
A Gradient-Based Neural Network Method for Solving Strictly
Convex Quadratic Programming Problems

Alireza Nazemi • Masoomeh Nazemi

Received: 26 October 2012 / Accepted: 3 February 2014 / Published online: 21 February 2014

� Springer Science+Business Media New York 2014

Abstract In this paper, we study a gradient-based neural

network method for solving strictly convex quadratic pro-

gramming (SCQP) problems. By converting the SCQP

problem into a system of ordinary differential equation

(ODE), we are able to show that the solution trajectory of

this ODE tends to the set of stationary points of the original

optimization problem. It is shown that the proposed neural

network is stable in the sense of Lyapunov and can con-

verge to an exact optimal solution of the original problem.

It is also found that a larger scaling factor leads to a better

convergence rate of the trajectory. The simulation results

also show that the proposed neural network is feasible and

efficient. The simulation results are very attractive.

Keywords Neural network � Convex quadratic

programming � Fischer-Burmeister function � Convergent �
Stability

Introduction

It is well known that SCQP problems arise in a wide

variety of scientific and engineering applications including

regression analysis, image and signal processing, parameter

estimation, filter design, robot control, etc. [5]. In many

engineering and military applications, the demand on real-

time SCQP solutions is often needed, such as classification

in complex electromagnetic environments, recognition in

medical diagnostics radar object recognition in strong

background clutter [16]. Since the computing time required

for solving quadratic optimization problem greatly depends

on the dimension and the structure of the problem, the

conventional numerical methods [1–47] are usually less

effective in real-time applications. One promising approach

for handling these optimization problems with high

dimensions and dense structure is to employ an artificial

neural network [31–46] based on circuit implementation.

We consider that it is appropriate to utilize the neural

networks for efficiently solving the SCQP problems.

The dynamic system approach is one of the important

methods for solving optimization problems, which was first

proposed by Pyne in the late 1950s [31]. Artificial recurrent

neural networks for solving constrained optimization prob-

lems can be considered as a tool to transfer the optimization

problems into a specific dynamic system of first-order dif-

ferential equations. It is expected that for an initial point, the

dynamic system will approach its static state (or equilibrium

point) which corresponds to the solution of the underlying

optimization problem. An important requirement is that the

energy function decreases monotonically as the dynamic

system approaches an equilibrium point. Because of the

dynamic nature and the potential of electronic implemen-

tation, neural networks can be implemented physically by

designated hardware such as application-specific integrated

circuits, where the computational procedure is truly dis-

tributed and parallel. Therefore, the neural network

approach can solve optimization problems in running time

orders of magnitude faster than the most popular optimiza-

tion algorithms executed on general purpose digital com-

puters. It is of great interest in practice to develop some

A. Nazemi (&)

Department of Mathematics, School of Mathematical Sciences,

Shahrood University, P.O. Box 3619995161-316, Shahrood, Iran

e-mail: nazemi20042003@yahoo.com

M. Nazemi

Department of Food Science and Technology, Damghan Branch,

Islamic Azad University, Damghan, Iran

e-mail: masomehni@yahoo.com

123

Cogn Comput (2014) 6:484–495

DOI 10.1007/s12559-014-9249-0

neural network models which could provide a real-time

online solution for the SCQP problem.

Motivated by the above discussions, in this paper a

gradient neural network model based on Fischer-Burmei-

ster (FB) function for solving the SCQP is presented.

According to the saddle point theorem, the equilibrium

point of the proposed neural network is proved to be

equivalent to the Karush Kuhn Tucker (KKT) point of the

SCQP problem. The existence and uniqueness of an equi-

librium point of the proposed neural network are analyzed.

By constructing a suitable Lyapunov function, a sufficient

condition to ensure globally stable in the sense of Lyapu-

nov for the unique equilibrium point of the neural network

is derived.

The rest of the paper is organized as follows. In

‘‘Problem formulation’’ section, an NCP-function is used to

reformulate the SCQP problem as an unconstrained mini-

mization problem with objective energy function. In ‘‘A

gradient neurodynamic model’’ section, a gradient neural

network is constructed to solve the SCQP problem, and the

stability properties of the proposed neural network are

investigated. Some simulation results are discussed to

evaluate the effectiveness of the proposed neural network

in ‘‘Computer simulations’’ section. Finally, section

‘‘Conclusion’’ concludes this paper.

Problem Formulation

Consider the following SCQP problem:

minimize
1

2
xTQxþ dT x ð1Þ

subject to

Ax� b� 0; ð2Þ
Gx� f ¼ 0; ð3Þ

where Q 2 R
n�n is only a symmetric and positive definite

matrix, d 2 R
n, A 2 R

m�n, b 2 R
m, G 2 R

l�n, f 2 R
l; x 2

R
n and rank ðA;GÞ ¼ mþ l ð0�m; l\nÞ.
For the convenience of later discussions, it is necessary

to introduce a few notations, definitions, two lemmas and

two theorems. In what follows, k:k denotes the l2-norm of

R
n; T denotes the transpose and x = (x1, x2, … , xn)T. If a

differentiable function H : Rn ! R, then rH 2 R
n stands

for its gradient. For any differentiable mapping H ¼
ðH1; . . .;HmÞT : Rn ! R

m; rH ¼ ½rH1ðxÞ; . . .;rHmðxÞ�
2 R

n�m, denotes the transposed Jacobian of H at x.

Definition 2.1 Let X � R
n be an open neighborhood of �x.

