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Abstract Over the last decade, we have encountered

various complex optimization problems in the engineering

and research domains. Some of them are so hard that we

had to turn to heuristic algorithms to obtain approximate

optimal solutions. In this paper, we present a novel meta-

heuristic algorithm called mussels wandering optimization

(MWO). MWO is inspired by mussels’ leisurely locomo-

tion behavior when they form bed patterns in their habitat.

It is an ecologically inspired optimization algorithm that

mathematically formulates a landscape-level evolutionary

mechanism of the distribution pattern of mussels through a

stochastic decision and Lévy walk. We obtain the optimal

shape parameter l of the movement strategy and demon-

strate its convergence performance via eight benchmark

functions. The MWO algorithm has competitive perfor-

mance compared with four existing metaheuristics, pro-

viding a new approach for solving complex optimization

problems.

Keywords Optimization � Ecologically inspired

algorithm � Mussel wandering � Lévy walk

Introduction

One of the most fundamental problems worldwide is the

search for an optimal state. Optimization is about finding

the best possible solutions for given problems [1]. For-

mally, the goal of optimization is to find the best possible

elements x* from a feasible set X according to a set of

criteria F ¼ ff1; f2; . . .; fng; the so-called objective func-

tions. For a single-objective minimization problem, the

goal is to find the minimum solution x� 2 X where

f(x*) B f(x) for all x.

Over the past few decades, many optimization algo-

rithms have been proposed to solve complex optimization

problems. These algorithms are usually divided into

deterministic algorithms, probabilistic algorithms, and

metaheuristics [2]. Deterministic algorithms are mainly

used if a clear relation between the characteristics of the

possible solutions and their utility for a given problem

exists, i.e., branch and bound, and mathematical pro-

gramming methods. However, it is always hard to solve a

problem analytically in most cases, because the relation

between a solution candidate and its ‘‘fitness’’ is always not

obvious or too complicated, or the dimensionality of the

search space is very high for many real-world problems.

Probabilistic algorithms model a problem or search a

problem space using a probabilistic model of candidate

solutions [3]. Monte Carlo-based approaches belong to the

family of probabilistic algorithms, which trade off guar-

anteed correctness of the solution for shorter runtime.

Metaheuristics are designed to tackle complex optimization

problems where other optimization methods have failed to

be either effective or efficient. These methods have come

to be recognized as some of the most practical approaches

for solving many complex problems, particularly for the

many real-world problems that are combinatorial in nature.

In particular, nature-inspired metaheuristics have

attracted increasing attention, becoming powerful methods

to solve modern global optimization problems [4]. Among

these, the most successful are evolutionary algorithms
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(EAs), which draw their inspiration from evolution by

natural selection [5]. There are several different types of

EAs, including genetic algorithms [6], genetic program-

ming [7], evolutionary programming [8], the estimation of

distribution algorithm [9], and differential evolution [10].

Later, swarm intelligence offered more effective approa-

ches for complex optimization problems, being inspired

from collective animal behavior [11], i.e., particle swarm

optimization [12], ant colony optimization [13], artificial

bee colony [14], group search optimizer [15], and bacterial

foraging optimization [16]. Such successful algorithms also

include simulated annealing [17], artificial neural network

[18], artificial immune algorithm [19], chemical reaction

optimization [20], memetic algorithm [21], and harmony

algorithm [22]. More recently, a number of ecological

optimization algorithms have been proposed and success-

fully applied, i.e., biogeography-based optimization [23],

cuckoo search [24], shuffled frog-leaping algorithm [25],

and the self-organizing migrating algorithm [26].

All these metaheuristics have unique computational

models, mimicking specific behaviors for the performance

of diversity. However, most of them satisfy the unifying

principle of being population based with randomization

being involved in the solution process. Notably, these

forms of population behavior patterns exhibit both deter-

ministic and stochastic characteristics in order to guarantee

some inheritance as well as to promote healthy evolution.

This stochastic feature plays a significant role in such

algorithms [27]. However, many existing algorithms just

borrow some random parameters to maintain diversity and

promote its evolution. More comprehensive stochastic

behavior-oriented optimizers are seldom reported. It will be

exciting and challenging to deeply understand the integral

stochastic behaviors or mechanisms of an ecological sys-

tem in order to develop new, efficient stochastic optimi-

zation models for complex problems.

Recently, Daniel [28] reported that mussels in intertidal

beds use random movement behaviors to optimize their

formation of patches to balance feeding and mortality. This

species of mussel, despite exhibiting leisurely locomotion,

exhibits economy of movement and savvy behavioral strat-

egies that approach a theoretical ideal as well as, or better

than, more visibly athletic species. Inspired by this important

discovery, this paper formulates a metaheuristic named

mussels wandering optimization (MWO) for the first time,

using the mussels’ stochastic walking strategy. In particular,

mussels use a Lévy walk during the formation of a spatially

patterned bed. Mussels move according to others’ behaviors

and environmental complexity. The interaction between

individuals and the complexity of the habitat shapes the

mussels’ movement in ecological systems.

