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Abstract We propose a novel method for the extraction

of discriminative features in electroencephalography

(EEG) evoked potential latency. Based on our offline

results, we present evidence indicating that a full surround

sound auditory brain–computer interface (BCI) paradigm

has potential for an online application. The auditory spatial

BCI concept is based on an eight-directional audio stimuli

delivery technique, developed by our group, which

employs a loudspeaker array in an octagonal horizontal

plane. The stimuli presented to the subjects vary in fre-

quency and timbre. To capture brain responses, we utilize

an eight-channel EEG system. We propose a methodology

for finding and optimizing evoked response latencies in the

P300 range in order later to classify them correctly and to

elucidate the subject’s chosen targets or ignored non-tar-

gets. To accomplish the above, we propose an approach

based on an analysis of variance for feature selection.

Finally, we identify the subjects’ intended commands with

a Naive Bayesian classifier for sorting the final responses.

The results obtained with ten subjects in offline BCI

experiments support our research hypothesis by providing

higher classification results and an improved information

transfer rate compared with state-of-the-art solutions.

Keywords Auditory BCI � Spatial auditory

cognition � EEG � Event-related potential (ERP) �
Feature extraction � Statistical signal processing

Introduction

A brain–computer interface (BCI) is designed to establish a

communication link between the human brain and a com-

puter [1]. A BCI does not depend on muscle or peripheral

nervous system activity. In particular, a BCI could help

patients suffering from amyotrophic lateral sclerosis (ALS)

to communicate or to complete various daily tasks,

including controlling a computer or typing messages on a

virtual keyboard. In recent years, auditory BCI (aBCI) has

become a topic of great interest in computational auditory

neuroscience. The aBCI utilizes human auditory pathway

responses and allows users to operate external devices

more quickly and simply, based on auditory evoked

responses to sound stimuli. We utilize a spatial auditory

paradigm to create a new aBCI system with which users

consciously direct their attention to different locations in a

horizontal surround sound environment with various noise

stimuli, as depicted in Fig. 1. The spatial aBCI concept is

founded on a basic feature of the human auditory pathway,

which is very sensitive to the location of changing spatial

auditory sources [2]. The auditory pathway also has a very

good temporal resolution, which is an additional feature we

would like to utilize in the spatial aBCI design. This will

make it possible to reduce inter-stimuli intervals (ISI) of

the presented sounds in comparison with vision-based

applications [3]. Contemporary applications have thus far

failed to use rear-to-the-head loudspeakers, as postulated as

an optimal setting yet still not fully realized in Schreuder

et al. [4]. Our proposal includes sound presentation from
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rear loudspeakers, thus realizing an eight-command BCI

(octagonal horizontal plane full surround sound set-up). In

previous publications, we discussed EEG electrodes

selection, event-related potential (ERP) features optimiza-

tion and linear discriminative analysis classification [5].

These earlier results were unsatisfactory as regards a suc-

cessful online aBCI system application.

In this paper, we discuss a novel aBCI paradigm based

on the full surround sound horizontal stimuli as an infor-

mative cue with the support of the P300 component

(known as the ‘‘aha response’’) at a latency around and

after the 300 ms, evoked by the expected/instructed targets

[6]. Our hypothesis is that a significant ERP response will

be found when subjects attend to the target direction and

ignore the non-targets. To find the significant differences,

we propose analyzing the response statistically to identify

only those ERP latencies that contribute to the classifica-

tion enhancement, in contrast to state-of-the-art approaches

[1], in which the whole response is taken as a feature for

subsequent classification.

The hypothesis of our research is that the horizontal full

surround sound aBCI paradigm could be improved with the

careful selection of ERP discriminative features that allows

the use of the rear-to-the-head sound directions. For this

purpose, we introduce a statistical response analysis, which

ultimately leads to the final improvement in the informa-

tion transfer rate (ITR).

The paper is organized as follows. In the next section,

the experimental paradigm is explained together with the

EEG preprocessing steps. Then, we discuss EEG feature

selection using the method of statistical analysis of ERP

responses. Finally, we present classification results

obtained with a Gaussian Naive Bayesian Classifier

(GNBC), which leads to an improvement in the ITR scores.

The final section summarizes the paper.

