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Abstract Emotion recognition systems have been

developed to assess human emotional states during differ-

ent experiences. In this paper, an approach is proposed for

recognizing music-induced emotions through the fusion of

three-channel forehead biosignals (the left temporalis,

frontalis, and right temporalis channels) and an electro-

cardiogram. The classification of four emotional states in

an arousal–valence space (positive valence/low arousal,

positive valence/high arousal, negative valence/high arou-

sal, and negative valence/low arousal) was performed by

employing two parallel support vector machines as arousal

and valence classifiers. The inputs of the classifiers were

obtained by applying a fuzzy-rough model feature evalu-

ation criterion and sequential forward floating selection

algorithm. An average classification accuracy of 88.78 %

was achieved, corresponding to an average valence clas-

sification accuracy of 94.91 % and average arousal clas-

sification accuracy of 93.63 %. The proposed emotion

recognition system may be useful for interactive multi-

media applications or music therapy.

Keywords Emotion classification � Forehead

biosignals � ECG � Arousal � Valence

Introduction

From ancient times to the present day, people worldwide

have listened to music for different reasons. The great

Persian scientists Farabi (c. 872–950) and Avicenna (c.

980–1,037) established scientific principles concerning the

musical treatment of the body and soul [1]. Today, music

therapy to promote wellness is widely practiced in addition

to other complementary treatments in the realm of psy-

chotherapy. Schizophrenia, adolescent psychiatry, rehabil-

itation, psychosomatics, mental retardation, autism, etc.,

have been subjects of various studies involving applied

music therapy [2]. As such, it would be useful to recognize

a user’s music-induced emotions without the need for self-

assessment reports. Automatic emotion recognition could

help music therapists as well as individual who have dif-

ficulty describing and identifying personal emotions.

The basic idea of emotion recognition arises from a

large number of published works that have revealed asso-

ciations between human emotions and their related neuro-

physiological responses. Measurements of central nervous

system (CNS) responses through positron emission

tomography (PET), functional magnetic resonance imaging

(fMRI), and electroencephalography (EEG) have shown

that the frontal regions and auditory cortex have specific

activity during musical processing [3]. Furthermore, the

spectral power values of EEG bands are altered depending

on the emotional type of musical stimuli [4, 5]. Activity in

the peripheral nervous system (PNS) while listening to

music can be obtained by measuring different signals such

as galvanic skin response (GSR), blood pressure (BP),

heart rate (HR), respiration rate, skin temperature (SKT),

and facial expressions. Knight and Rickard showed that BP

and HR decreased when listening to soothing music [6].

Bernardi et al. [7] found that ventilation, BP, and HR
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increased with faster tempi and simpler structures com-

pared with baseline measurements. Additionally, Kallinen

found that mean HR values were lower during unpleasant

music compared with pleasant music [8]. He concluded

that low-arousal music elicited higher activation of the

zygomaticus muscle (ZM) than did high-arousal music

during eyes-closed listening, whereas high-arousal music

elicited higher ZM activation than did low-arousal music

during eyes-open listening. McFarland showed that sooth-

ing music terminated SKT decreases and perpetuated SKT

increases, whereas annoying music terminated SKT

increases and perpetuated SKT decreases [9]. Further, GSR

is believed to be a relative indicator of emotional arousal;

however, research has shown that GSR variation is

dependent on listening habits [8].

In recent years, numerous researchers have examined

emotion recognition during music listening. Janssen et al.

[10] introduced an affective music player that was based

on an estimation of probability density functions of GSR

and SKT changes during music listening. Kim and André

[11] investigated the potential of a surface electromyo-

gram (EMG) of the trapezius muscle, electrocardiogram

(ECG), GSR, and respiration changes for emotion rec-

ognition (positive–high arousal, negative–high arousal,

negative–low arousal, and negative–low arousal) during

music listening. More recently, Lin et al. [12] applied a

support vector machine (SVM) to classify EEG patterns

according to subjects’ self-reported emotional states (i.e.,

joy, anger, sadness, and pleasure) during music listening

with higher emotion classification accuracy that leads to

higher performance for an emotion recognition system.

One of the most important factors that should be con-

sidered in designing emotion recognition systems is user

comfort. In this regard, Firoozabadi et al. [13] proposed a

novel biosignal acquisition method by locating three pairs

of electrodes on participants’ frontalis and temporalis

forehead muscles. These forehead biosignals (FBS) convey

the information on their adjacent standard EEG locations as

well as facial expression information. In addition, these

locations take the advantage of involvement in emotional

processing. Rezazadeh et al. [14] applied FBS to the design

of a control interface that can be adapted to a user’s

affective state. Further, Rad et al. [15] explored the effects

of listening to pleasant and unpleasant music excerpts on

the entropy of the alpha and EMG sub-bands of FBS. They

concluded that the FBS provided informative data for

emotion classification.