In the rest of the paper, we first introduce the bed for-

matting behavior of natural mussels in section ‘‘Bed

Formatting Behavior of Mussels for Optimization.’’ Then,

the mussels wandering optimization (MWO) algorithm is

formulated in section ‘‘Mussels Wandering Optimization.’’

We demonstrate its performance via a set of standard

benchmarks and compare it with some existing metaheu-

ristic algorithms in section ‘‘Simulation and Results.’’ The

paper is concluded in section ‘‘Conclusions.’’

Bed Formatting Behavior of Mussels for Optimization

Nature is full of biological landscapes that seem static to

the casual observer but that actually contain highly

dynamic spatial features. These features are shaped dra-

matically, if slowly, by subtle interplays between large-

scale population-level patterns and small-scale movements

of individuals [28]. Mussel is a species of mollusk,

unusually thriving on rocky-shore and soft-bottom habitats,

and in the intake mouths of coastal power stations [29].

Mussels depend on not only physical processes, such as

water flow rate, temperature, salinity, and desiccation, but

also biological processes, such as amount of food resources

for survival, growth, and reproduction [30].

Mussels form extensive beds of high or varying density

at complex soft or hard surfaces so as to provide them-

selves with habitat structure. Mussel bed patterns of dis-

tribution and abundance result from a combination of

constraints that occur from regional processes at the mac-

rohabitat scale [24] to local interactions at the microhabitat

scale [25] over periods of various decades, in the range of

their lifespan [30, 31]. When mussels move, they usually

use a random strategy with respect to local mussel density,

predators, and habitat quality parameters such as the

amount of biomass and the water flow rate [32].

In particular, pattern formation in mussel beds depends

on two opposing biological mechanisms: cooperation and

competition. Mussels can aggregate not only to provide

physical protection to the underlying bed, thus enabling the

bed to withstand erosion by high tidal currents and wave

action, but also to resist predators and high wave stress.

Within a cluster, mussels move less when surrounded by

conspecifics, possibly to minimize predation, wave stress

or dislodgement losses. By moving into cooperative

aggregations, mussels increase their local density. How-

ever, mussel behavior prevents the formation of such large

clusters, and possibly mussels decide to move when the

cluster size becomes too large, because of competition for

algae. This interaction between local cooperation and long-

range competition results in simultaneous risk reduction

and minimization of competition for algae [32].

Experiments show that the probability of a mussel

moving decreases with the short-range density and

increases with long-range density [28]. When a mussel
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decides to move, it adopts a Lévy walk during the forma-

tion of spatially patterned beds, and models reveal that this

Lévy movement accelerates bed pattern formation. The

emergent patterning in mussel beds, in turn, improves

individual fitness. Moreover, much research has demon-

strated that, in fish, insect, or bird foraging, and human

travel, the step length is also a stochastic process which

approaches a Lévy walk [33–35].

The step lengths for mussel are not constant but rather

are chosen from a probability distribution with a power-law

tail [34], which is characterized by rare but extremely long

step lengths, and the same sites are revisited much less

frequently than in a normal diffusion process, represented

as [32],

f ðlÞ ¼ Cll�l; ð1Þ

where Cl is a normalization constant. The shape parameter

1 \l\ 3 is known as the Lévy exponent or scaling

exponent and determines the movement strategy. When l
is close to 1, the resulting movement strategy resembles

ballistic, straight-line motion, as the probability to move a

very large distance is equal to the chance of making a small

displacement.

Behaviorally, power-law distributions require cognitive

memory of the duration of the current move. It seems likely

that organisms that perform Lévy walks have specific

adaptations for doing so. Ecologically, Lévy walks are

important because they yield a ‘‘scale-free’’ blend of long

and short movements that can be more efficient in locating

and exploiting resources that are patchy at multiple scales.

Notably, in mussels, this efficiency extends beyond

exploitation to the fundamental mechanisms underlying the

formation of favorably patchy mussel beds.

Notably, this bed pattern formatting behavior with a

random walk is just an optimization process to search for

the most suitable place for each mussel in the habitat.

Therefore, it is promising to design an optimization algo-

rithm by modeling the ecological population behavior of

mussels for complex global optimization problems.

Mussels Wandering Optimization

A population of mussels includes N individuals in a certain

spatial region of marine ‘‘bed’’ called the habitat. The

habitat is mapped to a d-dimensional space Sd of the

problem to be optimized. The objective function value f(s)

at each point s 2 Sd represents the nutrition provided by the

habitat. Each mussel has a position xi :¼ ðxi1; . . .; xidÞ; i 2
NN ¼ f1; 2; . . .;Ng in Sd, forming a specified spatial bed

pattern, accordingly.