Methods

Within the framework of the proposed novel aBCI para-

digm, the subjects were asked to attend to and count targets

while ignoring non-targets, as in the classical oddball

paradigm [1, 6]. A target direction instruction regarding

which direction should be attended to in each trial was

displayed visually on a computer display located in front of

the subject. First, we conducted psychophysical experi-

ments to check possible preferred directions of the subjects

by comparing response time delays. Next we conducted

EEG recording experiments in an offline BCI setting. The

EEG signals were recorded with a g.MOBILab? EEG

amplifier by g.tec. We used novel dry EEG electrodes

g.SAHARA to further improve the subjects’ comfort, since

these do not require conductive gel. The reference and

ground electrodes were attached behind the left and right

ears, respectively. To reduce unnecessary noise and to

prevent degradation of the EEG signal quality as a result of

electromyography (EMG) noise related to muscular

movement in the ERP responses, the subjects were asked to

minimize the blinking of their eyes, and facial and body

movements during the experiments.

EEG experiments designed to validate the proposed

spatial aBCI paradigm utilizing the P300 latency were

conducted in the Multimedia Lab at the Life Science

Center of TARA, University of Tsukuba, Japan. All the

experimental procedures and study targets were explained

to the subjects, who agreed to participate voluntarily. The

experiments were conducted in agreement with the WMA

Declaration of Helsinki—Ethical Principles for Medical

Research Involving Human Subjects. All the experiments

were conducted in a silent and low reverberation room in

order to limit any interference from environmental acoustic

noise.

The auditory stimuli were presented through eight

loudspeakers in an octagonal setting, as depicted in the

upper part of the Fig. 1. The eight sound stimuli directions

proved to be optimal from the points of view of aBCI and

human subject spatial auditory performance [4].

Two short white and pink noise stimuli bursts were used

as depicted in the lower part of the Fig. 1 and described in

the following section.

Fig. 1 Spatial auditory BCI paradigm concept with eight loudspeak-

ers in the upper part of the figure. The lower graph visualizes the

stimulus presentation concept in the time domain. Each stimulus is

presented for 30 ms with 170-ms silent breaks, so the ISI is set to

200 ms
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Psychophysical Experiment

In the psychophysical experiment, only the behavioral

responses (button presses after the instructed and perceived

target stimuli) were recorded. Different response time

delays would suggest changing cognitive loads and task

difficulties in function of the various spatial directions. The

subjects were requested to press a button immediately after

an instructed target direction was presented. The response

delays in respect of auditory stimuli onsets were recorded

and further analyzed in order to compare them with various

spatial directions.

The results of the psychophysical experiment are pre-

sented in Tables 1 and 2. As a result of the tests conducted,

we conclude that all the eight spatial sound stimuli loca-

tions had the same (differences among means statistically

non-significant when compared with pairwise t tests) val-

ues for all the tested octagonal stimulus spatial directions

for white and pink noise, which also confirms psycho-

physical experiments reported in Schreuder et al. [4].

The Offline aBCI Experiment Protocol

The experimental hypothesis was that we would be able to

distinguish from the ERP shape (mainly based on the P300

response latencies) which direction the subject attended to

in the spatial auditory paradigm experiment.

To test the hypothesis, we conducted a series of EEG

recording experiments in the offline BCI mode (with no

instant feedback or classification results given to the sub-

jects [1]). EEG recording experiments were conducted with

the ten healthy subjects (eight males; two females; age

range from 23 to 42 years, mean 25.8, SD 6.34). The

subjects were requested to sit in a comfortable chair in the

center of eight octagonally positioned loudspeakers, and

the dry EEG electrodes were positioned on the scalp. The

elevation of the loudspeakers was fixed at the subject’s ear

level in order to create a horizontal spatial plane defined by

the eight loudspeakers (see Fig. 1). The volume of the

sound was set to 72 dB.

The sound stimuli were presented in random order and

one at a time from a single loudspeaker (a single trial

consisted of a delivery of a single target and seven non-

targets). We employed two broadband noise stimuli types

that allowed us to utilize the two spatial localization

mechanisms of the human auditory pathway, the inter-

aural time delay (ITD) and the interaural level difference

(ILD) [2]. The white and pink noise stimuli both had

30 ms lengths with 5-ms linear attack and sustain inter-

vals. For each subject and each stimulus, we performed

eight sessions (altogether 64 targets and 448 non-targets

were presented). Each subject was requested to focus on

the instructed target direction which was presented on a

computer display. The subject ignored the other non-

target directions. Each subject was also requested to

control her/his eye movements to decrease the unneces-

sary EMG noise during the experiments. Before each

experiment, the subject was allowed a short practice

session to get familiar with the spatial auditory stimulus

conditions.