In order to improve the classification accuracy of emo-

tion recognition systems, a fusion of the information from

physiological signals could be performed. Using informa-

tion from more than one signal modality could result in

improved accuracy. The objective of this paper is to design

an emotion recognition system to classify four music-

induced emotions. This emotion recognition system should

be able to serve as an alternative to questionnaires and self-

reports about induced emotions. In order to design a high-

accuracy emotion recognition system, we applied infor-

mation fusion to FBS and ECG signals. We utilizes a

feature-reduction algorithm based on a generalized fuzzy-

rough model and employed support vector machines

(SVMs) to classify the subjects’ signals in an arousal–

valence emotional space.

Materials and Methods

An emotion recognition system should be able to predict

the outcome of self-reports and questionnaires for each

listener on each song. Figure 1 illustrates the design stages

of the proposed emotion recognition system. First, FBS as

well as the main lead ECG signal are recorded during the

application of appropriate musical stimuli. After this signal

recording and preprocessing stage, several features from

each of the biosignals are calculated. In the feature-level

fusion, for different parameter values of the applied feature

evaluation criterion, the most significant feature subsets

involving different signal channels for arousal and valence

classifications are extracted. For each feature subset, the

classification accuracies are calculated. The four-class

classification can be performed by juxtaposing the outputs

of the most accurate valence and arousal classifiers. In the

following sections, we explain this process in more detail.

Emotional Stimuli

According to cognitive theories of emotion, there is an

essential cognitive basis for emotions. However, some

emotions involve much less cognitive processing and

structure for emotions [16]. A cognitive account of musical

emotion is supported by empirical studies showing that

Fig. 1 Block diagram of stages

involved for designing emotion

classification system
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emotional responses are systematically associated with the

presence of specific musical features such as modulation,

harmonic progression, and rhythm [17]. Juslin and Västfjäll

argue that musical emotions must be based on the cognitive

appraisal. They propose six other mechanisms that explain

how musical pieces induce emotion: brain stem reflexes,

evaluative conditioning, emotional contagion, visual imag-

ery, episodic memory, and expectancies that are fulfilled or

denied [18]. Konečni concluded that, however, music could

lead to a variety of responses through mediators such as

dance and cognitive associations to real-world events; being

moved and aesthetic awe may be the most genuine and

profound music-related emotional states [19].

Several-dimensional emotion categorization models

have been proposed (e.g., Plutchik’s model and the hour-

glass model [20]). According to the approach of Scholsberg

[21], every emotion has a cognitive and a physiological

component. That is, there are two emotion dimensions:

arousal, which describes the extent of the calmness or

excitation felt by people from low to high; and valence,

which describes the level of pleasure or aversiveness from

negative to positive. A schematic illustration of an arousal–

valence model of emotion with example emotions is pre-

sented in Fig. 2. In the two-dimensional arousal–valence

model, it is possible to represent emotions without using

labels. The arousal–valence space has been shown to be

effective for self-assessment of emotions and moods [22].

We place listeners’ emotional states in the four quad-

rants of this arousal–valence plane. That is, emotions can

be made to correspond to arousal–valence pairs using a set

of musically descriptive adjectives: soothing (low arousal/

positive valence), engaging (high arousal/positive valence),

annoying (high arousal/negative valence), and boring (low

arousal/negative valence). The music excerpts were chosen

based on self-ratings in a pilot study of 50 participants with

a wide range of ages and included about 15 pieces of music

in different styles. The participants were asked to complete

a questionnaire (Fig. 3), which consisted of questions about

the subjective feelings elicited by each piece of music. A

similar questionnaire had been used in a previous study

[23]. After collecting the questionnaires, the selection of

the pieces of music was performed. The decision about an

induced emotion was extracted from values rated greater

than 7 for a special feeling, while the rated values for three

other feelings were less than 3. The extracted decisions

were controlled by ratings on how much the subjects liked

or disliked the songs, and by the self-selected feelings of

the subjects (e.g., calm, sad, elated, etc.). In the selection of

the pieces of music, priority was given to majority votes,

less heard songs, and pieces of music that did not evoke

memories. The musical excerpts were as follows: Pachel-

bel’s Canon in D major (Lee Galloway), a Persian 6/8

song, Hi friend! (Deadmau5 featuring MC Flipside), and

Romance (Schumann’s Symphony No. 4) for the soothing,

engaging, annoying, and boring classes, respectively. It

should be mentioned that the selected songs and their

emotional labels were related to the culture and taste of the

Iranian subjects.

Subjects and Experimental Procedure

Twenty-five healthy nonmusician volunteers participated;

all were right-handed subjects (10 males, and 15 females)

in the age-group of 19–28 years. None of the subjects had

hearing impairment or a history of mental disorder.

Because they were aware of the purpose of the experiment,

they tried to concentrate as much as possible during the

experiment.

Fig. 2 Arousal–valence model of emotions with example emotions
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Before placing any electrode, the electrode placement

area was abraded lightly and cleaned with alcohol to lower

the electrical impedance. Three pairs of pregelled Ag–

AgCl electrodes (diameter = 10 mm; Skintact�, Inns-

bruck, Austria) were placed on a subject’s facial muscles in

a differentiation configuration to acquire FBS. One pair

was placed on a subject’s frontalis muscle: above the

eyebrows with about a 3-cm inter-electrode distance

(frontalis channel). Two pairs were placed on the left and

right temporalis muscles with about a 4-cm inter-electrode

distance (left temporalis channel and right temporalis

channel). Figure 4 shows the locations of these electrode

pairs. The ground electrode for FBS acquisition was placed

on the left earlobe. The ECG recording was performed by

placing pregelled Ag–AgCl electrodes on the palmar sides

of the right and left wrists (lead I configuration), and one

on the right leg.