A continuously differentiable function n : Rn ! R is said

to be a Lyapunov function at the state �x (over the set X) for

a system x0 ¼ HðxÞ, if

nð�xÞ ¼ 0; nðxÞ[0; 8x 2 Xnf�xg;
dnðxðtÞÞ

dt
¼ ½rnðxðtÞÞ�THðxðtÞÞ� 0; 8 x 2 X:

(

Lemma 2.2 [24]: (a) An isolated equilibrium point x�of a

system x0 ¼ HðxÞ is Lyapunov stable if there exists a

Lyapunov function over some neighborhood X� of x�:
(b) An isolated equilibrium point x� of a system

x0 ¼ HðxÞ is asymptotically stable if there is a Lyapunov

function over some neighborhood X� of x� such that
dnðxðtÞÞ

dt
\0; 8 x 2 X�nfx�g.

Definition 2.3 Let x(t) be a solution trajectory of a system

x0 ¼ HðxÞ, and let X� denotes the set of equilibrium points

of this equation. The solution trajectory of the system is said

to be globally convergent to the set X�, if x(t) satisfies

lim
t!1

distðxðtÞ;X�Þ ¼ 0;

where distðxðtÞ;X�Þ ¼ infy2X� kx� yk. In particular, if the

set X� has only one point x�, then limt!1 xðtÞ ¼ x�, and the

system is said to be globally asymptotically stable at x� if

the system is also stable at x� in the sense of Lyapunov.

Theorem 2.4 [5] x 2 R
n is an optimal solution of (1)–(3)

if and only if there exist u 2 R
m and v 2 R

l such that

(xT, uT, vT)T satisfies the following KKT system

u	 0; Ax� b� 0; uTðAx� bÞ ¼ 0;
Qxþ d þ GT vþ AT u ¼ 0;
Gx� f ¼ 0:

8<
: ð4Þ

x� is called a KKT point of (1)–(3) and a pair ðu�T ; v�TÞT is

called the Lagrangian multiplier vector corresponding to

x�:

Theorem 2.5 [5] If Q is a positive definite matrix, then x�

is an optimal solution of (1)–(3), if and only if x� is a KKT

point of (1)–(3).

Lemma 2.6 [32] If A is an n 9 n nonsingular matrix,

then the homogeneous system AX = 0 has only the trivial

solution X = 0.

A Gradient Neurodynamic Model

We can establish the relationship between the solution to

problem (1)–(3) and the solution to an equivalent uncon-

strained minimization problem via a merit function [13]. A

merit function is a function whose global minimizers coin-

cide with the solutions of the NCP. The class of NCP-

functions defined below is used to construct a merit function.

Definition 3.1 • A function / : R2 ! R, is called an

NCP-function if it satisfies

/ða; bÞ ¼ 0() a	 0; b	 0; ab ¼ 0:

Cogn Comput (2014) 6:484–495 485

123

• A popular NCP-function is the FB function, which is

strongly semismooth [30, 33] and is defined as

/FBða; bÞ ¼ ðaþ bÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
:

The FB merit function wFB : R� R! Rþ can be

obtained by taking the square of /FB, i.e.,

wFBða; bÞ ¼
1

2
k/FBða; bÞk

2:

The perturbed FB function is also given by

/e
FBða; bÞ ¼ ðaþ bÞ �

ffi
a2 þ b2 þ e

p
; e! 0þ:

The important property of /e
FB can be stated in the

following result.

Proposition 3.2 [10] For every e 2 R, we have

/e
FBða; bÞ ¼ 0, a [0; b [0; ab ¼ e

2
:

The above proposition is obvious, and the proof is

omitted. It is noted that /e
FBða; bÞ is smooth with respect to

a, b for e [0.

Lemma 3.3 y� ¼ ðx�T ; u�T ; m�TÞT satisfies the following

equation

gðyÞ ¼
Qxþ d þ GT vþ ATu

f � Gx

/e
FB u; b� Axð Þ

2
4

3
5 ¼ 0; ð5Þ

if and only if x� is a KKT point of (1)–(3) for every e! 0þ.

Proof Let g(y�) = 0. Then

Qx� þ d þ GT v� þ ATu�; ð6Þ
f � Gx� ¼ 0; ð7Þ
/e

FB u�; b� Ax�ð Þ ¼ 0; for e! 0þ: ð8Þ

From proposition 3.2, it follows easily that /e
FB

u�; b� Ax�ð Þ ¼ 0 if and only if

u� 	 0; Ax� � b� 0; u�TðAx� � bÞ ¼ 0; for e! 0þ:

ð9Þ

From (6), (7) and (9), it is seen that y� ¼ ðx�T ; u�T ; m�TÞT
satisfies the KKT conditions (4).

The converse is straightforward. h

Now by Definition 3.1 and Lemma 3.3, we can easily

verify that the KKT system (4) is equivalent to the fol-

lowing unconstrained smooth minimization problem:

minimize EðyÞ ¼ 1

2
kgðyÞk2: ð10Þ

It is clear that E(y) is a smooth merit function for the

KKT system (4). The merit function E in (10) is continu-

ously differentiable for all y 2 R
nþlþm.

Now let x(.), u(.) and v(.) be some time dependent

variables. Our aim is to design a neural network that will

settle down to an equilibrium point, which is also a sta-

tionary point of the energy function E(y). Hence, we can

use the steepest descent method to construct the following

neural network model for solving problem (1)–(3) as

dyðtÞ
dt
¼ �krEðyðtÞÞ; k [0; ð11Þ

yð0Þ ¼ y0; ð12Þ

where k is a scaling factor and indicates the convergence

rate of the neural network (11) and (12). An indication on

how the neural network (11) and (12) can be implemented

on hardware is provided in Fig. 1.

