble Components-Based ELM

Compared with the ensemble ELM model, the proposed

feature component-based ELM model is much smaller,

since the size of the input feature, the number of hidden

neurons, and numbers of S-ELM networks are all

decreased substantially. To combine the advantage of the

ensemble ELM model and component-based ELM model,

we propose the ensemble component-based ELM network

(EC-ELM), as shown in Fig. 13, in which the average of

the FC-ELM outputs is used as the final decision.

Assuming that the output of each FC-ELM network is

f
ðjÞ
c ðXÞ; j ¼ 1; . . .;M, the final output of the EC-ELMs,

fECðXÞ, can be represented as:

fECðXÞ ¼
XM

j¼1

wj � f ðjÞc ðXÞ where; wj ¼
1

M
ð24Þ

where fECðXÞ is the output of the whole system with input

X. The scale of the proposed EC-ELM model is smaller

Fig. 10 Matching performance of the eight single components

Fig. 11 Matching performance of the leave-one-component-out test

Fig. 12 Feature variance comparisons for the component features and

global features

454 Cogn Comput (2014) 6:446–461

123



than that of the ensemble ELM model in Fig. 2b, since the

scale of each FC-ELM module is larger than each S-ELM

module, but the number of modules, M, which participate

in an ensemble operation is much smaller than in the

ensemble ELM.

Experimental Results

Dataset

The datasets mainly used in the study is a public finger vein

dataset, including 106 individuals. The Group of Machine

Learning and Applications at Shandong University

(SDUMLA) set up the homologous multi-modal traits

dataset [36], which consists of face images, finger vein

images, gait videos, iris images, and fingerprint images.

Each individual was asked to provide images of the index

finger, middle finger, and ring finger of both hands, and the

collection for each of the six fingers is repeated six times to

obtain thirty-six finger vein images. The finger vein dataset

is composed of 3,816 images with a size of 320� 240 pixels.

To evaluate the effect of the proposed method FC-ELMs

and EC-ELMs, a new finger vein dataset including 1,000

images constructed by the group of Multi-Media Lab of

Chonbuk National University (MMCBNU) is added for the

evaluation in ‘‘Performance of S-ELM, TER, E-ELM, FC-

ELM, and EC-ELM’’ section. The finger vein dataset is

composed of finger images from 100 individuals, and each

finger image is repeated ten times.

Experimental Protocol

Due to the random settings within the hidden neurons of

ELM classifier, as well as the statistical evidence, we use

ten runs of tenfold stratified cross-validation for all final

accuracy results. Two types of training and testing sets, [3,

3] and [5, 1], are generated randomly. The set [5, 1] means

that five images per individual are employed for training

with one image per individual for testing. The programs are

run on 3.00 GHz Intel Core 2 Quad processor using Matlab

7.0.1.

To optimize the proposed recognition system, the fol-

lowing measures are used to evaluate the performance:

1. Vein contour extraction: As the accurate contour

images can improve the matching performance, the

quality of the contour image is quantitatively evaluated

using the matching performance.

2. AAD feature extraction: To optimize the AAD feature,

different block sizes are evaluated in terms of the

matching accuracy and time consumption using the

S-ELM network.

3. Hidden neurons and the number of ELM: According to

the four types of ELM classifier: S-ELM, E-ELMs

(M ¼ 5; 10; 15; 20), FC-ELMs, and EC-ELMs

(M ¼ 5; 10; 20), the matching performance, stability,

and computational complexity of the finger vein

recognition systems are evaluated with hidden neuron

tuning.

4. Genuine matching and imposter matching: The false

acceptance rate (FAR) and false rejection rate (FRR)

defined in Eqs. (25) and (26), respectively, are eval-

uated with 634� ð3804� 6Þ ¼ 2407932 impostor

matches versus 634� 5 ¼ 3,170 genuine matches.

5. Comparison with existing finger vein recognition

methods: The proposed recognition system is com-

pared with the minutiae feature-based methods [37],

local binary pattern-based methods [38, 39], and the

SVM-based method [16].

FAR ¼ Number of accepted imposter claims

Total number of imposter accesses
ð25Þ

FRR ¼ Number of rejected genuine claims

Total number of genuine accesses
ð26Þ

Evaluation of Performance

Vein Contour Extraction Performance

The vein contour exaction performances are evaluated in

terms of the matching accuracy using the S-ELM network.