For simplicity in describing MWO, the following ide-

alized rules are given: (1) Mussel size is negligible; (2)

When mussels are wandering for food and avoiding neg-

ative circumstance factors, there is no breeding and mor-

tality; and (3) Mussels can walk across any other’s body.

The spatial distance Dij between mi and mj in Sd can be

calculated by

Dij :¼ kxi � xjk ¼
Xd

k¼1

ðxik � xjkÞ2
" #1=2

; i; j 2 NN : ð2Þ

In MWO, all mussels are uniformly located in the

habitat at the beginning. At each iteration, a mussel moves

or remains still with a certain probability in the search

space. The moving probability of a mussel depends on its

short-range density and long-range density [28].

For mussel mi, given a short-range reference rs (the

radius of the inner circle in 2-D space shown in Fig. 2), the

short-range density nsi is defined as the ratio of the number

of mussels that are located away from mi but within dis-

tance rs to the population size N in unit distance, i.e.,

nsi :¼ ]ðDi\rsÞ=ðrsNÞ; ð3Þ

where ]ðA\bÞ is used to compute the count in set A sat-

isfying a\b; a 2 A; Di is the distance matrix from mi to

other mussels in the population.

Given the long-range reference rl (the radius of the outer

circle in Fig. 2), the long-range density nli of mussel mi is

defined as

nli :¼ ]ðDi\rlÞ=ðrlNÞ: ð4Þ

The short-range reference rs and long-range reference rl

change through the iterations. In iteration t, given the

distance data, the dynamic short-range reference rs(t) and

long-range reference rl(t) are defined and calculated by

rsðtÞ :¼ a �maxi;j2NN
fDijðtÞg=d

rlðtÞ :¼ b �maxi;j2NN
fDijðtÞg=d

�
ð5Þ

where a and b are positive constant coefficients with

a\b; maxi;j2NN
fDijðtÞg is the maximum distance among

all mussels at iteration t, and d is a scale factor of space

which depends on the problem to be solved.

In the MWO algorithm, mussels are likely to move

when surrounded by species at high long-range density, but

likely to stay at their home position for high short-range

density. Therefore, for mussel mi, given short-range density

nsi and long-range density nli, its moving probability is

calculated by

Pi :¼ 1; if a� bnsi þ cnli [ z
0; otherwise

�
ð6Þ

where a, b, and c are positive constant coefficients and z is

a value randomly sampled from the uniform distribution [0,

1]. If Pi = 0, mussel mi stays still; and if Pi = 1, mussel mi

moves.
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Once mussel mi decides to move, the step length is subject

to a Lévy distribution. Its new position x0i is calculated by

x0i :¼ xi þ ‘iDg; if Pi ¼ 1

xi; if Pi ¼ 0

�
ð7Þ

where the step length ‘i := c [1 - rand()]-1/(l-1),

1.0 \l\ 3.0, and c denotes the walk scale factor, which

is a positive real number; Dg :¼ xg � xi is defined as the

distance from mi to the best position xg found by all mus-

sels with the optimum nutrition value.

The main steps of the MWO algorithm are presented as

follows:

Step 1: Initialize a population of mussels and the

algorithm parameters

At the beginning, N mussels are generated and uni-

formly placed in space Sd. Set the maximum generation G,

coefficients of range references a and b, space scale factor

d, moving coefficients a, b, and c, and walk scale factor c.

Evaluate the initial fitness of mussel mi by computing

the objective function f(xi). Find the best mussel and record

its position as xg.

Step 2: Calculate the short-range density ns and long-

range density nl for each mussel

Using all mussels’ coordinate positions, compute the

distances Dij; i; j 2 NN between any two mussels by using

Eq. (2), and then compute the short-range reference rs and

long-range reference rl by (5). For all mussels, calculate

their nsi and nli; i 2 NN by using (3) and (4), respectively.

Table 1 Benchmarks for simulations

Name Mathematical representation Multimodal? Separable? Regular? Range Minimum

Sphere f1(x) =
P

i=1
n xi

2 No Yes Yes ±100 0

Rosenbrock f2(x) =
P

i=1
n-1 [(1 - xi)