In order to see how well the presented neural network

(11) and (12) can be applied to solve SCQP problems, we

compare it with some existing neural network models.

First, let us consider the following problem

minimize
1

2
xT A0xþ aT x ð13Þ

subject to

x 2 X0; ð14Þ
Dx ¼ b; ð15Þ

where A0m�m
is a symmetric positive semidefinite matrix,

D in an n 9 m matrix, X0
 R
m is a closed convex set and

x = (x1, x2, …, xm)T. In [36], the projection neural network

for solving (13)–(15) is given by

dx

dt
¼ P0ðx� A0xþ DT y� aÞ � x; ð16Þ

du

dt
¼ �DP0ðx� A0xþ DT y� aÞ þ b; ð17Þ

where P0 is the projection operator [40] on X0. The neural

network model (16)–(17) has not been proved to be con-

vergent in finite time. If we also use the network in [39] to

solve the problem (13)–(15), the dimension of the network

 −k ∫

∇ η

η
*

y′(t) y(t)

Fig. 1 A simplified block diagram for the neural network (11) and

(12)

486 Cogn Comput (2014) 6:484–495

123

is higher. Furthermore, it has not been proved to be con-

vergent in finite time, too.

There is another kind of the neural network model called

gradient model. In order to use the gradient neural network

model, a constrained optimization problem can be

approximated by an unconstrained optimization problem.

Then the energy function is constructed by the penalty

function method. It is noticeable that the gradient neural

network model has an advantage as the model may be

defined directly using the derivatives of the energy func-

tion. But its shortcoming is that the convergence is not

guaranteed, especially in the case of unbounded solution

sets [46]. Moreover, the gradient neural network based on

the penalty function requires any adjustable parameter

called the penalty parameter. For instance, a gradient

neural network model for solving (1)–(3) is given by

dx

dt
¼ � Qxþ d þ c½ATðAx� bÞþ þ GTðGx� f Þ�

� �
; ð18Þ

where c is a penalty parameter. The system in (18) is

referred to as Kennedy and Chua’s neural network model

[17]. This network is not capable to find an exact optimal

solution due to a finite penalty parameter and is difficult to

implement when the penalty parameter is very large [18].

Thus, this network only converges to an approximate

solution of (1)–(3) for any given finite penalty parameter. It

can be also shown that the Kennedy–Chua’s neural net-

work (18) is not globally convergent to an exact optimal

solution of some quadratic programming problems. For

instance, one can see Example 5.1 in this manuscript.

Stability and Convergence Properties

In order to study the stability of the neural network in (11)

and (12), we first prove the following lemma.

Lemma 4.1 The Jacobian matrix rg(y) of the mapping

g defined in (5) is nonsingular.

Proof With a simple calculation and using Proposition

3.2 in [35] and Proposition 3.3 in [34], it is clearly shown

that

Since Q is a positive definite matrix and ran-

k(A, G) = m ? l, from Theorem 3.1 in [34] we see that

rg(y) is nonsingular. This completes the proof. h

We now investigate the relationships between an equi-

librium point of (11) and (12) and a solution to problem

(1)–(3).

Theorem 4.2 Let x� be a KKT point of (1)–(3). Then y� is

an equilibrium point of the neural network (11) and (12).

On the other hand, if y� ¼ ðx�T ; u�T ; m�TÞT be an equilib-

rium point of the neural network (11) and (12) and the

Jacobian matrix of g(y) in (5) is nonsingular, then x� is a

KKT point of the problem (1)–(3).

Proof Suppose that x� is an optimal solution for (1)–(3).

From Lemma 3.3, it is clear that g(y�) = 0. With a simple

calculation, it is clearly shown that

rEðyÞ ¼ ðrgðyÞÞTgðyÞ; ð19Þ

where rg(y) is the Jacobian matrix of g(y). Using (19) we

get rE(y�) = 0, i.e. y� is an equilibrium point of dynamic

model (11) and (12). From Lemma 4.1 and Lemma 2.6, the

converse of the proof is straightforward. h

Lemma 4.3 The equilibrium point of the proposed neural

network model (11) and (12) is unique.

Proof Since problem (1)–(3) has unique optimal solution

x�, the necessary and sufficient KKT conditions (4) has a

unique solution y� ¼ ðx�T ; u�T ; m�TÞT . Moreover, from

Theorem 4.2 we see that the solution of the KKT system

(4) is the equilibrium point of the proposed neural network

model (11) and (12). Thus the equilibrium point of the

network (11) and (12) is unique. h

Now we state the main result of this section.

Theorem 4.4 Let y� be an isolated equilibrium point of

(11) and (12). Then y� is asymptotically stable for (11) and

(12).

Proof First, notice that E(y) C 0 and E(y�) = 0. In addi-

tion, since y� is an isolated equilibrium point of (11) and (12),

there exists a neighborhood X� � R
nþmþl of y� such that

rEðy�Þ ¼ 0; and rEðyÞ 6¼ 0; 8y 2 X�nfy�g:

We claim that for any y 2 X�nfy�g, E(y) [0. Otherwise

if there is a y 2 X�nfy�g satisfying E(y) = 0. Then, by (10)

and (19) we have r E(y) = 0, i.e., y is also an equilibrium

point of (11), which clearly contradicts the assumption that

y is an isolated equilibrium point in X�. Moreover

rgðyÞ ¼
Q GT AT

�G Ol�l Ol�m

ð�diagfrðAx�bÞk/
e
FBðu; ðb� AxÞkÞg

m
k¼1ÞA Om�l diagfruk

/e
FBðuk; ðb� AxÞkÞg

m
k¼1

2
4

3
5:

Cogn Comput (2014) 6:484–495 487

123

dEðyðtÞÞ
dt

¼ ½rEðyðtÞÞ�T dyðtÞ
dt
¼ �kkrEðyðtÞÞk2 � 0;

ð20Þ

and

dEðyðtÞÞ
dt

\0; 8yðtÞ 2 X� and yðtÞ 6¼ y�:

This by lemma 2.2 (b) implies that y� is asymptotically

stable. h

Theorem 4.5 Suppose that y = y(t,y0) is a trajectory of

(11) and (12) in which the initial point is y0 = y(0,y0) and

the level set Lðy0Þ ¼ fy 2 R
nþmþl : EðyÞ�Eðy0Þg is

bounded, then

(a) c?(y0) = {y(t,y0)|t C 0} is bounded.