The BIOPAC MP100 system (separate amplifiers;

ack100w software version; Biopac Inc., Santa Barbara,

CA) was used to collect the biosignals. A sampling fre-

quency of 256 Hz was selected.

The subjects were seated in a comfortable chair in a

quiet nonsoundproofed room with minimal light for the

recording of the biosignals. They were instructed to keep

their eyes closed, put on the headphones, and remain seated

during the music-listening experiment. Data were recorded

during 60 s of silence followed by 120 s of music. All of

the musical excerpts were played (with at least a 5-min rest

between runs) through a high-fidelity music player (W810

WalkmanTM phone, Malaysia) for each subject; the inten-

sity level of the songs was adjusted so that the listeners felt

comfortable. The musical excerpts were presented in ran-

dom order. Thus, the subjects could not anticipate what the

next stimulus is. To avoid interference in the natural

expression of emotion during music listening, a subject’s

pace was not rigidly controlled. In order to validate the

success of emotion induction, the subjects were requested

to complete a questionnaire (Fig. 3) to report their musi-

cally induced emotions after each run.

Preprocessing and Feature Extraction

The time that each R wave of the ECG occurred was found

using the AcqKnowledge software (version 3.7.3; BIOPAC

systems). Afterward, the RR intervals (time intervals

between consecutive R peaks) were confirmed by continual

visual monitoring. In addition, the raw FBS were filtered

(band-pass 1–100 Hz; band-stop 47–53 Hz).

Fig. 3 Questionnaire for

evaluation of music-induced

emotions

Fig. 4 Areas for electrode placement
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All of the RR and filtered FBS were divided into

unequal portions: a rest signal, which lasted 1 min and was

acquired during the silence; and an emotional signal, which

lasted 2 min and was obtained while listening to a musical

excerpt. The emotional data were divided into 30-s seg-

ments [12], and in each segment, several features were

computed for emotion classification purposes. In order to

minimize inter-subject variability, the features were also

computed for the rest of the signals to calculate the nor-

malized features as follows:

Fj ¼
FjðemotionalÞ � FðrestÞ

FðrestÞ ; j ¼ 1; 2; 3; 4: ð1Þ

In (1), F (rest) is a feature value extracted from a rest signal,

Fj (emotional) is a feature value extracted from the jth 30-s

segment of the emotional signal, and Fj is the jth sample of the

normalized feature of F during each recording. For each

feature, the inter-subject variability after and before feature

normalization was quantified using an analysis of variance

(ANOVA). Considering the p value threshold of 0.05, there

was no inter-subject variability after feature normalization.

After feature normalization, the feature space was constructed

by concatenation of the FBS- and ECG-based features.

Because of the emotional data splitting, 25 subjects, and four

excerpts, a total of 400 samples were obtained.

FBS Feature Extraction

The following features were extracted from the FBS:

• Relative powers

As mentioned in the ‘‘Introduction,’’ listening to music

affects CNS activation. Thus, the relative powers (RP) [23] of

each EEG band could be used to assess emotional status. To

estimate the FBS power spectral density (PSD) function, 256-

point windowed epochs (Hanning windowing) were extended

to 512 points by zero padding. Then, a 512-point short-time

Fourier transform (STFT) was applied to compute PSD. The

RP were calculated for the following frequency bands: theta (h:

4–7 Hz), slow alpha (a1: 8–10 Hz), fast alpha (a2: 11–13 Hz),

alpha (a: 8–13 Hz), slow beta (b1: 13–19 Hz), fast beta (b2:

20–30 Hz), beta (b 13–30 Hz), and gamma (c 31–50 Hz). The

relative powers were calculated using the total power of a

frequency band divided by the signal power.

• Mean frequency

The mean frequency (MF) [24] in the range f1 - f2 of a

FBS is calculated as

MF ¼
Pf2

fi¼f1
fi � PðfiÞ

Pf2
fi¼f1

PðfiÞ
; ð2Þ

where P(fi) is PSD at frequency fi. We selected the range of

4–35 Hz (a frequency range including theta, alpha, and

beta bands) for MF calculation. This feature has been used

to quantify the level of mental arousal.

• Average nonlinear energy

For the FBS xFBSðnÞ; the nonlinear energy (NE) operator

[25] is represented by

NE½n� ¼ x2
FBSðnÞ � xFBSðn� 1ÞxFBSðnþ 1Þ ð3Þ

It was found that this operator improves SNR and

measures the instantaneous energy changes of signals.

Because FBS may include facial expressions, the authors

decided to use this operator for FBS processing. After NE is

obtained, the feature is weighted with a Hanning window.

Then, the mean of the windowed data, the average nonlinear

energy (ANE), is calculated.