2 ? 100(xi?1 - xi
2)2] No No Yes ±100 0

Quartic f3(x) =
P

i=1
n ixi

4 ? random[0,1) No Yes Yes ±1.28 0

Rastrigin f4(x) =
P

i=1
n [xi

2 - 10 cos(2pxi) ? 10] Yes Yes Yes ±5.12 0

Griewank f5ðxÞ ¼ 1

4,000

Pn
i¼1 x2

i �
Qn

i¼1 cosð xiffi
i
p Þ þ 1 Yes No Yes ±600 0

Ackley f6ðxÞ ¼ �20 expð�0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 x2

i

q
Þ

� expð1n
Pn

i¼1 cosð2pxiÞÞ þ 20þ e

Yes No Yes ±30 0

Schwefel2.22 f7ðxÞ ¼
Pn

i¼1 jxij þ
Qn

i¼1 jxij Yes No No ±10 0

Penalty1 f8ðxÞ ¼
p
n
f10 sin2ðpy1Þ þ

Xn�1

i¼1
ðyi � 1Þ2½1þ sin2ðpyiþ1Þ� þ ðyn � 1Þ2g

þ
Pn

i¼1 uðxi; 10; 100; 4Þ; yi ¼ 1þ 1=4ðxi þ 1Þ;

uðxi; a; k;mÞ ¼
kðxi � aÞm; xi [ a
0; �a� xi � a
kð�xi � aÞm; xi\� a

8
<

:

Yes No Yes ±50 0

Table 2 Comparison among MWO with different l (d = 20)

Function Results l = 1.5 l = 1.8 l = 1.9 l = 2.0 l = 2.1 l = 2.2 l = 2.5

f1 Best 273.99 (7) 2.02e-8 (4) 4.74e-14 (3) 2.60e-18 (1) 9.86e-16 (2) 3.48e-4 (5) 20.88 (6)

Mean 1.47e?4 (7) 3.51e-7 (4) 9.57e-13 (2) 4.83e-16 (1) 4.48e-8 (3) 0.38 (5) 575.93 (6)

f2 Best 1.33e?8 (7) 0.35 (2) 0.25 (1) 1.44 (3) 5.27 (4) 93.98 (5) 3.20e?4 (6)

Mean 5.47e?9 (7) 1.43e?7 (6) 63.74 (1) 107.98 (2) 359.90 (3) 3.73e?3 (4) 1.82e?6 (5)

f3 Best 0.025 (7) 4.39e-19 (4) 8.69e-31 (3) 3.63e-36 (2) 3.44e-36 (1) 9.54e-19 (5) 3.87e-5 (6)

Mean 16.31 (7) 4.12e-17 (4) 1.57e-26 (3) 5.08e-33 (1) 1.03e-28 (2) 2.85e-10 (5) 1.50e-3 (6)

f4 Best 199.74 (7) 7.52e-5 (2) 2.05e-8 (1) 2.98 (3) 5.97 (4) 13.82 (5) 16.31 (6)

Mean 234.44 (7) 0.75 (1) 3.58 (2) 12.09 (3) 19.86 (4) 30.83 (5) 42.66 (6)

f5 Best 6.07 (7) 2.21e-7 (4) 3.37e-13 (3) 2.66e-15 (2) 2.22e-16 (1) 2.62e-2 (5) 1.31 (6)

Mean 176.59 (7) 3.56e-2 (2) 3.57e-2 (3) 5.29e-3 (1) 7.66e-2 (4) 0.34 (5) 3.12 (6)

f6 Best 8.37 (7) 3.21e-5 (4) 8.74e-8 (3) 9.90e-10 (1) 1.66e-9 (2) 0.078 (5) 4.43 (6)

Mean 18.30 (7) 2.20e-4 (3) 5.74e-7 (2) 4.79e-8 (1) 0.68 (4) 2.77 (5) 5.75 (6)

f7 Best 70.43 (7) 3.34e-6 (3) 6.18e-9 (2) 3.63e-10 (1) 6.91e-6 (4) 0.038 (5) 2.94 (6)

Mean 9.06e?4 (7) 6.78 (6) 6.60e-8 (1) 6.35e-5 (2) 0.064 (3) 1.06 (4) 5.64 (5)

f8 Best 5.58 (7) 1.80e-10 (4) 8.15e-17 (2) 5.53e-19 (1) 2.99e-13 (3) 5.67e-5 (5) 1.99 (6)

Mean 1.58e?7 (7) 2.39e-8 (1) 1.60e-2 (3) 1.01e-2 (2) 0.10 (4) 0.71 (5) 7.10 (6)
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Step 3: Determine the movement strategy for each

mussel

Calculate the moving probability Pi of mussel mi

according to the short-range density nsi and long-range

density nli by Eq. (6); If Pi = 1, calculate its step length by

‘i = c[1 - rand()]-1/(l-1).

Step 4: Update the position for all mussels

Compute the new position coordinate x0i of mussel mi in

Sd by using Eq. (7).

Step 5: Evaluate the fitness of mussel mi after position

updating. Calculate the objective function f(x0) for the new

positions. Rank the solutions so as to find the global best

mussel mg, and update the best record [best position xg and

optimal fitness f*(xg)].