Corresponding to the typical image enhancement methods

mentioned in Fig. 6, the comparison of the matching per-

formance is shown in Table 1. The guided filter performed

with superior accuracy.

Fig. 13 Ensemble component-based extreme learning machines

network
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Table 1 Matching performance comparison with the typical enhancement methods

Enhancement methods Global histogram Local histogram Wavelet normalization Guided filter

S ¼ I; e ¼ 0:052

Guided filter

S ¼ I; e ¼ 12

Accuracy (%) � SD 72:33� 0:30 86:72� 0:35 88:49� 0:32 82:34� 0:26 96:40� 0:27

Table 2 Matching performance comparisons with block sizes of 16� 16 and 32� 32

Block size Dataset Feature size Training time (s) Training accuracy (%) Testing time (s) Testing accuracy (%)

32� 32 [5, 1] 24� 8 ¼ 192 1.3438 100 0.0938 98.23

32� 32 [3, 3] 24� 8 ¼ 192 0.7969 100 0.2656 96.06

16� 16 [5, 1] 96� 8 ¼ 768 8.5742 100 0.2624 98.63

16� 16 [3, 3] 96� 8 ¼ 768 5.2031 100 0.9063 96.44

Fig. 14 Matching performance of the S-ELM and E-ELM when the numbers of ELM networks are M ¼ 5; 10; 15 and 20: a training time,

b testing time, c training accuracy, d testing accuracy
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AAD Feature Extraction

The AAD feature estimates the similarity between each

pair of split blocks. The difference will decrease with

increasing size of the local block, and so the characteristic

of the individuals will become more featureless. In con-

trast, a smaller block size can describe the vein contour

features in more detail, but will bring about a larger

computational burden. To choose the proper block size,

block sizes of 16� 16 and 32� 32 are evaluated in terms

of the matching accuracy and time consumption using the

S-ELM network. According to Table 2, a block size of

16� 16 performs better than the larger block size of

32� 32.

Performance of S-ELM, TER, E-ELM, FC-ELM, and EC-

ELM

The matching performance, stability, and computational

complexity of the finger vein recognition systems were

evaluated according to the classifier employed for the four

types of ELM: S-ELM, E-ELMs (M ¼ 5; 10; 15; 20), FC-

ELMs, and EC-ELMs (M ¼ 5; 10; 20). In Fig. 14, the

matching performance is compared with hidden neuron

tuning for the S-ELM and E-ELM models for

Table 3 Comparison of the size of the input features and hidden

neuron setting of the S-ELM, E-ELMs, FC-ELMs, and EC-ELMs

models

Classifier The numbers of

ELM

Feature

size

Hidden neurons

size

S-ELM 1 768 800

E-ELM 20 768 800�M

FC-ELM 8 96 350� 8 ¼ 2,800

EC-ELM 8�M 96 2,800�M

Fig. 15 Matching performance of the FC-ELMs and EC-ELMs when the numbers of FC-ELM networks are M ¼ 5; 10 and 20: a training time,

b testing time, c training accuracy, d testing accuracy
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M ¼ 5; 10; 15, and 20. For M ¼ 20, the matching perfor-

mance of the E-ELM networks is found to be the best, with

a score of 97.19 %, which is much higher than that of the

S-ELM model. In regard to the training and testing times, it

is worth mentioning that although the E-ELM can be

constructed in a parallel manner, the time consumption is

calculated in series, since the simulation is performed

based on a the single computer. As shown in Fig. 15, the

matching accuracy of the proposed FC-ELMs is 97.69 %,

which is higher than that of the E-ELM networks, because

the weights are adaptively assigned to strengthen the weak

learning ability caused by analyzing the vein directional

components distribution. The EC-ELM model with a

smaller number (M ¼ 5) of FC-ELM networks provides

slightly improved matching performance, reaching

97.75 %. Based on the results of the tuned hidden neuron

Table 4 Matching performance for individual trials with respect to the dataset SDUMLA

Trial number Matching accuracy (average (%) � SD)

S-ELM TER [40] E-ELMs E-ELMs FC-ELMs EC-ELMs

(m�; mþ) (M ¼ 10) (M ¼ 20) (M ¼ 5)