• Higher-order crossings

Higher-order crossings (HOC) [26] are obtained by

counting the number of zero crossings in the filtered time

series. The HOC of order m, HOCm; for a zero-mean time

series of xFBSðnÞ can be calculated as

HOCm ¼ NZCfrm�1ðxFBSðnÞÞg; m ¼ 1; 2; 3; . . .; 10

ð4Þ

where r is a backward difference operator and NZC{�}
denotes the number of zero crossings. The HOC feature

was first used for an EEG-based emotion recognition sys-

tem. In the present work, HOC1 to HOC10 were calculated

and divided by the duration of the FBS time series.

ECG Feature Extraction

After extracting the RR time series from the ECG signals,

several features were calculated. Some of these features such

as statistical features (e.g., mean and standard deviation),

nonlinear features (e.g., sample entropy), and triangular

phase space mapping have previously appeared in the ECG-

based emotion assessment literature [7, 11, 27, 28]. In the

present work, the following features were extracted

(xRRðtÞ; t¼t1; . . .; tN ; is the N-sample RR signal):

• The mean of the RR signal

RRmean ¼
1

N

XN

n¼1
xRRðtnÞ ð5Þ

• The standard deviation of the RR signal

RRstd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1
ðxRRðtnÞ � RRmeanÞ2

r

ð6Þ
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• The average waveform length

RRWL ¼
1

N � 1

XN�1

n¼1
jxRRðtnþ1Þ � xRRðtnÞj ð7Þ

• The slope of the regression curve of the RR signal

For the regression equation of x ¼ RRslpt þ b; the slope

RRslp is calculated as

RRslp ¼ N
XN

n¼1
tnxRRðtnÞ �

XN

n¼1
tn

� � XN

n¼1
xRRðtnÞ

� �� �

�

N
XN

n¼1
t2
n �

XN

n¼1
tn

� �2
� �

ð8Þ

• Katz’s fractal dimension

DKatz ¼ log10 L

log10 d
ð9Þ

In (9), L is the total waveform length (or RRWL (N - 1)),

and d is the largest distance between xRR(t1) and xRR(ti),

i = 2,…N [27].

• Poincaré geometry

The Poincaré geometry is a feature that is extracted from

a Poincaré plot. In this plot, each RR interval is plotted as a

function of the previous RR interval. The level of the long-

term HRV, called SD2, is assessed by computing the

standard deviation of the RR points along a 45� axis, while

the level of the short-term HRV, called SD1, is assessed by

computing the standard deviation of the distances of the

RR points to the 45� axis. The Poincaré geometry is

defined as the ratio of SD1 to SD2 [27].

• Sample entropy

The procedure for estimating the SampEn algorithm

consists of the following steps [27]:

1. Create m vectors defined as XðiÞ ¼ ½xRRðtiÞ xRR

ðtiþ1Þ � � � xRRðtiþm�1Þ� for i = 1,…,N - m?1.

2. Calculate the Euclidian distance between two vectors:

jXðiÞ � XðjÞj:
3. Calculate the similarity measures of Cm

i and Cm�1
i for

each l B i B N - m ? 1 as Cm
i ¼ ðN � mþ 1Þ�1

PN�mþ1
j¼1;i6¼j H r � jXðiÞ � XðjÞjf g; where Hf�g denotes a

Heaviside step function.

4. From Cm
i and Cm�1

i ; calculate Cm and Cm�1 as Cm ¼
ðN � mþ 1Þ�1PN�mþ1

i¼1 Cm
i :

5. Estimate SampEn: SampEnðm; rÞ ¼ � ln Cm

Cm�1 :

We selected m = 2, 3, and r ¼ 0:15 std(xRRðtÞÞ, where

std(.) denotes standard deviation. This parameter selection

was similar to that in [11].

• Triangular phase space mapping (TPSM) features

A triangle is obtained by plotting the absolute value of

the zero-mean normalized RR values as a function of the

RR values. From this mapping, some geometric features

such as the angles, area, and peripheral of the triangle could

be extracted. The interested reader is referred to [28], in

which the formulations of TPSM features were explicitly

introduced. In this paper, the left-side angle, area, periph-

eral, and quality of TPSM were extracted.

Feature Evaluation Criterion

To evaluate the extracted features, we used a novel feature

significance measure, presented by Hu et al. [29], which

was derived from a generalized fuzzy-rough model. After

normalizing the observations of each dimension in the

feature space, the significance measure will be obtained

after the calculations given below.

In a feature space of FS, the fuzzy equivalence class

½xi�FS of observation xi is defined as

½xi�FS ¼
ri1

x1

þ ri2

x2

þ � � � þ riN

xN

; ð10Þ

where N is the total number of observations, ‘‘?’’ means

the union, and rij is the output of a symmetrical

membership function that measures the value of the

fuzzy similarity degree between xi and xj. That is, rij ¼
f xi � xj

�
�

�
�

	 

; where xi � xj

�
�

�
� represents an Euclidean

distance between xi and xj. In this paper, a Gaussian

similarity relation function is adopted:

rij ¼ exp �jxi � xjj2
.

