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Abstract We analyze spatio-temporal dynamics of

coupled neural oscillatory arrays. The interconnected

oscillators can produce a wide range of dynamics, includ-

ing quasi-periodic limit cycles, chaotic waveforms, and

intermittent chaotic oscillations. We study the role of dis-

tributed input bias and develop methods for learning the

input patterns. After learning, the coupled oscillators pro-

duce large-scale synchronized, narrow-band oscillations in

response to the learned patterns. We study patterns of

amplitude modulations that span the whole lattice graph.

The presented results correspond to Freeman’s 6th building

block of neurodynamics.
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Introduction

In mammalian olfaction, inhalations bring odorants to the

nose and excite a small subsets of the specialized receptor

neurons. Among thousand types of receptors, a small

fraction of each kind is excited on each inhalation, so a

sparse spatial pattern of pulses is sent to the olfactory bulb

with each intake of air [5]. Other background odorants

come too, so the sparse pattern is buried into noisy input

and bulb needs to detect a desired stimulus. The spatial

pattern of receptor pulses differs for each inhalation, even

for the same odorant. This variability is observed in the

other sensory systems as well, but despite this variability,

the recognition works fine. Patterns projected on bulbar

neurons are as variable as the receptor patterns, because

there is only a single synapse between the receptor axons

and the bulbar neurons. But a spatial pattern of bulbar

activity is almost invariant over many intakes of the same

odorant. This pattern covers the entire bulb, and every

neuron in the bulb is involved with every pattern presen-

tation. The pattern in the bulb is carried through the high-

frequency c range oscillations [6].

In this work, we want to model six important building

blocks of olfactory system capable of pattern recognition.

Our graph model has vertices that have two states 0 and 1

and follow their neighbors’ states more likely, and edges

that inhibit or excite [11, 12]. Graph has to show following

six building blocks of neuron-inspired dynamics [1, 4]:

First, when each neuron projects the most common

influences it receives, the neurons cease to act individually

and their activity level is determined by the population.

This transition is the first building block of neuron-inspired

dynamics.

Second, when two populations of neurons are coupled

with inhibitory connection and when they are temporarily

excited, then the populations’ activity oscillates, but returns

to the basal levels without additional excitation. This form

of oscillation is the second building block of neuron-

inspired dynamics.

Third, when synaptic strength among neurons increases

enough, temporarily excited populations of neurons return

to the basal oscillatory behavior. Self-sustained oscillation

is the third building block of neuron-inspired dynamics.
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Fourth, the olfactory bulb made of coupled oscillatory

populations of neurons shows continual self-stabilizing

background activity with aperiodic waveforms, which is

the fourth building block of neuron-inspired dynamics.

Fifth, with the inhalation or input, there is a burst of

activity. The burst is all over the bulb and the same

instantaneous frequency. The oscillations are due to the

negative feedback interactions, and the shared frequency is

due to the widespread interconnections between the neu-

rons by which every neuron reaches every other in a few

synapses. The common wave has a different amplitude at

each location in the bulb and the wave serves as a carrier

wave in the c range, with a spatial pattern of amplitude

modulation (AM) throughout the bulb. This is a carrier

wave because the waveform is the same everywhere but its

amplitude varies. The AM pattern is the fifth building

block of neuron-inspired dynamics. Contour plots of

amplitudes of activity in the bulb give a simple way of

representing the state of the bulb. They are never quite the

same, but we can easily discriminate from the patterns of

other states.

Sixth, input from the receptors forms bulbar bursts,

which increases bulbar wave activity. The input also

increases the gain or the strength of the synaptic actions of

the neurons. The higher the gain, the more prolonged are

the oscillations. The state transitions into and out of a burst

start and finish the first full step of perception into the bulb.

This destabilization by input-dependent gain is the sixth

building block of neuron-inspired dynamics.