Step 6: Examine if the termination criteria is satisfied?

If it is true, stop the algorithm and output the optimized

results; otherwise, go to step 2 to start the next iteration.

The pseudocode for the MWO algorithm is listed as

follows.

Table 3 Comparison among MWO with different l (d = 30)

Function Results l = 1.5 l = 1.8 l = 1.9 l = 2.0 l = 2.1 l = 2.2 l = 2.5

f1 Best 4.55e?3 (7) 1.40e-3 (4) 3.28e-7 (3) 1.29e-9 (1) 3.04e-7 (2) 2.30 (5) 157.99 (6)

Mean 5.35e?4 (7) 1.33e-2 (4) 3.59e-6 (1) 3.87e-6 (2) 6.10e-3 (3) 31.41 (5) 724.69 (6)

f2 Best 3.15e?8 (7) 75.65 (3) 9.63 (1) 12.20 (2) 90.20 (4) 6.291e?3 (5) 1.82e?6 (6)

Mean 2.58e?10 (7) 1.33e?5 (4) 309.77 (2) 142.68 (1) 3.05e?3 (3) 4.35e?5 (5) 1.25e?7 (6)

f3 Best 3.63 (7) 1.01e-10 (4) 1.32e-16 (3) 1.33e-22 (1) 4.07e-20 (2) 1.97e-10 (5) 3.10e-3 (6)

Mean 88.81 (7) 8.89e-9 (4) 1.27e-14 (2) 1.02e-17 (1) 1.43e-11 (3) 8.75e-6 (5) 3.81e-2 (6)

f4 Best 367.06 (7) 5.47 (3) 1.04 (1) 4.97 (2) 29.85 (5) 29.42 (4) 63.66 (6)

Mean 401.67 (7) 75.43 (5) 44.32 (3) 17.09 (1) 44.11 (2) 58.26 (4) 85.09 (6)

f5 Best 73.13 (7) 8.00e-3 (3) 6.06e-6 (2) 2.99e-9 (1) 3.40e-2 (4) 1.00 (5) 3.01 (6)

Mean 503.11 (7) 5.12e-2 (3) 2.87e-2 (1) 2.96e-2 (2) 0.18 (4) 1.82 (5) 7.02 (6)

f6 Best 19.93 (7) 1.09e-2 (3) 2.37e-4 (2) 1.24e-5 (1) 3.10e-2 (4) 3.45 (5) 5.04 (6)

Mean 20.25 (7) 1.86 (3) 6.97e-2 (2) 6.61e-2 (1) 1.98 (4) 4.64 (5) 7.78 (6)

f7 Best 8.09e?6 (7) 4.40e-3 (3) 7.71e-5 (2) 3.19e-6 (1) 9.50e-2 (4) 0.87 (5) 10.94 (6)

Mean 5.87e?9 (7) 12.51 (5) 1.62e-4 (1) 2.32e-2 (2) 1.45 (3) 4.37 (4) 13.72 (6)

f8 Best 1.39e?6 (7) 1.08e-5 (3) 1.34e-8 (2) 3.92e-11 (1) 1.61e-2 (4) 1.76 (5) 5.93 (6)

Mean 4.57e?8 (7) 1.06e-2 (2) 1.04e-2 (1) 1.95e-2 (3) 0.64 (4) 3.65 (5) 16.68 (6)

rs
rl

mi

Fig. 1 Sketch of short range and long range for a mussel in 2-D space
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Simulation and Results

In this section, we test the convergence performance of

MWO and compare it with some existing population-based

metaheuristic algorithms.

Benchmarks

To evaluate the performance of the MWO algorithm for

some chosen problems, we employ a set of eight standard

benchmark functions, which are given in Table 1.

These benchmarks have been widely used in the litera-

ture for comparison of optimization methods. Some are

multimodal, which means that they have multiple local

minima. Some are nonseparable, which means that they

cannot be written as a sum of functions of individual

variables. Some are regular, which means they are ana-

lytical (differentiable) at each point of their domain [23,

36]. Each of the functions has a global minimum f(x*) = 0.

Experimental Setting

In this work, we investigate the effect of the Lévy walk in the

MWO algorithm. Different values of the shape parameter l
of the Lévy distribution are tested, i.e., l = 1.5, l = 1.8,

l = 1.9, l = 2.0, l = 2.1, l = 2.2, and l = 2.5.

To explore the benefits of MWO, we compare its per-

formance on various benchmark functions with four well-

known metaheuristic algorithm: (1) genetic algorithm

(GA), (2) biogeography-based optimization (BBO), (3)

particle swarm optimization (PSO), and (4) group search

optimizer (GSO). We executed GA, BBO, PSO, and GSO

algorithms with their standard versions by adopting the

empirical parameters setting.