2r2
� �

; r¼ 0:25 ð11:Þ

We can define the lower approximation of decision X as

FSkX ¼ xijI ½xi�FS;X
	 


� k; xi 2 U
� �

; 1� k� 0:5; ð12Þ

where IðA;BÞ ¼
P

x2U
lA\BðxÞP

x2U
lAðxÞ

; and lAðxÞ is the membership

degree of x in fuzzy set A. k is a parameter that reflects a

user’s tolerance to the degree of noise, with a smaller value

for k, indicating a greater tolerance to noise. For a two-

class problem (X1 and X2), the lower approximation of

classification D is defined as

FSkD ¼ FSkX1; FSkX2

� �
: ð13Þ

Finally, the feature significance measure of feature

space FS for classification D is calculated as
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c ¼
jFSkDj

N
ð14Þ

where |.| is the cardinality of a set. Obviously, 0� c� 1. A

higher value of c indicates a higher class separability.

Feature Selection Strategy

For each parameter k of the described feature evaluation

criterion, we used the sequential forward floating selection

(SFFS) approach [30] to select informative feature subsets,

FSs. Thereafter, these feature subsets were imposed on

classifiers, and classification rates were calculated. The

selection procedure consists of the following steps:

Step 1 Initialization: FS0 ¼ ;; i ¼ 0;

Step 2 Select the feature with the maximum c ratio:

Fþ ¼ arg max
Fþ62FSi

½cðFSi þ FþÞ�:

Step 3 Inclusion: If cðFSi þ FþÞ[ cðFSiÞ then

FSiþ1 ¼ FSi þ Fþ; i ¼ iþ 1:

Step 4 Find the least significant feature in FSi:

F� ¼ arg max
F�2FSi

½cðFSi � F�Þ�;

Step 5 Exclusion: If cðFSi � F�Þ[ cðFSiÞ then

FSiþ1 ¼ FSi � F�; i ¼ iþ 1; Go to Step 4,

else go to Step 2

Step 6 End

Classifiers

This study employed binary support vector machines

(SVMs) [30] for pattern classification. In an SVM, a kernel

function is applied to map the input feature space to a high-

dimensional feature space. In the learning phase of the

SVM, the goal is to maximize the separation margin

between two classes. After testing different kernels (radial

basis, quadratic, and polynomial), this study employed a

third-order polynomial kernel function for data projection.

To design an emotion recognition system that classifies

music-induced emotions into four classes, positive valence/

low arousal, positive valence/high arousal, negative

valence/high arousal, and negative valence/low arousal, we

performed the following steps:

1. Place the data into the two classes of low arousal and

high arousal based on their labels.

2. Change threshold k of the feature evaluation criterion

from 0.7 to 0.95 in 0.05 steps; select the optimal features

for the high arousal–low arousal classification problem;

and determine the average arousal classification accu-

racy for each k.

3. Determine threshold kA for the most accurate arousal

classifier.

4. Place the data into the two classes of negative valence

and positive valence based on their labels.

5. Change threshold k of the feature evaluation criterion

from 0.7 to 0.95 in 0.05 steps; select the optimal

features for the positive valence–negative valence

classification problem; and determine the average

valence classification accuracy for each k.

6. Determine threshold kV for the most accurate valence

classifier.

7. Combine the outputs of the kA-based arousal classifier

and kV-based valence classifier to develop the emotion

recognition system.

In order to estimate the true power of the arousal or

valence classifiers (in the second, fifth, and seventh above-

mentioned steps), a hundred repetitions of the fourfold

cross-validation technique were used. It should be noted

that the same index data, with different features, were fed

to the valence and arousal classifiers. The four-class clas-

sification results from the total emotion recognition system

were determined by the binary outputs of the valence and

arousal classifiers (Fig. 1). For example, when the valence

classifier had an output of 1 and the arousal classifier had

an output of 0, the class of the induced emotion was

regarded as positive valence/low arousal. The rationale of

fusing the valence and arousal classifiers is that the SVM

classifiers are binary by nature. An alternative scheme for a

four-class classification problem using SVMs is to train

four independent SVMs to classify samples for one class in

relation to the three other classes. This alternative method

is referred to as ‘‘one-against-all’’ (OAA). Obviously, the

proposed classifier fusion method requires fewer SVMs

than OAA does.

Effect of Discarding Signal Modality

To evaluate the emotion recognition accuracy after discarding

one of the signal modalities, the average classification rates

were recalculated by applying FBS- and ECG-discarded

selected feature subsets. The t test was performed for different

subsets of features to determine statistical significance.

Results

Arousal Classification

Table 1 shows that the optimal selected feature subsets and

corresponding arousal classification accuracies varied with

the specified threshold of the feature evaluation criterion.

Significantly, two sets of features had the maximum mean
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arousal classification accuracy (93.63 and 93.36 % corre-

sponding to kA = 0.85 and kA = 0.9). The best-selected

feature subsets, labeled as arousal-discriminant feature

subset (AFS), for classifying high-arousal and low-arousal

emotional states are as follows:

• AFS1: Concatenation of RPh and FMN of the left

temporalis channel; RPa1; RPb2; and FMN of the

frontalis channel; RPh, FMN, HOC5, and ANE of the

right temporalis channel; and SampEn(3, r) of the ECG

channel.