(b) There exists �y such that limt!1 yðt; y0Þ ¼ �y.

Proof (a) Suppose y�[is an equilibrium point of the

network in (11) and (12). Calculating the derivative of

E(y) along the trajectory y(t, y0), (t C 0) one has

dEðyðtÞÞ
dt

¼ ½rEðyðtÞÞ�T dy

dt
¼ �kkrEðyðtÞÞk2� 0: ð21Þ

Thus E(y) is monotone nonincreasing along the trajec-

tory y = y(t, y0), (t C 0). Therefore cþðy0Þ � Lðy0Þ, that is

to say c?(y0) = {y(t,y0)|t C 0} is bounded.

(b) By (a) c?(y0) = {y(t,y0)|t C 0} is a bounded set of

points. Take strictly monotone increasing sequence f�tng,
0� �t1� � � � � �tn� � � � ; �tn ! þ1; then fyð�tn; y0Þg is a

bounded sequence composed of infinitely many points.

Thus there exists limiting point �y, that is, there exists a

subsequence ftng � f�tng; tn ! þ1 such that

lim
n!þ1

yðtn; y0Þ ¼ �y;

where �y satisfies

dEðyðtÞÞ
dt

¼ 0;

which indicates that �y is x-limit point of c?(y0). Using the

LaSalle Invariant Set Theorem [12], one has that yðt; y0Þ !
�y 2 M as t!1, where M is the largest invariant set in

K ¼ fyðt; y0Þj dEðyðt;y0ÞÞ
dt

¼ 0g. From (11), (12) and (21), it

follows that dx

dt
¼ 0, du

dt
¼ 0 and dv

dt
¼ 0, dEðyðtÞÞ

dt
¼ 0; thus

�y 2 D� by M � K � D�. Therefore, from any initial state

y0, the trajectory y(t, y0) of (11) and (12) tends to �y. The

proof is complete. h

As an immediate corollary of Theorems 4.4 and 4.5, we

can get the following result.

Corollary 4.6 If D� ¼ fðx�T ; u�T ; m�TÞTg, then the neural

network (11) and (12) for solving (1)–(3) is globally

asymptotically stable to the unique equilibrium point

y� ¼ ðx�T ; u�T ; m�TÞT , where D� is denoted as the optimal

point set of (1)–(3).

Computer Simulations

In order to demonstrate the effectiveness of the proposed

neural network (11) and (12), in this section we test several

examples. For each test problem, we compare the numer-

ical performance of the proposed neural network with

various values of k and various initial states y(0). We also

provide two applicable examples in engineering as support

vector machine learning in regression and constrained

least–squares approximation problem. The simulation is

conducted on Matlab 7, the ODE solver engaged is ode45s.

Example 5.1

minimize f ðxÞ ¼ x2
1 þ x2

2 þ x1x2 � 30x1 � 30x2

subject to

5

12
x1 � x2�

35

12
;

5

2
x1 þ x2�

35

2
;

�x1� 5;
x2� 5:

8>>>>><
>>>>>:

The problem and its dual have a unique solution

ðx�T ; u�TÞT ¼ ð5; 5; 0; 6; 0; 9ÞT . Theorems 4.4 and 4.5 and

corollary 4.6 guarantee that the stated model in (11) and

(12) converges globally to x� = (5, 5)T. Figure 2 depicts

the phase diagram of state variables (x1(t), x2(t))T, with 5

different initial points and scaling factor k = 10, where

S stands for the feasible region. These vectors converge to

its exact solution x� globally.

We test the influence of the parameter k on the value of

kyðtÞ � y�k2
. From Fig. 3, we see that when k = 0.1, the

neural network (11) and (12) generates the slowest

decrease of kyðtÞ � y�k2
, whereas when k = 10, it gener-

ates the fastest decrease of kyðtÞ � y�k2
with the initial

state y0 = (2, -2, 2, -2, 2, -2)T. Figure 4 also

describes the convergence behavior of kyðtÞ � y�k2
with 10

various initial states and k = 5.

To make a comparison, the above problem is solved

using the Kennedy and Chua0s neural network in (18) with

c = 50 in [22]. It is seen that this network converges to its

equilibrium point ~x ¼ ð4:97778; 5:1745ÞT , which can be

viewed as the approximate solution of the above problem.

It is clear that this equilibrium point is not feasible. Thus,

we can conclude that the proposed network (11) and (12) is

feasible and has a good stability performance.

488 Cogn Comput (2014) 6:484–495

123

Example 5.2

minimize f ðxÞ ¼ x2
1 þ x2

2 þ x2
3

subject to

2x1 þ x2 � 5� 0;

x1 þ x3 � 2� 0;

�x1 þ 1� 0;

�x2 þ 2� 0;

�x3� 0:

8>>>><
>>>>:

The optimal solution is y� = (1, 2, 0, 0, 0, 2, 4, 0)T.