1 96:46� 0:18 97:02� 0:08 96:80� 0:08 97:16� 0:05 97:70� 0:09 97:78� 0:05

2 96:42� 0:22 96:96� 0:09 96:80� 0:10 97:18� 0:06 97:70� 0:08 97:78� 0:05

3 96:48� 0:15 96:98� 0:08 96:71� 0:09 97:20� 0:06 97:74� 0:09 97:75� 0:03

4 96:48� 0:16 96:93� 0:10 96:76� 0:07 97:21� 0:08 97:65� 0:07 97:73� 0:06

5 96:41� 0:18 96:98� 0:08 96:74� 0:07 97:19� 0:06 97:68� 0:09 97:70� 0:08

6 96:40� 0:20 96:99� 0:05 96:75� 0:06 97:24� 0:08 97:66� 0:06 97:79� 0:04

7 96:41� 0:24 96:96� 0:08 96:81� 0:08 97:21� 0:05 97:69� 0:07 97:77� 0:04

8 96:44� 0:23 96:97� 0:10 96:78� 0:08 97:21� 0:09 97:68� 0:07 97:78� 0:04

9 96:43� 0:14 96:98� 0:08 97:04� 0:09 97:19� 0:07 97:70� 0:08 97:76� 0:03

10 96:47� 0:16 96:99� 0:10 97:01� 0:08 97:18� 0:06 97:70� 0:06 97:76� 0:06

Ave 96:44� 0:18 96:98� 0:08 96:82� 0:08 97:20� 0:066 97:69� 0:076 97:76� 0:048

Difference (%)a 1.25 0.71 0.87 0.49 0 �0.07

Significance countb 10 8 6 4 0 3

a Difference compared with the FC-ELMs method

b Significance count: number of instances from the ten trials that the two compared means are not equal at significance level of 0.05

Table 5 Matching performance for individual trials with respect to the dataset MMCBNU

Trial number Matching accuracy (average (%) � SD)

S-ELM TER [40] E-ELMs E-ELMs FC-ELMs EC-ELMs

(m�; mþ) (M ¼ 10) (M ¼ 20) (M ¼ 5)

1 97:68� 0:09 98:85� 0:10 98:80� 0:06 99:01� 0:04 99:51� 0:05 99:58� 0:03

2 97:68� 0:10 98:83� 0:08 98:80� 0:04 99:01� 0:05 99:50� 0:05 99:58� 0:02

3 97:72� 0:10 98:85� 0:05 98:80� 0:04 99:05� 0:06 99:51� 0:04 99:61� 0:03

4 97:70� 0:08 98:87� 0:07 98:81� 0:06 99:04� 0:05 99:50� 0:05 99:60� 0:04

5 97:74� 0:08 98:85� 0:06 98:80� 0:08 99:03� 0:04 99:50� 0:04 99:60� 0:04

6 97:70� 0:10 98:85� 0:08 98:84� 0:06 99:02� 0:04 99:52� 0:06 99:60� 0:03

7 97:74� 0:12 98:84� 0:05 98:83� 0:05 99:02� 0:05 99:51� 0:05 99:58� 0:03

8 97:73� 0:08 98:86� 0:07 98:82� 0:04 99:03� 0:04 99:50� 0:04 99:59� 0:04

9 97:70� 0:08 98:88� 0:08 98:82� 0:04 99:05� 0:05 99:52� 0:05 99:60� 0:05

10 97:71� 0:10 98:87� 0:09 98:82� 0:06 99:03� 0:03 99:51� 0:06 99:60� 0:04

Ave 97:71� 0:09 98:86� 0:07 98:81� 0:05 99:03� 0:05 99:53� 0:05 99:60� 0:03

Difference (%)a 1.5 0.35 0.40 0.18 0 �0.07

Significance countb 8 7 7 5 0 5

a Difference compared with the FC-ELMs method

b Significance count: number of instances from the ten trials that the two compared means are not equal at significance level of 0.05

458 Cogn Comput (2014) 6:446–461

123



test in Figs. 14 and 15, the comparison of the structural

complexities between the optimal versions of the four types

of ELM is shown in Table 3. While S-ELM has the fewest

nodes and E-ELMs (M ¼ 20) have the most, FC-ELMs

have less than 20 % of the nodes required for E-ELMs

(M ¼ 20). This shows that FC-ELMs (and EC-ELMs) are

superior to E-ELMs in terms of structural complexity, since

FC-ELMs (and EC-ELMs) have a relatively smaller size of

basic network than E-ELMs.