• AFS2: Concatenation of RPh and RPa1 of the left

temporalis channel; RPa1 and RPb2 of the frontalis

channel; RPh, FMN, HOC5, and ANE of the right

temporalis channel; and SampEn(3,r) and the TPSM

angle of the ECG channel.

The mean false-positive (FP) and false-negative (FN)

rates of the selected feature subsets show that there is no

notable classification bias toward high arousal or low

arousal classes.

Valence Classification

Table 2 shows that the optimal valence-discriminant fea-

ture subsets and corresponding classification accuracies

varied with the specified threshold of the feature evaluation

criterion. Significantly, two sets of features had the maxi-

mum mean valence classification accuracy (94.88 and

94.91 % corresponding to kV = 0.85 and kV = 0.9). The

best-selected feature subsets, labeled as valence-discrimi-

nant feature subset (VFS), for classifying the negative-

valence and positive-valence emotions are as follows:

VFS1 Concatenation of RPc of the left temporalis

channel; RPh, RPb1; and HOC5 of the frontalis

channel; RPa1 and HOC6 of the right temporalis

channel; and RRmean and the SampEn(2, r) feature

of the ECG channel

VFS2 Concatenation of RPc of the left temporalis channel;

RPh, RPb1; and HOC5 of the frontalis channel; RPa2,

HOC8, and FMN of the right temporalis channel;

and RRmean and the SampEn(2, r) feature of the

ECG channel

The mean FP and FN rates of the selected feature sub-

sets show that negative-valence samples have more clas-

sification error than positive-valence samples.

Final Results

As described in Sect. 2, in the final stage of the emotion

recognition system design, the valence classifier and

arousal classifier outputs were combined. By applying an

input pattern, a binary output of 0 or 1 is obtained for each

classifier. Therefore, by juxtaposing the outputs of the

arousal and valence classifiers, a four-class emotion rec-

ognition system can be designed.

The overall classification accuracies, sensitivities, and

specificities corresponding to the application of optimal

AFSs and VFSs are tabulated in Table 3. As shown in this

table, the maximum average classification accuracy of

88.78 % when classifying four-class emotional states is

obtained by juxtaposing the outputs of the AFS1-input

arousal classifier and VFS2-input valence classifier. The

average sensitivities when classifying the four emotional

states related to the maximum mean classification rate are

84.22, 91.84, 88.45, and 89.89 % for the negative valence/

low arousal (boring), positive valence/low arousal (sooth-

ing), negative valence/high arousal (annoying), and posi-

tive valence/high arousal (engaging) classes, respectively.

The corresponding average specificities are 98.01, 92.92,

97.57, and 95.84 % for the boring, soothing, annoying, and

engaging classes, respectively. The sensitivity values are

Table 1 Selected features and corresponding arousal classification rates versus parameter of feature evaluation criterion

k Selected features

for left temporalis

channel

Selected features

for frontalis

channel

Selected features

for right temporalis

channel

Selected features

for ECG channel

Classification

accuracy

Mean

false

positive

Mean

false

negative

0.7 RPh, HOC2 HOC7 FMN TPSM angle, TPSM quality 89.41 (4.59) 10.62 10.94

0.75 RPh, HOC2 RPa, RPb2, RPa1 FMN. HOC5 Slope, SampEn2, TPSM angle 90.92 (4.66) 9.48 10.12

0.8 RPh, SE RP2, RPa1, FMN RPh, FMN, HOC5, ANE Std SampEn3 91.05 (4.59) 9.44 10.06

0.85 RPh, FMN RPa1, RPb2, FMN RPh, FMN, HOC5, ANE SampEn3 93.63 (4.1) 6.28 6.46

0.9 RPa1, RPh RPa1, RPb2 RPh, FMN, HOC5, ANE SampEn3 TPSM angle 93.36 (4.3) 6.30 6.52

0.95 RPa HOC4 RPh SampEn4 TPSM quality 80.29 (5.94) 18.26 20.94

k the parameter of fuzzy-rough model (feature evaluation criterion)

The bolded rates indicate the most classification accuracies among all the feature subsets (p \ 0.05)
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obtained by calculating the average confusion matrix (a

table with the true classes in rows and the predicted classes

in columns). Table 4 presents the average confusion matrix

obtained by the maximum-accuracy classifiers. The first

row of the matrix shows that the maximum confusion of

the proposed emotion recognition system occurred for a

boring musical stimulus, with an average confusion of

9.65 % for the soothing class. Furthermore, Table 3 shows

that the minimum average specificity rate is 92.92 % for

the soothing class.

Table 5 presents the effect of discarding the signal

modalities on the classification rates. As seen, discarding

FBS-based features from the optimal feature subsets

greatly reduces the classification rates. According to the

classification rates after discarding the ECG-based features

from the optimal feature subset, the overall classification

accuracy, the valence classification rate, and the classifi-

cation sensitivities to all classes except the annoying class

are significantly reduced. Obviously, FBS have more

impact than ECG signals on the classification rates.