EEG Acquisition

The EEG signals were recorded by the g.MOBILab? bio-

amplifier with eight dry g.SAHARA electrodes. The EEG

recording system captured the neurophysiological signals

in a frequency range of 0.1–40.0 Hz. The following eight

EEG electrode positions were chosen P3, P4, P5, P6, Cz,

CPz, Pz, and POz, as in the 10/10 system [7]. The eight

EEG channels were sampled with 256 Hz frequency and

stored using a custom application programmed in MATLAB

and Simulink environments.

Table 1 The spatial sound psychophysical experiment results

Front left Front right Rear left Rear right Front Rear Left Right

Pink noise stimulus

Grand mean of delay time (ms) 455 474 447 490 450 464 466 462

STD of response time delay (ms) 63 76 42 75 59 76 73 65

Accuracy (%) 100 100 72 72 94 78 94 83

STD of accuracy (%) 0 0 33 25 14 27 14 28

White noise stimulus

Grand mean of delay time (ms) 439 458 448 478 445 489 450 477

STD of response time delay (ms) 63 48 65 52 68 59 56 55

Accuracy (%) 100 94 83 83 94 94 94 89

STD of accuracy (%) 0 0 33 25 14 27 14 28

The response time delays and instructed directions accuracies are presented in the form of mean values with standard deviations (STD),

respectively
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EEG Response Analysis

The analysis of EEG ERP responses, leading to the final

eight-direction spatial auditory classification for target and

non-target locations, was composed of the following three

steps:

1. EEG signals preprocessing: band-pass filtering, epoch

segmentation, and artifact rejection;

2. Discriminative feature extraction using the analysis of

variance (ANOVA) method;

3. The final classification of evoked response using the

GNBC.

We describe the above steps in detail in the following

sections.

EEG Preprocessing

First, we filtered digitally the signals with the two fifth-

order Butterworth high- and low-pass filters, which were

applied with cut-off frequencies at 0.5 and 25 Hz. The low-

pass filtering removed possible muscle-activity-related

artifacts. The high-pass filtering removed the direct cur-

rent-related drifts of the EEG signals, as well as slow eye

movement artifacts.

Next, the EEG signals were segmented creating the

ERP-related epochs. Each epoch started 100 ms before

stimulus onset and it ended after 700 ms. We used the

100 ms prestimuli onset interval as the baseline (see

Fig. 2).

In the next step, the rejection of eye movement artifacts

was carried out. Auditory spatial stimuli are known to

cause uncontrolled eye movements in subjects [8], which in

the current approach were removed with a threshold value

set at the 80 lV (signal amplitude level above the usual

EEG activity). The rejected epochs were not further pro-

cessed, since in the current approach, the emphasis was on

the spatial paradigm validation. In the following sections,

feature extraction and ERP classification results are

introduced.

ERP Feature Extraction Using ANOVA of the ERP

Latencies

The aim here was to optimize the EEG response domain

(mainly P300 response), which would provide a better

separability for further classification. In order to do this, we

conducted ANOVA of the two-class single-trial ERP dis-

tributions (target vs. non-target responses) in the spatial

auditory experimental setting. The ERP response distribu-

tions passed ‘‘normality tests’’ and were comparable to

more flexible methods such as the area under the curve

analysis, yet the proposed ANOVA yielded the best results

in our case. The majority of spatial aBCI applications aim

at the P300 response latency [4, 5, 9, 10]. The example in

Fig. 2 shows the averaged ERP responses to targets and

Table 2 The confusion matrix results from the psychophysical experiment averaged for all the subjects for pink and white noise stimulus,