Figure 5 shows the local convergence behavior of the error

kyðtÞ � y�k2
with different k and the initial point

y0 = (1, -1, 1, -1, 1, -1, 1, -1)T. It is clear that a

larger k yields a better convergence rate of the error

kyðtÞ � y�k2
. Figure 6 shows that the trajectories of the

proposed neural network in (11) and (12) to solve the

problem with 6 random initial points and k = 5 converge

to the optimal solution of this problem. It is easy to verify

that whether or not an initial point is taken inside or outside

the feasible region, the proposed network always converges

to the theoretical optimal solution x� = (1, 2, 0)T.

Example 5.3

minimize f ðxÞ ¼ x2
1 þ x2

2 þ x2
3 � 2x1 � 3x4

−6 −4 −2 0 2 4 6 8 10 12

−10

−5

0

5

10

15

 x
1

 x
2

 x*

 S

Fig. 2 Transient behavior of the neural network (11) and (12) with

five different initial points and k = 10 in Example 5.1

0 2 4 6 8 10
0

50

100

150

200

250

300

 Time (sec)

 ||
y(

t)
−y

* ||
2

k=0.1
k=0.5
k=1.5
k=10

Fig. 3 Convergence behavior of kyðtÞ � y�k2
with y0 = (2,

-2, 2, -2, 2, -2)T in Example 5.1

0 2 4 6 8 10
0

50

100

150

200

250

300

350

 Time (sec)

 ||
y(

t)
−y

* ||
2

Fig. 4 Convergence behavior of kyðtÞ � y�k2
with 10 different initial

points and k = 5 in Example 5.1

0 10 20 30 40 50
0

5

10

15

20

25

30

35

 Time (sec)

 ||
y(

t)
−y

* ||
2

k=0.1
k=0.5
k=1
k=5

Fig. 5 Convergence behavior of kyðtÞ � y�k2
with y0 = (1,

-1, 1, -1, 1, -1, 1, -1)T in Example 5.2

Cogn Comput (2014) 6:484–495 489

123

subject to

�x1� 0;
�x2� 0;
�x3� 0;
�x4� 0;
2x1 þ x2 þ x3 þ 4x4 ¼ 7;
x1 þ x2 þ 2x3 þ x4 ¼ 6:

8>>>>>><
>>>>>>:

The optimal solution for this example is x� =

(1.1233, 0.6507, 1.8288, 0.5685)T, u� = (0, 0, 0, 0)T and

v� = (1.0548, -2.3562)T. Figures 7 and 8 display the

transient behavior of the proposed network with 10 different

initial points and k = 1. All trajectories of the network

converge to the optimal solution y� ¼ ðx�T ; u�T � m�TÞT .

Moreover, when the initial point is chosen as an infeasible

point, the trajectory of the network still converges to y�.

Figure 9 shows how the value of kyðtÞ � y�k2
with 10

various initial states and k = 1.

Example 5.4 Consider the regression problem of

approximating a set of data

fðx1; y1Þ; ðx2; y2Þ; . . .; ðxN ; yNÞg; ð22Þ

with a regression function as

/ðxÞ ¼
XN

i¼1

aiUiðxÞ þ b; ð23Þ

where UiðxÞði ¼ 1; . . .;NÞ are called feature functions

defined in a high-dimensional space and ai (i =

1, …, N) and b are parameters of the model to be estimated.

Here, we can use the recurrent neural network in (11) and (12)

to estimate these parameters. By utilizing Huber loss function

[41], the regression function defined in (23) can be

represented as

/ðxÞ ¼
XN

i¼1

niKðx; xiÞ þ b;

where K(x, y) is a kernel function satisfying Kðxi; xjÞ ¼
UðxiÞTUðxjÞ. According to the problem formulation in [20],

ni ði ¼ 1; . . .;NÞ is the optimal solution of the following

quadratic programming problem:

minimize
1

2

XN

i¼1

XN

j¼1

ninjKðxi; xjÞ �
XN

i¼1

niyi þ
f

2.

XN

i¼1

n2
i

ð24Þ

−2
−1

0
1

2

−2

−1

0

1

2
−2

−1

0

1

2

 x
1

 x
2

 x*

 x
3

Fig. 6 Transient behavior of x(t) with six different initial points and

k = 5 in Example 5.2

0 10 20 30 40 50
−1

−0.5

0

0.5

1

1.5

2

2.5

 Time (sec)

 x
 (

t)

 x
1
(t)

 x
2
(t)

 x
3
(t)

 x
4
(t)

Fig. 7 Transient behavior x(t) of the proposed neural network with

10 different initial points and k = 1 in Example 5.3

0 10 20 30 40 50
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

 Time (sec)

 (
u

,v
)T

 u
1
(t)

 u
2
(t)

 u
3
(t)

 u
4
(t)

 v
1
(t)

 v
2
(t)

Fig. 8 Transient behavior (u(t)T, v(t)T)T of the proposed neural

network with 10 different initial points and k = 1 in Example 5.3

490 Cogn Comput (2014) 6:484–495

123

subject to

PN
i¼1 ni ¼ 0;

�.� ni� .; i ¼ 1; . . .;N;

�
ð25Þ

where f[0 is an accuracy parameter required for the

approximation and .[0 is a prespecified parameter. It is

also shown [3] that b = v�, where v� is the equilibrium

point of the proposed neural network model to solve the

above quadratic optimization problem.