Discussion

Nowadays, emotion recognition and sentiment analysis

systems are in the focus of opinion mining research [31,

32]. As mentioned in the ‘‘Introduction,’’ the recognition of

induced emotions during music therapy is important. To

establish an appropriate replacement for self-reports of

induced emotions, emotion recognition systems that utilize

neurophysiological signal processing have been proposed.

The present study was performed to demonstrate the fea-

sibility of fusing ECG and FBS information to classify

music-induced emotions. Nowadays, these biosignals are

fairly widely used in affective computing and HMI

applications.

The selection of musical excerpts and the signal

recordings were performed using different sets of subjects.

It should be stressed that the system is able to predict the

outcome of the questionnaire even if an induced emotion is

contrary to those of the majority. The comparison between

questionnaire outcomes and stimulus labels after signal

Table 2 Selected features and corresponding valence classification rates versus parameter of feature evaluation criterion

k Selected features

for left temporalis

channel

Selected features

for frontalis

channel

Selected features

for right temporalis

channel

Selected features

for ECG channel

Classification

accuracy

Mean

false

positive

Mean

false

negative

0.7 RPa1 70.51 (6.85) 28.36 31.25

0.75 HOC1 RPb1, RPh, RPa1 HOC2 SampEn2, Dkatz 91.74 (4.42) 7.68 8.86

0.8 RPb, RPa1 HOC3, HOC6, RPa1 SampEn2, Dkatz 91.91 (4.33) 7.55 8.78

0.85 RPc HOC5, RPb1, RPh HOC6, RPa1 SampEn2, mean 94.88 (3.37) 4.52 5.75

0.9 RPc HOC5, RPb1, RPh HOC8, RPa2, FMN SampEn2, mean 94.91 (3.71) 4.50 5.72

0.95 HOC7, FMN HOC1, RPh, RPa1, RPb1 HOC1, FMN SampEn2, mean 93.08 (4.34) 6.48 7.26

k the parameter of fuzzy-rough model (feature evaluation criterion)

The bolded rates indicate the most classification accuracies among all the feature subsets (p \ 0.05)

Table 3 Overall classification rates, sensitivity, and specificity values for selected feature subsets

Feature type of

arousal classifier

Feature type

of valence

classifier

Classification

accuracy (%)

Average sensitivity (%) Average specificity (%)

Soothing Engaging Annoying Boring Soothing Engaging Annoying Boring

AFS1 VFS1 88.18 ± 5.92 91.01 89.77 88.74 83.85 92.98 95.85 97.52 97.57

AFS1 VFS2 88.78 ± 5.88 91.84 89.89 88.45 84.22 92.92 95.84 97.57 98.01

AFS2 VFS2 86.9 ± 5.86 89.56 88.25 88.38 83.44 92.08 95.01 97.74 97.24

AFS2 VFS2 87.01 ± 5.75 90.24 88.31 87.69 83.82 92.07 94.83 97.83 97.59

Table 4 Average confusion matrix of final emotion recognition

system using AFS1 and VFS2

Input

music

Output: listener’s recognized affective states

Boring

(%)

Soothing

(%)

Annoying

(%)

Engaging

(%)

Boring 84.22 9.65 3.28 2.85

Soothing 2.03 91.84 1.59 4.54

Annoying 3.67 4.11 88.45 3.77

Engaging 0.7 6.97 2.44 89.89
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recording aimed to ensure the exact input–output rela-

tionship for the classifiers and an equal sample size for

each class.

After the acquisition and preprocessing of the biosig-

nals, several linear and nonlinear features were extracted.

Because the SVM classifier has been successfully applied

to emotion recognition applications [12, 33] in the past, it

was also applied in the present work. To classify the

emotional data to arousal–valence quadrants, two parallel

SVM classifiers were designed: a valence classifier and an

arousal classifier. The final emotion recognition system

was designed by juxtaposing the outputs of these valence

and arousal classifiers. The inputs of the classifiers varied

according to the inclusion parameter of the optimal feature

evaluation algorithm. Tables 1 and 2 show that the feature

subsets are obtained by applying a fuzzy-rough model

(feature evaluation algorithm) and SFFS. Although the

SFFS algorithm may not be the optimal search method, it

proceeds dynamically, including and excluding features

until the optimal feature subset is obtained. As shown in

the tables, most of the features are selected from the

frontalis and right temporalis channels. However, the

optimum feature subsets are obtained by fusing informative

features of all of the signal channels. The major selection

of the RP features reflects the interrelation of emotional

states and power spectrum variations in the EEG sub-

bands, as previously shown [3–5].

The best average valence classification rate, the best

average arousal classification rate, and the corresponding

total classification rate were 93.63, 94.91, and 88.78 %,

respectively. To the best of our knowledge, this was the

first time that the fusion of FBS and electrocardiogram data

was applied to emotion classification in an arousal–valence

plane. The results proved the hypothesis about the ability

of FBS to classify music-induced emotions. Furthermore, it

was shown that the inclusion of ECG-based features yields

improvements in the valence and total classification rates.