The parameter setting of the MWO algorithm is sum-

marized as follows. The population size N = 50 is used in

the paper. The initial population is generated uniformly at

random in the search space Sd. The short-range reference

coefficient a = 1.1, the long-range reference coefficient
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Fig. 2 The optimal dynamics of MWO with different l values for f1 - f4
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b = 7.5, the moving coefficients a = 0.63, b = 1.26, and

c = 1.05, the walk scale factor c = 0.1, and the scale

factor of space d is set as d = 25 for f1 and f2, d = 0.3 for

f3, d = 1.2 for f4, d = 150 for f5, d = 10 for f6, d = 2.5 for

f7, and d = 15 for f8.

In this work, we ran 50 Monte Carlo simulations for

each case with different l values on each benchmark to

obtain representative performance. The simulations were

executed on 20-D and 30-D functions, respectively. We

carried out the simulations with two different termination

criteria: (1) the maximum number of iterations G = 1,000

is reached, and (2) the algorithm converges to a predefined

precision called the error goal �; that is f ðx�Þ � �; e.g., � ¼
10�10 for f1; � ¼ 15 for f2; � ¼ 10�6 for f3; � ¼ 10 for f4; � ¼
10�3 for f5–f7, and � ¼ 0:1 for f8 defined in this work.

The experiments were carried out on a PC with a 2.40-

GHz Intel processor and 4.0 GB RAM. All programs were

written and executed in MATLAB 7.1. The operating

system was Microsoft Windows 7.

Results and Discussion

The experiments included an average test on all cases for

each benchmark function. Tables 2 and 3 list the best and

mean values of the 20-D and 30-D functions obtained by

MWO in 1,000 iterations, respectively. Numbers in

parenthesis indicate the ranking in seven simulations of

MWO with different settings of l.

Table 2 shows that the best and mean function values

are all not good when l is set as a larger (l = 2.5) or

smaller value (l = 1.5) in its valid range. When l = 2.0,

MWO performs well for all eight functions, e.g., the best

function results rank first or second for f1, f3, and f5–f8, and

third for f2 and f4; the mean function results rank first or

second for all benchmarks except f4. For f2 and f4, the

MWO with l = 1.9 performs the best, but its minimum

function result ranks second after l = 1.8 for f4. For f3, the

best result obtained with l = 2.1 ranks first and its mean

function result is inferior to that of l = 2.0. Generally,
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l = 2.0 is an optimal setting for MWO on average, and

[1.9, 2.1] presents a good range of l of MWO for solving

20-D functions. From Table 3, we can obtain a similar

conclusion for 30-D functions. l = 2.0 is the optimal

setting on average, and a recommended range of l is [1.9,

2.0].

Figures 2 and 3 show typical optimal dynamics of MWO

with different l values for f1–f8. It is obvious that MWO

with l = 2.0 converges fastest and achieves the best

solution for most functions, except f4 and f5. MWO with

l = 1.8 converges fast for f4. For f5, MWO with l = 1.9

performs well, but all algorithms encounter a saturation

state.

Furthermore, we present the evolving fitness dynamics

of the 20-D benchmarks for MWO with the optimal setting

of l = 2.0 in Fig. 4. In Fig. 4, each subfigure represents a

typical evolving dynamics of the global minimal value (red

line) and the average value of all mussels (black dotted

line), in logarithmic coordinates. These curves of minimum

values are in accordance with the results in Table 2. From

these figures, we find that MWO keeps converging to its

optimum solution for the benchmarks except f4 and f5. We

Table 4 Optimal results of MWO (l = 2.0), GA, BBO, PSO and GSO on 20-D benchmark functions

Function Results GA BBO PSO GSO MWO (l = 2.0)

f1 Best 1.59 (5) 0.44 (4) 5.83e-28 (1) 4.55e-12 (3) 2.60e-18 (2)

Mean 10.93 (5) 1.72 (4) 4.85e-27 (1) 2.37e-8 (3) 4.83e-16 (2)

f2 Best 380.20 (3) 297.70 (2) 441.74 (5) 420.24 (4) 1.44 (1)

Mean 1.58e?3(3) 915.28 (2) 1.88e?5(5) 7.89e?3 (4) 107.98 (1)

f3 Best 3.28e-7 (4) 4.17e-8 (3) 1.27e-13 (2) 8.03e-5(5) 3.63e-36 (1)

Mean 1.37e-6 (3) 2.06e-7 (2) 1.40e-5 (4) 6.24e-3 (5) 5.08e-33 (1)

f4 Best 7.09 (4) 9.92e-2 (1) 6.99 (3) 15.77 (5) 2.98 (2)

Mean 13.50 (3) 0.83 (1) 28.96 (4) 59.35 (5) 12.09 (2)

f5 Best 1.15 (5) 0.67 (4) 9.21e-15 (3) 4.29e-3 (2) 2.66e-16 (1)