Model and its Evolution

A vertex vi [ V of a graph G(V, E) is in one of the two

states, s(vi), inactive and active (0 and 1), and with d(vi)

neighbors influencing it through the edges. Edge from vi

to vi, vivj [ E, can excite and inhibit. Excitatory edges

project the states of neighbors, and inhibitory edges pro-

ject the opposite states of neighbors, 0 if the neighbor’s

state is 1, and 1 if it is 0. Vertex’s state, influenced by

edges, is determined by the majority rule; when the most

neighbors are active, the higher a chance for the vertex to

be active, and when the most neighbors are inactive, the

higher a chance for the vertex to be inactive (Fig. 1

down).

Evolution and Activation

At time t = 0 s(vi) is randomly set to 0 or 1. Then, for

t = 1, 2, …, T - 1, a majority rule is applied simulta-

neously over all vertices. A vertex vi is influenced by a

state of its each neighbor vj [ N(vi), whenever a random

variable R(vi, t) is less than edge strength, xj,i, of the

influencing excitatory edge vjvi, else the vertex vi is influ-

enced by an opposite state of neighbor vj. If the edge vjvi is

inhibitory, the vertex vj sends 0 when s(vj) = 1, and 1 when

s(vj) = 0. Then, a vertex vi gets a state of the most common

influence, if there is such, otherwise a vertex state is ran-

domly set to 0 or 1. Formula for the majority rule:

sðvi; tÞ ¼
0 if

P8vj

vj2NðviÞ f ðvj; tÞ\ dðviÞ
2

1 if
P8vj

vj2NðviÞ f ðvj; tÞ[ dðviÞ
2

0 or 1 if
P8vj

vj2NðviÞ f ðvj; tÞ ¼ dðviÞ
2

8
>><

>>:
ð1Þ

f ðvj; tÞ ¼
0 if xj;i sðvj; t � 1Þ ¼ 0

� �
�Rðvi; tÞ; else 1

1 if xj;i sðvj; t � 1Þ ¼ 1
� �

�Rðvi; tÞ; else 0

�

sðvj; t� 1Þ ¼ 0 if xj;i sðvj; t� 1Þ ¼ 0
� �

excites; else 1

1 if xj;i sðvj; t� 1Þ ¼ 1
� �

excites; else 0

�

0�Rðvi; tÞ�1

0:5�xj;i sðvjÞ
� �

�1

The most basic parameter describing the finite graph

G dynamics is its activation, Sa(G, t), and its activation per

vertex, a(G, x), at time t:

Fig. 1 Up-left: 2D torus of order 4 9 4. In the 2D torus, the first row/

column is connected with last row/column. Each vertex has a self-

influence. Up-right: 2D torus after the basic random rewiring strategy.

Two out of eighty (16 9 5) edges are rewired or 2.5 %. Down: An

example of how majority function works. bx edge inhibits with

strength xb,x, so it sends 0 when s(b,t - 1) = 1. Given the scenario,

s(x, t) is 0 most likely
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SaðG; tÞ ¼
XjV j�1

i¼0

sðviÞ ð2Þ

aðG; tÞ ¼ SaðG; tÞ
jVj ð3Þ

hai ¼
PT�1

t¼0 aðG; tÞ
T

ð4Þ

Graph Structure to Model Olfaction

Graph Over Two-dimensional Lattice

Lattice-like graphs are built by randomly re-connecting

some edges in the graphs set on a regular grid in

D dimensions and folded into tori. In the basic random

rewiring strategy, n directed edges from n 9 2 vertices are

plugged out from a graph randomly. At that point, the

graph has n vertices lacking an incoming edge and n ver-

tices lacking an outgoing edge. To preserve the vertex

degrees of the original graph, the set of plugged-out edges

is returned back to the vertices with the missing edges in

the random order. An edge is pointed to the vertex missing

the incoming edge and is projected from the vertex missing

the outgoing edge (Fig. 1 up).

Oscillators of Two Coupled Lattices

Oscillator is a graph made out of two connected lattice-like

subgraphs (Fig. 2). Inhibitory subgraph G1 projects toward

the other excitatory subgraph G0 the edges that inhibit, and

G0 projects toward G1 the edges that excite. An edge from

G1 influences the vertex of G0 with 1 when inactive and

with 0 when active. An edge from G0 influences the vertex

of G1 with 1 when active and with 0 when inactive.