As an example, we consider the regression data in

Table 1. We use the proposed neural network (11) and (12)

with an RBF kernel to train an support vector machine for

the regression problem. We choose the following Gaussian

function [21]

Kðx; yÞ ¼ exp �kx� yk2

2d2

 !
:

Figure 10 depicts the regression results with . = 100,

d = 1 and three different f parameters. It is clear that when

f tends to zero, the approximation is more accurate. Fig-

ure 11 also shows the convergence of the error norm

between the output vector and the optimal solution x* with

the initial point x0 = (1, -1, 1, -1, 1, -1, 1, -1, 1)T.

The regression results illustrate the good performance of

the proposed neural network.

Example 5.5 Let us consider a constrained least-squares

approximation problem [19]: Find the parameters of the com-

bination of exponential and polynomial functions y(x) =

a4e
x ? a3x

3 ? a2x
2 ? a1x ? a0, which fit the data given in

Table 2 and subjects to the constraints 8.1 B y(1.3) B 8.3,

3.4 B y(2.8) B 3.5 and 2.25 B y(4.2) B 2.26. This problem

can be formulated as follows:

minimize kCx� dk2

subject to

Ax 2 X;

where x = (x1, x2, x3, x4, x5)T = (a4, a3, a2, a1, a0)T,

0 10 20 30 40 50
0

10

20

30

40

50

60

 Time (sec)

 ||
y(

t)
−y

* ||
2

Fig. 9 Convergence behavior of kyðtÞ � y�k2
with 10 different initial

points and k = 1 in Example 5.3

0 2 4 6 8 10 12
−12

−10

−8

−6

−4

−2

0

2

 x

φ
(x

)

 * *
 *

 *

 *

 *

* * *

ζ=100

ζ=10

ζ=0.01

Fig. 10 Results of support vector regression using the proposed

neural network (11) and (12) with an RBF kernel where . = 100,

d = 1 and three different f parameters in Example 5.4

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

700

800

900

 Time (sec)

 ||
x(

t)
−x

* ||
2

Fig. 11 Convergence behavior of kxðtÞ � x�k2
with x0 = (1,

-1, 1, -1, 1, -1, 1, -1, 1)T and k = 10 in Example 5.4

Cogn Comput (2014) 6:484–495 491

123

d ¼ 7:6 7:2 7:9 8 6:2 6:2 3 0:8 1:2 5:8½ �T ;

A ¼
3:669 2:197 1:69 1:3 1

16:445 21:952 7:84 2:8 1

66:686 74:088 17:64 4:2 1

2
4

3
5;

and X ¼ fx 2 R
3 : 8:1� x1� 8:3; 3:4� x2� 3:5; 2:25

� x3� 2:26g. Figure 12 depicts the approximation results

using the proposed neural network. An l2 norm error

between x and x� with the initial point x0 = (2, -2, 2,

-2, 2)T is also shown in Fig. 13.

Example 5.6 We apply the proposed artificial neural

network (11) and (12) to increase the useful information

content of images and improve the quality of the noisy

images. Consider an array of n sensors. Let Il (k) denotes

the received M 9 N two dimensional gray-level image

from the l’th sensor, whose amplitude is denoted by fl (i, j).

We assume

Ilðði� 1ÞN þ jÞ ¼ flði; jÞ; i ¼ 1; . . .;M; j ¼ 1; . . .;N:

Then, the n- dimensional vector of information received

from n sensors is given by

IðkÞ ¼ asðkÞ þ n̂ðkÞ;

where a = [a1, …, an]T , Ik = [I1 (k), …, In (k)]T and

n̂ðkÞ ¼ ½n̂1ðkÞ; . . .; n̂nðkÞ�T ; al is a scaling coefficient,

s(k) denotes the signal and n̂lðkÞ represents the additive

Gaussian noise at l’th sensor with zero mean. Moreover,

s(k) and n̂lðkÞ are mutually independent random processes.

According to the result discussed in [23], the main

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4

5

6

7

8

9

 o
 o

 o o

o o

 o

 o
 o

 o

 x

 y
 (

x)

Fig. 12 Approximation results of the neural network (11) and (12) in

Example 5.5, where the circles represent the approximation data and

the curve is the approximation function

Table 1 Regression data for

Example 5.4
x 1.0 3.0 4.0 5.6 7.8 10.2 11.0 11.5 12.7

y 1.6 1.8 1.0 -1.2 -2.2 -6.8 -10.0 -10.0 -10.0

Table 2 Approximation data

for Example 5.5
x 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

y 7.6 7.2 7.9 8 6.2 6.2 3 0.8 1.2 5.8

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

35

40

 Time (sec)

 ||
x(

t)
−x

* ||
2

Fig. 13 Convergence behavior of kxðtÞ � x�k2
with x0 = (2,

-2, 2, -2, 2)T and k = 7 in Example 5.5

C ¼

1 1:649 2:718 4:482 7:389 12:183 20:086 33:116 54:598 90:017

0 0:125 1 3:375 8 15:625 27 42:875 64 91:125

0 0:25 1 2:25 4 6:25 9 12:25 16 20:25

0 0:5 1 1:5 2 2:5 3 3:5 4 4:5
1 1 1 1 1 1 1 1 1 1

2
66664

3
77775

T

;

492 Cogn Comput (2014) 6:484–495

123

contrivance for image fusion that we address here is to seek

an optimal fusion such that the uncertainty of the fused

information is minimized. The optimal fused information is

given by s�ðkÞ ¼
Pn
l¼1

x�l IlðkÞ, where the optimal fusion x� is

chosen according to the following deterministic quadratic

programming problem:

minimize xT Rx ð26Þ

subject to
aT x ¼ 1;

x	 0;

�
ð27Þ

where a ¼ ½1; . . .; 1�T 2 R
n and R ¼ 1

MN

PMN

k¼1

IðkÞIðkÞT . The

artificial neural network (11) and (12) converges to the

optimal fusion vector x�. In order to see the fused image we

convert s� to f � as

f �ði; jÞ ¼ s�ðði� 1ÞN þ jÞ; i ¼ 1; ::;M; j ¼ 1; . . .;N:

Finally, we use the function ‘‘imshow(f �)’’ in Matlab

software. One can improve the quality of the fused images

using the proposed neural image fusion algorithm by

increasing the number of sensors.