Mean 1.30 (5) 0.96 (4) 0.17 (3) 1.52e-2 (2) 5.29e-3 (1)

f6 Best 3.27 (5) 0.48 (4) 8.17e-7 (2) 6.81e-5 (3) 9.90e-10 (1)

Mean 6.88 (5) 0.79 (4) 0.39 (3) 3.33e-2 (2) 4.79e-8 (1)

f7 Best 1.66 (5) 0.24 (3) 4.61e-15 (1) 0.28 (4) 3.63e-10 (2)

Mean 2.75 (3) 0.35 (2) 11.37 (4) 23.56 (5) 6.35e-5 (1)

f8 Best 5.20e-3 (3) 2.30e-3 (2) 0.82 (5) 4.83e-2 (4) 5.53e-19 (1)

Mean 4.23e-2 (3) 1.65e-2 (2) 5.73 (4) 29.04 (5) 1.01e-2 (1)

Table 5 Optimal results of MWO (l = 2.0), GA, BBO, PSO and GSO on 30-D benchmark functions

Function Results GA BBO PSO GSO MWO (l = 2.0)

f1 Best 45.19 (5) 3.48 (4) 7.37e-12 (1) 8.35e-5 (3) 1.29e-9 (2)

Mean 138.81 (4) 7.34 (3) 0.59 (2) 157.11(5) 3.87e-6 (1)

f2 Best 7.96e?3 (4) 1.25e?3 (2) 5.81e?3 (5) 2.57e?3 (3) 12.20 (1)

Mean 4.19e?4 (4) 3.04e?3 (2) 4.54e?5 (5) 3.59e?4 (3) 142.68 (1)

f3 Best 2.07e-5 (4) 5.68e-7 (2) 1.25e-5 (3) 7.89e-2 (5) 1.33e-22 (1)

Mean 1.26e-4 (3) 5.65e-6 (2) 5.20e-3 (4) 9.87e-2 (5) 1.02e-17 (1)

f4 Best 39.99 (5) 1.21 (1) 11.08 (3) 27.43 (4) 4.97 (2)

Mean 64.18 (4) 2.39 (1) 43.62 (3) 91.23 (5) 17.09 (2)

f5 Best 1.86 (5) 1.00 (4) 5.31e-13 (1) 0.26 (3) 2.99e-9 (2)

Mean 2.73 (5) 1.06 (3) 0.18 (2) 1.17 (4) 2.96e-2 (1)

f6 Best 6.83 (5) 0.74 (4) 6.22e-15 (1) 2.41e-5 (3) 1.24e-5 (2)

Mean 11.70 (5) 1.21 (4) 6.48 (3) 3.34e-3 (2) 6.61e-2 (1)

f7 Best 7.95 (5) 0.50 (4) 1.06e-14 (2) 2.74e-3 (3) 3.19e-6 (1)

Mean 8.62 (3) 0.78 (2) 63.71 (4) 17.50 (5) 2.32e-2 (1)

f8 Best 0.11 (4) 1.02e-2 (3) 8.37 (5) 6.58e-4 (2) 3.92e-11 (1)

Mean 0.57 (3) 4.04e-2 (2) 24.18 (5) 1.90 (4) 1.95e-2 (1)
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also find that, when the best global value decreases in the

iterative process, the average fitness appears to oscillate for

all benchmarks, especially f2, f3, f5, and f8. These results

prove that the mussels preferred Lévy walk can maintain

the diversity of the population, because the Lévy walk

adopts long steps with low probabilities and revisits the

same sites far less often, which helps MWO to escape from

local optima and find optimal results more efficiently.

We compared the optimal results of MWO with l = 2.0

with GA, BBO, PSO, and GSO for the 20-D and 30-D

functions. The best and mean results are presented in

Tables 4 and 5. Table 4 shows that MWO generates sig-

nificantly better results than GA and GSO on all the

functions with d = 20. From the comparisons between

MWO and BBO, we can see that MWO has obviously

better performance than BBO on f1, f3, and f5–f8. However,

MWO yields statistically inferior results on f4 compared

with BBO. From the comparisons between MWO and PSO,

we can see that MWO has better average performance than

the PSO algorithm on all the functions except f1. For f7,

PSO presents better optimal results than MWO does.

From Table 5, we see that MWO performs best on

average for the majority of the 30-D benchmarks. BBO

exceeds MWO on f4. PSO is the second most effective,

followed by BBO. PSO runs in first place in terms of the

best value for functions f1, f5, and f6, but its mean function

values are no match for MWO.