Two Coupled Oscillators

In two oscillators, there are four subgraphs interconnected

to form graph G = G0[ G1[ G2[ G3. Subgraph G0 and G1

are coupled into one oscillator and G2 and G3 into the

other. There are additional edges between G0 and G1 that

connect to both G2 and G3. Edges from G1 and G3 are

inhibitory if they project to G0 or G2. All the other edges

are excitatory (Fig. 3).

Fig. 2 Example of an oscillator. Two coupled subgraphs and each

with four out of eighty (5 %) edges rewired. In each of two subgraphs,

G0 and G1, two edges are rewired within the subgraph and two edges

are rewired to the other subgraph to couple. Within a subgraph, the

edges are excitatory. Edges from G0 to G1 are excitatory and edges

from G1 to G0 are inhibitory

Fig. 3 Example of two coupled oscillators with four subgraphs

G0, G1, G2, and G3. Each subgraph has six edges rewired or 7.5 %.

Each subgraph has two edges rewired within itself. G0 has two edges

rewired with G1 to couple into an oscillator. G2 and G3 are also

coupled with two rewired edges. One edge from a subgraph is rewired

to the each of the remaining subgraphs. Edges from G1 and G3 to G0

or G2 are inhibitory. Other edges are excitatory

Fig. 4 An example of schematic view of the multi-layer structure of

K3 representing olfactory system. There are excitatory–inhibitory

pairs of layers in the olfactory bulb (mitral and granule layers), the

anterior olfactory nucleus (AON), and the prepyriform cortex (PC)
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Example of 3 Coupled Oscillators

There are many possible oscillator couplings, but one

useful inspiration comes from Freemans K-sets, which

model chaotic behavior and are inspired by biological

system [4]. K-sets are derived primarily from observations

of the olfactory system (Fig. 4), and they can be repre-

sented by coupled dynamic subgraphs.

Dynamics of Lattice-like Graph and an Oscillator

Critical Behavior of 2D Lattice Graphs

Depending on the strength of x, a lattice-like graph is in

the one of two possible regimes (Fig. 5 top) [3, 12, 13]. In

the first regime, vertex states 0 and 1 are equiprobable, and

graph’s a distribution is uni-modal. In the second regime,

one state dominates; vertex states are mostly 0 or mostly 1,

and graph’s a distribution is bi-modal. These two regimes

are separated by a transition point, where a graph is very

unstable. After the transition point, vertices cease to act

individually and become a part of a group. Their activity

level is determined by the population. The threshold for

this state or regime transition is reached when each vertex,

most likely, projects the most common influences it

receives and this transition is the first building block of

neuron-inspired dynamics.

Narrow-Band Oscillations in Coupled Lattices

Inhibitory connections in coupled subgraphs can generate

oscillations and multi-modal activation states. Oscillator

can be in three possible regimes, depending on x (Fig. 5

down) [14, 15]. After the first transition point, graph acti-

vation oscillations start. After the second transition point,

the oscillations stop.

Input Bias and Learning Effects in Oscillators

Even for lower x, vertices in an oscillator have potential to

oscillate if they are excited. a(G, x) values of temporarily

excited graph oscillate, but return to the basal levels

without additional excitation (Fig. 6). This form of oscil-

lation is the second building block of neuron-inspired

dynamics. When x values increase enough, a(G, x) of

graph oscillates without additional perturbation; when

oscillating graph is temporarily excited, it returns to the

basal oscillatory behavior. Self-sustained oscillation is the

third building block of neuron-inspired dynamics.
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Fig. 5 Example of dynamics of 2D torus and oscillator made of two

lattice-like subgraphs. Top: There are 2 distinct graph’s regimes; one

without dominant activation, and the other with dominant activation.

Down: Demonstration of three different modes in oscillator

G(5,3.75 %) made of two 2D torus rewired subgraphs G0 and G1 of

order 96 9 96. Each subgraph has 2304 (5 %) edges rewired within

and 1728 (3.75 %) edges rewired toward the other subgraph
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Fig. 6 Example of the second and third building block of neuron-

inspired dynamics. Orders of 2D subgraphs are 200 9 200, and in

each subgraph, there are 10000 edges rewired and they are coupled

with 20000 edges. Left: Excited graph starts to oscillates, but the

oscillation decays and returns to the basal, non-oscillatory behavior.