This confirms previous studies that have suggested that

ECG activation is sensitive to emotional valence [8, 33].

The maximum classification sensitivity was obtained for

the recognition of the positive valence/low arousal

(soothing) class, and the lowest sensitivity was obtained for

the recognition of the negative valence/low arousal (bor-

ing) class. To provide a complete picture of the system

performance, the FP and FN rates of each classifier as well

as the average confusion matrix (Table 4) were included.

The mean FP and FN rates of the valence classifier beside

the first row of the confusion matrix reveal that the weakest

point of the proposed system is the confusion of low-

arousal/negative-valence samples with low-arousal/posi-

tive-valence samples (9.65 %). However, the classification

results, sensitivity, and specificity values are generally

satisfying (Table 3). Because the highest confusions are

with soothing class, it yielded the lowest specificity of

92.92 %.

Currently, researchers are working on designing and

developing emotion recognition systems by applying var-

ious biomedical data. Using four-channel biosignals (ECG,

respiration, GSR, and EMG), Kim and André [11] pre-

sented an average classification rate of 70 % for the sub-

ject-independent recognition of music-induced emotions

over four subjects. Lin et al. [12] proposed an EEG-based

emotion recognition system for distinguishing four music-

induced emotions with a maximum average accuracy of

82.29 % over 26 subjects. In [34], Liu et al. proposed a

three-channel EEG-based emotion recognition algorithm

and reported arousal and valence classification accuracies

of 84.9 and 90 %, respectively, over ten subjects. This

research is not limited to the application of musical stimuli.

In [20], the HOC features of EEG channels and SVMs were

used to classify six visually induced emotions (happiness,

surprise, anger, fear, disgust, and sadness); they reported a

mean classification rate of 83.33 % across 16 subjects.

Soleymani et al. [35] used EEG, pupillary responses, and

gaze distance to classify the affective states induced by

video stimuli; they achieved the best user-independent

classification accuracies of 68.5 and 76.4 % (over 24 par-

ticipants) for three valence labels and three arousal labels,

Table 5 Effects of discarding

signal modalities on

classification rates

Bold values indicate significant

decreases (p \ 0.05) in

classification rates in

comparison with the condition

of applying optimal feature

subsets

Optimal

feature

subsets

FBS-discarded

optimal feature

subsets

ECG-discarded

optimal feature

subsets

Total mean accuracy (%) 88.78 47.2 86.63

Mean arousal classification accuracy (%) 93.63 56.43 93.07

Mean valence classification accuracy (%) 94.91 82.86 92.96

Output sensitivity of classification

Boring (%) 84.22 49.27 82.63

Soothing (%) 91.84 41.65 88.64

Annoying (%) 88.45 36.05 88.13

Engaging (%) 89.89 49.92 88.75
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respectively. In addition, Khosrowabadi et al. [36] reported

a mean classification rate of 84.5 % (across 26 subjects) by

applying eight EEG channels for classifying four emotions

elicited by audiovisual stimuli. It is clear that the classifi-

cation rates of our proposed system are considerably better

than those of the previous related works. However, the lack

of public musical stimuli and factors such as data acqui-

sition conditions and decision-making schemes might

affect the classification rates. Furthermore, in some cases,

the difference in the number of emotional states does not

provide the same conditions for comparison of the pub-

lished works.

The proposed emotion recognition system has the

advantages of subject independence and user comfort.

However, it should be noted that, if desired, the recognition

of more than four emotional classes in the arousal–valence

space would require modifications, including the selection

of additional musical stimuli (emotional states), changes in

the optimal subject-independent AFSs and VFSs, and

retraining of the classifiers. In future work, the perfor-

mance of the proposed system will be evaluated using

subjects who suffer from alexithymia (the phenomenon of

being unable to express emotions).

Conclusions

This paper introduced and evaluated the application of

information fusion of forehead and ECG biosignals to

classify users’ music-induced emotions in an arousal–

valence emotional space. The results of this study show

that the optimal selection of features of the FBS and ECG

signals for arousal and valence classifiers is an effective

technique for the classification of induced emotions. The

best result for arousal classification (93.63 % mean clas-

sification rate) was obtained by the concatenation of RPh

and FMN of the left temporalis channel; RPa1; RPb2, and

FMN of the frontalis channel; RPh, FMN, HOC5, and ANE

of the right temporalis channel; and SampEn(3, r) of the

ECG channel. The best result for valence classification

(94.91 % mean classification rate) was obtained by the

concatenation of RPc of the left temporalis channel; RPh,

RPb1, and HOC5 of the frontalis channel; RPa2, HOC8, and

FMN of the right temporalis channel; and RRmean and the

SampEn(2, r) feature of the ECG channel. Finally, the best

mean accuracy for classifying the low arousal/positive

valence, low arousal/negative valence, high arousal/posi-

tive valence, and high arousal/negative valence classes was

88.78 %. By using the proposed emotion classification

system, we hope to see greater progress in the fields of

music therapy, affective computing, and interactive mul-

timedia systems.
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