respectively

Accuracy (%) Front left Front right Rear left Rear right Front Rear Left Right

Confusion matrix in psychophysical tests using pink noise stimulus

Front left 100 0 0 0 0 0 0 0

Front right 0 100 0 0 0 0 0 0

Rear left 6 6 72 5 0 0 5 0

Rear right 5 0 6 72 0 6 0 6

Front 0 0 5 0 78 11 0 6

Rear 0 0 5 0 6 78 0 6

Left 0 0 6 0 0 0 94 0

Confusion matrix in psychophysical tests using white noise stimulus

Right 0 0 0 6 0 11 0 83

Front left 100 0 0 0 0 0 0 0

Front right 0 94 0 6 0 0 0 0

Rear left 0 0 83 5 0 0 0 6

Rear right 0 6 0 83 5 0 0 6

Front 0 0 0 6 94 0 0 0

Rear 0 0 6 0 0 94 0 0

Left 0 0 0 6 0 0 94 0

Right 0 0 0 6 0 11 0 83

Cogn Comput (2015) 7:34–43 37

123



non-targets (note the latencies range 300–600 ms). Next,

the ANOVA method was applied to compare the differ-

ences of response distributions in single trials for each

sample point of the collected ERPs. As a result, we were

able to extract discriminative information leading to later

classification optimization. The results of the above anal-

ysis are depicted in Figs. 3 and 4. The bottom panels in the

above figures visualize the ANOVA’s p values for eight

electrodes separately in each row using a color scheme, as

explained in the color bars next to the panels. The p values

are the probabilities of the null hypotheses that the distri-

butions are significantly different (in life sciences, usually

p \ 0.05 is considered to be a significant value). The

results in Figs. 3 and 4 clearly show that the postulated

P300 latency area in the range 300–600 ms is the best to

discriminate attended targets from ignored non-targets.

This finding confirms our hypothesis that the P300 laten-

cies are also related to spatial cognition in the human brain.

Next in this paper, the binary classification problem is

discussed. We evaluate our hypothesis that the ‘‘hand-

picked’’ P300 latency ERP periods are significant features

to improve the binary target vs. non-target classification

accuracy. In order to find the most discriminable features

from ERP responses, we used the results from the ANOVA

method described above applied to the all ERP latencies.

We ‘‘hand-picked’’ only those samples within each sub-

ject’s ERPs for which the p values were smaller than 0.05

(as depicted in blue in Figs. 3 and 4) in the range

300–600 ms.
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Fig. 2 The grand mean averaged ERP responses of the ten subjects.

Results of ERP P300 response for pink noise (upper panel) and white

noise (lower panel). The solid red lines depict the attended targets

and the blue dashes the ignored non-targets. The differences between

targets and non-targets are very easy to distinguish after 300 ms (the

so-called aha or P300 response) (Color figure online)
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Fig. 3 Grand mean average auditory evoked responses to spatial

white noise stimuli of the ten subjects from the eight electrodes

plotted separately in each row of the panels. The top panel shows the

grand mean averaged response to the targets. The middle panel

presents the grand mean averaged responses to non-targets. The

bottom panel depicts the p values from the ANOVA for the eight

electrodes separately
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The Offline ERP Classification in the aBCI Paradigm

We performed the classification steps for each subject

separately in aBCI offline mode, which means that all the

procedures were conducted after the collection of data from

each experiment, without any online feedback to the sub-

jects. The classification procedure in our case is a so-called

binary task paradigm (target vs. non-target). In the clas-

sifier training and testing step, we selected 64 targets and a

random subset of 64 non-targets (from the 448 available)

to have a balanced number of the members in each class

set. The resulting theoretical chance level was thus 50 %.

Based on our previous classification trails reported in Cai

et al. [5, 11], we proposed to use a Bayesian classifier,

which yielded similar or even better results on our exper-

imental data than linear discrimination analysis methods.

The GNBC is particularly suited to highly dimensional

features. The GNBC method produced results comparable

to more sophisticated classification methods [12] for par-

ticular cases as reported in this paper. In our approach, we

utilized a NaN-Toolbox which is a part of a BioSig envi-

ronment [13]. The classifier input features were the real

micro-volt EEG ERP latency values ‘‘hand-picked’’ as

discussed in the previous section.

The results of the successful application of the GNBC

technique are presented in the next section.

Results

The proposed approach resulted in the improvement in the

aBCI paradigm for setting of both the combined and

averaged electrodes for each subject separately. Detailed

results are presented in the following sections. First, we

introduce the ITR, which is a commonly used measure to

compare various paradigms in the BCI research community

[4]. We also present classification accuracy results.