Right: Graph basal a(G, x) is oscillatory
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Three Coupled Oscillators

Three Oscillators in Isolation

Oscillators in isolation generate narrow-band limit cycle

oscillation. Graphs with appropriate topology can model

any frequency range. For example, an oscillator

O0(5, 5 %) = G0[ G1 made of 2D torus rewired subgraphs

G0 and G1 having 5 % edges rewired within and 5 % edges

rewired to couple each other, has different frequency form

graphs O1(5, 7.5 %), and O2(5, 10 %) (Fig. 7).

Three Oscillators Interconnected

Every parameter describing a graph influences its behavior,

and under appropriate conditions, interconnected oscilla-

tors with different frequencies cannot agree on a common

mode, but together they can generate large-scale synchro-

nization or chaotic background activity [8–10]. To observe

the oscillator coupling effect, we interconnect three dif-

ferent oscillators O0(5, 5 %) = G0[ G1, O1(5, 7.5 %) =

G2[ G3, and O2(5, 10 %) = G4[ G5 by rewiring 1.25 %

edges from each of the subgraphs Gi to the remaining

subgraphs Gj, j= i. Edges rewired from Gi to Gj with i odd

and j even are inhibitory. All other edges are excitatory

(Fig. 7). The oscillations of newly designed graph have a

new form different from the oscillations.

Amplitude Modulation of Learned Pattern

We append input modeled by receptor vertices to three

interconnected oscillators described previously, so our

model resembles the one described in Fig. 4. Input from

receptor excites small subset of specialized vertices sensi-

tive to the receptor type. Input is modeled by several

hundred types of specialized vertices. When input to be

learnt comes to pair of vertices simultaneously, so they are

active at the same time, then the edges linking those ver-

tices get stronger by increasing their x values. This is a

Hebb rule in which connections among the vertices that

share activity get stronger [2, 7]. To recognize the learnt

input, a smaller fraction of each kind of receptor is excited

for each instance of input, so a sparse spatial pattern is sent

to the coupled oscillators. Input representing the same

object is always different at different times and many

background excitations enter too, so the sparse input pat-

tern is buried into noise. The job of coupled oscillators is to

detect a desired pattern. And it does by increased oscilla-

tion (Fig. 8). The common wave of oscillation has a dif-

ferent amplitude at each location in the graph. The wave

serves as a carrier wave and it has a spatial pattern of

amplitude modulation (AM). The AM pattern is the fifth

building block of neuron-inspired dynamics. Contour plots

of AM provide a simple way of representing the state of the

graph.

First Step of Perception

Input from the receptors forms bursts of activity in a graph,

which increases the wave activity. The input also increases

the strength of edges, thus enabling the more prolonged

oscillations. The state transitions into and out of a burst is

the first step of perception in the graph, and this destabi-

lization is the sixth building block of neuron-inspired

dynamics.
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Fig. 7 Activation of three isolated oscillators and activation of three

coupled oscillators (down)
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Fig. 8 Example of three different inputs and their AM patterns. Input

increases the activity in a graph, which increases the oscillation
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Conclusion

In a well-connected graph, vertices cease to act individu-

ally and their activity is determined by the group, which

represents the first building block of neuron-inspired

dynamics. With inhibitory connection, graph’s activity

oscillates after excitation, but returns to the basal levels.

With the increase of edge strengths, oscillations are pro-

longed. These forms of oscillation are the second and third

building block of neuron-inspired dynamics. Intercon-

nected oscillators produce aperiodic or chaotic waveforms,

which is the fourth building block of neuron-inspired

dynamics. Patterns projected on coupled oscillators are

variable, because there is only a single connection between

the receptor vertices and the vertices in the three coupled

oscillators, but the patterns of AM cover all the vertices in

the graph, and every vertex is involved with AM pattern

presentation. These AM contours represent a state of a

graph, and they are fifth building block of neuron-inspired

dynamics. The background activation is interrupted by

burst of input, which drives graph to prolonged oscillation.

This input-driven destabilization of chaotic background is

the sixth building block on neuron-inspired dynamics.
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