As an example, we illustrate the performance of the

proposed neural image fusion algorithm for gray-level

Lena images, as shown in Fig. 14. These Lane images are

eight bit gray-level images with 206 9 245 pixels. Fig-

ure 14a is the display of a typical noisy measurement of the

Lane image at one sensor, where SNR is 10 dB. Fig-

ure 14b–d show the fused images by the proposed algo-

rithm for the number of sensors n = 10, 20 and 30,

respectively. It is easy to verify that the quality of images is

improving when the number of sensors increases.

To end this section, we answer a natural question: are

there advantages of the proposed neural network compared

Fig. 14 Lena image fusion

using neural image fusion

algorithm. a The noisy image.

b–d The fused image with

n = 10, 20 and 30 sensors in

Example 5.6

Cogn Comput (2014) 6:484–495 493

123

to the existing ones? To answer this, we summarize what

we have observed from numerical experiments and theo-

retical results as below.

• Compared with traditional numerical optimization

algorithms, the neural network approach has several

potential advantages in real-time applications. First, the

structure of a neural network can be implemented

effectively using very large scale integration and

optical technologies. Second, neural networks can

solve many optimization problems with time-varying

parameters. Third, the dynamical techniques and the

numerical ODE techniques can be applied directly to

the continuous-time neural network for solving con-

strained optimization problems effectively.

• We compare our neural network model with some

existing models which also work for quadratic optimi-

zation problems, for instance, the ones used in (16),

(17) and (18). At first glance, these neural network

models look having lower complexity. However, we

observe that the difference in the numerical perfor-

mance is very marginal by testing some quadratic

optimization problems.

• Changing initial points may not have much effect for

our neural network model, whereas it does for some

existing models. The reason is that our model is

globally convergent to the optimal solution of the

problem.

• Three examples with respect to support vector

machines for regression, constrained least–squares

approximation problem and image fusion algorithm

for gray-level images are presented to indicate the real-

time applications of the proposed neural network.

Conclusion

In this paper, we have proposed a new neural network for

solving SCQP problems. Based on the duality theory of

convex programming, FB function, KKT optimality con-

ditions, convex analysis theory, Lyapunov stability theory

and LaSalle invariance principle, the constructed network

can find the optimal solution of the primal and dual prob-

lems simultaneously. Compared with the gradient-based

networks available, the structure of the proposed network is

reliable and efficient. The other advantages of the proposed

neural network are that it can be implemented without a

penalty parameter and can be convergent to an exact

solution to SCQP program with general linear constraints.

Moreover, the proposed transformation method in this

article can allow us to transform easily and efficiently

general constrained SCQP programming problems into

unconstrained problems. In this article, we also analyze the

influence of the parameter k on the convergence rate of the

trajectory and the convergence behavior of kyðtÞ � y�k2

and obtain that a larger k leads to a better convergence rate.

The simulation results have demonstrated the global con-

vergence behaviors and characteristics of the proposed

neural network for solving several SCQP problems.

References

1. Agrawal SK, Fabien BC. Optimization of dynamic systems.

Netherlands: Kluwer Academic Publishers; 1999.

2. Ai W, Song YJ, Chen YP. An improved neural network for

solving optimization of quadratic programming problems. In:

Proceedings of the fifth international conference on machine

learning and cybernetics, Dalian; 2006. p.13–6.

3. Anguita D, Boni A. Improved neural network for SVM learning.

IEEE Trans Neural Netw. 2002;13:1243–44.

4. Avriel M. Nonlinear programming: analysis and methods.

Englewood Cliffs, NJ: Prentice-Hall; 1976.

5. Bazaraa MS, Sherali HD, Shetty CM. Nonlinear programming—

theory and algorithms, 2nd ed. New York: Wiley; 1993.

6. Bertsekas DP. Parallel and distributed computation: numerical

methods. Englewood Cliffs, NJ: Prentice-Hall; 1989.

7. Boggs PT, Domich PD, Rogers JE. An interior point method for

general large-scale quadratic programming problems. Ann Oper

Res. 1996;62:419–37.

8. Boland NL. A dual-active-set algorithm for positive semi-definite

quadratic programming. Math Program. 1996;78:1–27.

9. Boyd S, Vandenberghe L. Convex optimization. Cambridge:

Cambridge University Press; 2004.

10. Facchinei F, Jiang H, Qi L. A smoothing method for mathe-

matical programs with equilibrium constraints. Math Program.

1999;35:107-34.

11. Fletcher R. Practical methods of optimization. New York: Wiley;

1981.

12. Hale JK. Ordinary differential equations. New York: Wiley-In-

terscience; 1969.

13. Hu SL, Huang ZH, Chen JS. Properties of a family of generalized

NCP-functions and a derivative free algorithm for complemen-

tarity problems. J Comput Appl Math. 2009;230:69–82.

14. Huang YC. A novel method to handle inequality constraints for

convex programming neural network. Neural Process Lett.

2002;16:17–27.

15. Jiang M, Zhao Y, Shen Y. A modified neural network for linear

variational inequalities and quadratic optimization problems.

Lecture Notes in Computer Science, 5553, Springer, Berlin:

Heidelberg; 2009.p. 1–9.