Analysis of aBCI Results with ITR and Classification

Accuracies

The amount of information carried by each selection in the

BCI application is usually quantified by the ITR, which is

calculated based on bit-per-selection R, defined as [4]:

R ¼ log2 N þ C � log2 C þ ð1� CÞ � log2

1� C

N � 1

� �
; ð1Þ

where C is the classification accuracy and N is the number

of classes (N = 8 in this paper). The final ITR is obtained

after a multiplication by a classification speed V, resulting

in a bit-per-minute rate (bit/min) as:

ITR ¼ V � R ð2Þ

The ITR results are summarized in Tables 3 and 5 and

discussed in detail in the following sections. The GNBC

classification accuracies are also summarized in Tables 4

and 6.

The ITR and Classification Accuracy Results

from the P300 ERP Range Latencies in the Single

Channel Setting of Target Versus Non-target

A summary of the ITR results is presented in Table 3 (the

corresponding classification accuracy is summarized in

Table 4). We compare the ITR values obtained for the

features drawn from the conventional whole ERP and the

proposed ‘‘hand-picked’’ features resulting from the

ANOVA. The proposed method allows us to boost the

classification results up to ?10.43 bit/min (?44 % classi-

fication accuracy). Only a single case shows a decrease
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Fig. 4 Grand mean average auditory evoked responses to spatial pink

noise stimuli of the ten subjects from the eight electrodes plotted

separately in each row of the panels. The top panel shows the grand

mean averaged response to the targets. The middle panel presents the

grand mean averaged responses to non-targets. The bottom panel

depicts the p values from the ANOVA for the eight electrodes

separately
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Table 3 The offline aBCI

interfacing results based on

features drawn from non-

averaged trials in the form of

ITR scores obtained as in Eqs.

(1) and (2)

We compare the traditional all

ERP and the proposed ‘‘hand-

picked’’ only latencies

Subject Noise stimulus

type

Conventional ‘‘all ERP’’

(bit/min)

Proposed ‘‘hand-picked’’

(bit/min)

Improvement

(bit/min)

#1 Pink 49.39 54.13 ?4.74

White 37.90 57.42 ?19.52

#2 Pink 42.03 49.39 ?7.36

White 27.90 44.90 ?17

#3 Pink 35.26 39.25 ?3.99

White 32.72 42.03 ?9.31

#4 Pink 27.90 40.63 ?12.73

White 19.30 29.07 ?9.77

#5 Pink 47.86 66.19 ?18.33

White 47.86 57.42 ?9.56

#6 Pink 49.39 46.37 -3.02

White 36.57 71.87 ?35.30

#7 Pink 46.37 54.13 ?7.76

White 47.86 57.42 ?9.56

#8 Pink 49.39 68.05 ?18.66

White 42.03 43.45 ?1.42

#9 Pink 50.94 50.94 0

White 54.13 75.85 ?21.72

#10 Pink 39.25 37.90 -1.35

White 44.90 49.39 ?4.49

Table 4 The classification

results for ERP latencies in

P300 responses for target versus

non-target paradigm

The classification results of two

feature sets (all ERP responses

and P300 responses) are

compared. The classification

improvement comparing the

conventional all ERP latency

with the proposed P300

response is summarized in the

right column

Subject Noise stimulus

type

Conventional

‘‘all ERP’’ (%)

Proposed

P300 (%)

Improvement

(%)

#1 Pink 71 74 ?3

White 63 76 ?13

#2 Pink 66 71 ?5

White 55 68 ?13

#3 Pink 61 64 ?3

White 59 66 ?7

#4 Pink 55 65 ?10

White 47 56 ?9

#5 Pink 70 81 ?11

White 70 76 ?6

#6 Pink 71 69 -2

White 62 84 ?22

#7 Pink 69 74 ?5

White 70 76 ?6

#8 Pink 71 82 ?11

White 66 67 ?1

#9 Pink 72 72 0

White 74 86 ?12

#10 Pink 64 63 -1

White 68 71 ?3
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Table 5 The offline aBCI

interfacing results based on

features drawn from the

averaged eight trials in the form

of ITR scores obtained as in

Eqs. (1) and (2)

We compare the traditional

whole ERP and the proposed

‘‘hand-picked’’ only latencies

Subject Noise stimulus

type

Conventional ‘‘all ERP’’

(bit/min)

Proposed ‘‘hand-picked’’

(bit/min)

Improvement

(bit/min)