To evaluate the stability, ten trials of tenfold stratified

cross-validation test are performed for each network, and

the standard deviations of the matching accuracy are shown

in Tables 4 and 5 for two testing datasets. Compared with

the ELM method and the TER method [40], which mini-

mizes the total error rates by adjustment of the class-

specific normalization, EC-ELMs show the better stability.

E-ELM and FC-ELM networks improve the stability by

more than 50 % compared with the S-ELM. The FC-ELM

network can achieve the same stability as E-ELMs

(M ¼ 10), but with much fewer hidden neurons. From the

evaluation of the matching performance, stability, and the

complexity of the finger vein recognition systems for the S-

ELM, E-ELMs (M ¼ 5; 10; 15; 20), FC-ELMs, and EC-

ELMs (M ¼ 5; 10; 20), it is shown that the optimal clas-

sifier among the four kinds of ELM is the proposed FC-

ELMs. Moreover, the significance of improvement was

obtained based on a paired t test between two compared

means at a significance level of 0.05, as shown in Tables 4

and 5.

Genuine Matching and Imposter Matching

The match score distribution of the two kinds of FC-ELMs

is shown in Fig. 16. The X-axis represents the matching

score, which is the final output decision value fCðXÞ
obtained from the FC-ELM network in Eq. (21), and the

Y-axis is its frequency value. The genuine matching can be

separated from the imposter matching with a clear thresh-

old for both the adaptive and average weighted networks.

The adaptive weighted FC-ELMs provide a larger dis-

crimination distance between the genuine and imposter

matching than the average weighted FC-ELMs. Hence, the

adaptive weighted FC-ELMs would be more adaptive to

the growing dataset.

The receiver operating characteristic (ROC), which is a

plot of the genuine acceptance rate (GAR = 1 � FRR)

versus the FAR, is simulated as shown in Fig. 17. The

adaptive weighted FC-ELMs are slightly superior to the

average weighted FC-ELMs, which obtains an FAR of

0.16 % and FRR of 0.58 %).

Fig. 17 ROC curves of the adaptive and average weighted FC-ELM

networks

Fig. 16 Genuine and imposter match score based on the adaptive and average weighted FC-ELM network
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Comparison with the Existing Methods

A comparison of the correct classification rate (CCR),

training time, and testing time obtained from the minutiae

feature-based methods [37], local binary pattern-based

methods [38, 39], and the proposed directional feature-

based methods is shown in Table 6. Based on the proposed

features, several classifiers are compared including the

modified Hausdorff distance [37], SVM [16], S-ELM,

E-ELMs, FC-ELMs, and EC-ELMs. The results show that

the proposed FC-ELMs achieve higher CCRs of 97.69 and

99.53 % for the [3, 3] and [5, 1] training and testing sets,

and the EC-ELMs with M ¼ 5 afford the highest CCRs of

97.75 and 99.60 % for the [3, 3] and [5, 1] training and

testing sets, respectively. Although the testing time of EC-

ELMs is higher than that of the S-ELM and FC-ELMs

models, it is several hundred times less than that of the

E-ELMs and the other matching methods.

Conclusions

This paper presented an efficient finger vein recognition

system with novel feature component-based ELM models.

With the assignment of the adaptive weights to the FC-

ELMs, a higher matching performance of CCR = 99.21 %

is achieved with FAR = 0.16 % and FRR = 0.58 %,

which is much better than those of the S-ELM, E-ELMs,

SVM, and other distance-based methods. Moreover, due to

the smaller size of the input feature vectors, fewer hidden

neurons, and fewer number of ELM networks, the FC-ELM

model provides superior performance in terms of both the

recognition rate and matching speed, reaching 0.87 ms per

image, which is satisfactory for real-time recognition. The

FC-ELM and EC-ELM networks have the advantage of

balancing the stability of E-ELM networks, along with

higher CCRs and less computation complexity.
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