Table 6 presents the average CPU time in seconds for

MWO (l = 2.0) and the other four algorithms. From this

table, we see that the average CPU time required by BBO

is less than those of the other algorithms for all eight

functions except f1. Among the other four algorithms, the

Table 6 Average CPU time in seconds of MWO (l = 2.0), GA, BBO, PSO, and GSO

Function Dimension GA BBO PSO GSO MWO (l = 2.0)

f1 20 11.18 12.16 11.99 15.97 12.15

30 11.94 12.86 12.47 16.84 13.46

f2 20 11.01 8.64 11.64 13.22 12.89

30 11.97 9.61 12.38 16.08 13.11

f3 20 10.70 8.05 11.68 13.05 12.00

30 11.23 8.89 12.64 16.49 13.15

f4 20 11.20 8.49 11.79 13.32 13.07

30 11.92 9.40 12.32 16.51 12.85

f5 20 10.83 9.90 11.60 13.05 12.93

30 11.39 10.47 11.81 16.09 12.43

f6 20 11.04 8.09 11.45 14.29 13.02

30 11.43 8.69 11.69 16.01 12.34

f7 20 10.96 8.16 11.54 13.22 12.03

30 11.10 8.62 11.62 15.28 12.61

f8 20 11.96 10.53 12.34 15.57 13.83

30 12.13 10.99 12.62 16.72 13.28

Table 7 Comparisons between BBO, PSO, and MWO under f ðx�Þ � � (d = 20)

Function Error goal BBO PSO MWO

Ave. its. (CPU time) Success

rate (%)

Ave. its. (CPU time) Success

rate (%)

Ave. its. (CPU time) Success

rate (%)

f1 10-10 / 0 720 (8.39 s) 100 722 (9.36 s) 100

f2 15 / 0 / 0 1,641 (21.65 s) 100

f3 10-6 893 (10.25 s) 100 995 (11.63 s) 100 170 (1.16 s) 100

f4 10 193 (1.64 s) 100 1,470 (17.64 s) 10 532 (6.69 s) 98

f5 10-3 / 0 1,363 (15.74 s) 68 1,768 (24.12 s) 92

f6 10-3 / 0 2,294 (26.96 s) 80 540 (7.09 s) 100

f7 10-3 5,139 (37.87 s) 98 2,974 (21.87 s) 100 450 (5.46 s) 100

f8 10-1 519 (5.84 s) 100 / 0 252 (3.23 s) 100

its. iterations
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average CPU time of GSO is the longest; GA, MWO, and

PSO have similar CPU time cost, or rather MWO requires

slightly more time than GA and PSO.

In this section, we also describe the test of the conver-

gence performance of MWO based on a predefined preci-

sion called the error goal �; compared with BBO and PSO,

which are the best two among the four metaheuristics. The

error goal is the criterion selected to stop the algorithm,

which means that the termination condition is f ðx�Þ � �:
Table 7 presents the simulation results of BBO, PSO, and

MWO for 20-D functions, in which a successful run is

defined as the algorithm converging to the error goal � in

10,000 iterations. The average convergence time only takes

successful runs into account.

From the results in Table 7, we see that MWO needs

fewer runs in terms of number of iterations and CPU time

in seconds on average than PSO to reach the precision �

defined in the table, for most functions except f1. It per-

forms better than BBO except for f4. For 50 Monte Carlo

simulations, the average success rate of MWO (100 % for

almost all the functions) is significantly higher than that of

PSO for f2, f4, and f5–f8. It also exceeds BBO for f1, f2, and

f5–f7. Therefore, MWO has competitive performance on the

whole to other metaheuristics in terms of accuracy and

convergence speed.

Conclusions

This paper presents a novel metaheuristic algorithm—

mussels wandering optimization (MWO)—for the first

time, through mathematically modeling mussels’ leisurely

locomotion behavior when they format their bed pattern in

a habitat. MWO emphasizes competition and cooperation

among mussels via stochastic decisions based on the

mussel density in the habitat, and random walks. In the

computational model, besides the Lévy distribution of step

length adopted by each mussel, its moving decision

behavior is also a stochastic variable.

MWO is conceptually simple and easy to implement.

The performance of MWO is demonstrated via a set of

eight benchmarks and compared with four well-known

metaheuristics, i.e., GA, BBO, PSO, and GSO. The pri-

mary conclusion is that MWO beats the four algorithms on

average. MWO provides a new approach for solving a

variety of large-scale optimization problems, which makes

it particularly attractive for real-world applications.

One of the most significant merits of MWO is that it

provides an open framework to tackle hard optimization

problems, by utilizing research in spatial bed formatting,

landscape-level pattern evolution, and the leisurely loco-

motion behavior of mussels in their habitat. Our future

planned work includes: (1) presenting the mathematical

models of distribution patterns of mussels based on some

typical random walks, (2) proving the convergence of the

proposed models for complex optimization problems with

and without noise, and (3) exploring its promising real-

world applications.
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