16. Kalouptisidis N. Signal processing systems, theory and design.

New York: Wiley; 1997.

17. Kennedy MP, Chua LO. Neural networks for nonlinear pro-

gramming. IEEE Trans Circuits Syst. 1988;35:554–62.

18. Lillo WE, Loh MH, Hui S, Zăk SH. On solving constrained

optimization problems with neural networks: a penalty method

approach. IEEE Trans Neural Netw. 1993;4(6):931–39.

19. Liu Q, Cao J. Global exponential stability of discrete-time recurrent

neural network for solving quadratic programming problems sub-

ject to linear constraints. Neurocomputing. 2011;74:3494–01.

20. Liu Q, Wang J. A one-layer recurrent neural network with a

discontinuous hard-limiting activation function for quadratic

programming. IEEE Trans Neural Netw. 2008;19:558–70.

21. Liu Q, Zhao Y. A continuous-time recurrent neural network for

real-time support vector regression. In: Computational

494 Cogn Comput (2014) 6:484–495

123

Intelligence in Control and Automation (CICA), 2013 IEEE

Symposium on, 16–19 April 2013; p. 189–193.

22. Maa CY, Shanblatt MA. Linear and quadratic programming

neural network analysis. IEEE Trans Neural Netw. 1992;3(4):

580–94.

23. Malek A, Yashtini M. Image fusion algorithms for color and gray

level images based on LCLS method and novel artificial neural

network. Neurocomputing. 2010;73:937–43.

24. Miller RK, Michel AN. Ordinary differential equations. New-

York: Academic Press; 1982.

25. More JJ, Toroaldo G. On the solution of large quadratic pro-

gramming problems with bound constraints. SIAM J Optim.

1991;1:93–13.

26. Nazemi AR. A dynamical model for solving degenerate quadratic

minimax problems with constraints. J Comput Appl Math. 2011;

236:1282–95.

27. Nazemi AR. A dynamic system model for solving convex non-

linear optimization problems. Commun Nonlinear Sci Numer

Simul. 2012;17:1696–05.

28. Nazemi AR, Omidi F. A capable neural network model for

solving the maximum flow problem. J Comput Appl Math. 2012;

236:3498–13.

29. Nazemi AR, Omidi F. An efficient dynamic model for solving the

shortest path problem. Transp Res Part C Emerg Technol. 2013;

26:1–19.

30. Pan S-H, Chen J-S. A semismooth Newton method for the

SOCCP based on a one-parametric class of SOC complementarity

functions. Comput Optim Appl. 2010;45:59–88.

31. Pyne IB. Linear programming on a electronic analogue computer.

Trans Am Inst Elect Eng. 1956;75:139-43.

32. Quarteroni A, Sacco R, Saleri F. Numerical mathematics. Texts

in applied mathematics, vol. 37, 2nd ed. Berlin: Springer; 2007.

33. Sun D, Sun J. Strong semismoothness of the Fischer–Burmeister

SDC and SOC complementarity functions. Math Program. 2005;

103(3):575–81.

34. Sun J, Zhang L. A globally convergent method based on Fischer–

Burmeister operators for solving second-order cone constrained

variational inequality problems. Comput Math Appl. 2009;58:

1936–46.

35. Sun J, Chen J-S, Ko C-H. Neural networks for solving second-

order cone constrained variational inequality problem. Comput

Optim Appl. 2012;51:623–48.

36. Tao Q, Cao J, Sun D. A simple and high performance neural

network for quadratic programming problems. Appl Math Com-

put. 2001;124:251–60.

37. Xia Y, Feng G. An improved network for convex quadratic

optimization with application to real-time beamforming. Neuro-

computing. 2005;64:359–74.

38. Xia Y, Wang J. Primal neural networks for solving convex

quadratic programs. In: International joint conference on neural

networks; 1999. p. 582–87.

39. Xia Y, Wang J. A recurrent neural network for solving linear

projection equations. Neural Netw. 2000;13:337–50.

40. Xia Y, Wang J. A general projection neural network for solving

monotone variational inequality and related optimization prob-

lems. IEEE Trans Neural Netw. 2004;15:318–28.

41. Xia Y, Wang J. A one–layer recurrent neural network for support

vector machine learning. IEEE Trans Syst Man Cybern Part B:

Cybern. 2004;34:1261–69.

42. Xia Y, Leung H, Wang J. A projection neural network and its

application to constrained optimization problems. IEEE Trans

Circuits Syst. 2002;49:447–58.

43. Xia Y, Feng G. Solving convex quadratic programming problems

by an modefied neural network with exponential convergence.

IEEE International Conference Neural Networks and Signal

Processing, Nanjing, China; 2003. p. 14–17.

44. Xia Y, Feng G, Wang J. A recurrent neural network with expo-

nential convergence for solving convex quadratic program and

related linear piecewise equation. Neural Networks. 2004;17:

1003–15.

45. Xue X, Bian W. A project neural network for solving degenerate

convex quadratic program. Neurocomputing. 2007;70:2449–59.

46. Yang Y, Cao J. A feedback neural network for solving convex

constraint optimization problems. Appl Math Comput. 2008;201:

340–50.

47. Zhang J, Zhang L. An augmented lagrangian method for a class

of inverse quadratic programming problems. Appl Math Optim.

2010;61:57–83.

Cogn Comput (2014) 6:484–495 495

123

	A Gradient-Based Neural Network Method for Solving Strictly Convex Quadratic Programming Problems
	Abstract
	Introduction
	Problem Formulation
	A Gradient Neurodynamic Model
	Stability and Convergence Properties
	Computer Simulations
	Conclusion
	References