#1 Pink 8.27 14.06 ?5.79

White 3.63 6.97 ?3.34

#2 Pink 6.97 14.06 ?7.09

White 4.74 8.27 ?3.53

#3 Pink 5.80 10.00 ?4.20

White 5.80 5.80 0

#4 Pink 4.74 10.00 ?5.26

White 2.80 4.74 ?1.94

#5 Pink 5.80 8.27 ?2.47

White 10.00 11.74 ?1.74

#6 Pink 6.97 10.00 ?3.03

White 5.80 10.00 ?4.20

#7 Pink 3.63 14.06 ?10.43

White 6.97 8.27 ?1.30

#8 Pink 6.97 10.00 ?3.03

White 4.74 11.74 ?7.00

#9 Pink 5.8 11.74 ?5.94

White 6.97 11.74 ?4.77

#10 Pink 6.97 10.00 ?3.03

White 6.97 11.74 ?4.77

Table 6 The classification

results for ERP latencies in

P300 responses for the mean of

8 targets versus average of 8

non-targets paradigm

The classification results for two

feature sets (all ERP responses

and P300 responses) are

compared. The classification

improvement comparing the

conventional all ERP latency

with the proposed P300

response is summarized in the

right column

Subject Noise

stimulus type

Conventional

‘‘all ERP’’ (%)

Proposed

P300 (%)

Improvement

(%)

#1 Pink 81 100 ?19

White 56 75 ?19

#2 Pink 75 100 ?25

White 63 81 ?18

#3 Pink 69 88 ?19

White 69 69 0

#4 Pink 63 88 ?25

White 50 63 ?13

#5 Pink 69 81 ?12

White 88 94 ?6

#6 Pink 75 88 ?13

White 69 88 ?19

#7 Pink 56 100 ?44

White 75 81 ?6

#8 Pink 75 88 ?13

White 63 94 ?31

#9 Pink 69 94 ?25

White 75 94 ?19

#10 Pink 75 88 ?13

White 75 94 ?19
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using the leave-one-out cross-validation for the GNBC

technique.

The ITR Results from the P300 ERP Range Latencies

from the Averaged Eight Trials in the Setting of Target

Versus Non-target

The single-trial classification results discussed in the pre-

vious sections have resulted mostly in lower than 14 bit/

min (below 70 % accuracy) in the aBCI offline mode. In

order to improve the results, for each subject and each

stimuli, we averaged the eight target trails (convert 64

targets to 8 targets) and 8 non-target trials (convert 448

non-targets to 56 non-targets). In the classifier training and

testing steps, we selected 8 targets and a random subset of

8 non-targets (from the 56 available), the same as the

single-trial classification training and testing set. For each

of the subjects in the case of the pink noise stimulus, the

classification resulted in scores higher than 8 bit/min

(80 % accuracy). In particular, for the subject numbers 1

and 2, the resulting ITR reached 14.06 bit/min (100 %

accuracy). The summary of the results is presented in

Tables 5 and 6 for ITR and classification accuracies,

respectively. The comparison presented of the ITR and

accuracy values obtained for the features drawn from the

conventional whole ERP and the proposed ‘‘hand-picked’’

features, resulting from the ANOVA, supports the

improvement of the proposed method. The method pro-

posed allows us to increase the classification results (only a

single case of a decrease was reported) using the leave-

one-out cross-validation for the GNBC technique. An

online aBCI application is planned as a next stage by the

authors.

Discussion and Conclusions

In this paper, we have presented an approach leading to the

improvement of classification accuracies and ITRs in a

novel offline aBCI paradigm. This has been achieved by

introducing ERP feature extraction in P300 range latencies

to replace the classical whole evoked response range

approaches.

The proposed improvement method allows the extrac-

tion of the most separable ERP features, enabling an

increase in the classification accuracy and an improvement

ITR of a maximum of ?35.30 bit/min (22 % accuracy) in

the case of features drawn for single-electrode ERP dis-

tributions. In the case of the features obtained from the

eight trials averaged ERP responses, the majority of sub-

jects also improved their results with a maximum increase

of 10.43 bit/min (44 % in accuracy).

These are the very encouraging results, providing the

possibility further to improve the auditory-paradigm-based

BCI.

The main achievement reported in the paper allows us to

improve the spatial aBCI paradigm in the offline mode,

which is a step forward in non-vision-based interfacing

strategies. We have also shown that in comparison with

contemporary applications of spatial auditory BCI para-

digms that fail to utilize rear-to-the-head loudspeakers, it is

possible to utilize all spatial horizontal sound directions

thanks to the proposed classification improvement

approach based on the ‘‘hand-picked’’ ERP latencies.
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