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Abstract This work introduces two swarm intelligence

algorithms—one mimicking the behaviour of one species

of ants (Leptothorax acervorum) foraging (a ‘stochastic

diffusion search’, SDS) and the other algorithm mimicking

the behaviour of birds flocking (a ‘particle swarm opti-

miser’, PSO)—and outlines a novel integration strategy

exploiting the local search properties of the PSO with

global SDS behaviour. The resulting hybrid algorithm is

used to sketch novel drawings of an input image, exploiting

an artistic tension between the local behaviour of the ‘birds

flocking’—as they seek to follow the input sketch—and the

global behaviour of the ‘ants foraging’—as they seek to

encourage the flock to explore novel regions of the canvas.

The paper concludes by exploring the putatve ‘creativity’

of this hybrid swarm system in the philosophical light of

the ‘rhizome’ and Deleauze’s well-known ‘Orchid and

Wasp’ metaphor.

Keywords PSO � SDS � Autonomy � Swarm intelligence �
Computational creativity

Introduction

In recent years, studies of the behaviour of social insects

(e.g. ants and bees) and social animals (e.g. birds and fish)

have proposed several new metaheuristics for use in col-

lective intelligence. Natural examples of swarm intelli-

gence that exhibit a form of social interaction are fish

schooling, birds flocking, ant colonies in nesting and for-

aging, bacterial growth, animal herding, brood sorting etc.

This work explores creativity and autonomy through this

type of collective intelligence, which emerges through the

interaction of simple agents (representing the social

insects/animals) in two nature-inspired algorithms, namely,

Particle Swarm Optimisation (PSO) [21] and stochastic

diffusion search (SDS) [5].

Here, a user-made sketch is used as an input to the

system. Then, the swarms of ‘birds’ and ‘ants’ explore

the digital canvas they are provided with, going through the

sketch and reworking it in their own way. The output of the

system would be the swarms’ ‘interpretation’ of the ori-

ginal sketch.

A-Life (Artificial Life), where the boundary between

biology and artificial intelligence is blurred [23], inspired

many artists and researchers in computer graphics to explore

this area. Among the direct responses to A-Life are some

works by Karl Sims (e.g. [44, 45]). In an earlier work, Harold

Cohen used techniques of artificial intelligence to produce

art and developed a computer program called AARON,

which produced drawings as well as paintings [25].

Following other works in the field of swarms painting

[2, 30, 48, 49] and ant colony paintings [17, 29], the out-

puts discussed in this paper—created by the cooperation of

birds and ants—are used as a platform to argue whether or

not swarm intelligence algorithms have the potential to

exhibit computationally creativity.
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In this work, each of the swarm intelligence algorithms

we use are explained, and an approach to their possible

integration is highlighted. Subsequently, an explanation on

how the new hybrid algorithm produces a drawing is pre-

sented. Lastly, while observing examples of human

swarms, the similar individualistic approach of the com-

puter generated nature-inspired swarms in making a

drawing is highlighted, followed by a brief section on

creativity in general as well as a discussion on whether

swarms can be computationally creative. The creativity of

swarms is also discussed in a non-representational form.

There are many works where the input of nature has

been utilised, some of which are claimed be to art. In our

discussion, we emphasise the importance of what we later

define as ‘Swarm Regulated Freedom’ (SR freedom) cf.

Gaussian Constrained Freedom (GC freedom) and the

combinatorial creativity of the hybrid swarm system. Then

we contrast it with examples of potential non-human

assessment of aesthetic judgement and suggestions of

creativity in natural distributed systems. Our modest con-

clusion would be that SR freedom (vs. GC freedom) as, for

example, exhibited in the hybrid bird and ant algorithm

presented herein, can be useful in generating interesting

and intelligible drawing outputs. We conclude the paper

with some suggestions for possible future research.

Communication in Social Systems

Communication—social interaction or information

exchange—observed in social insects and social animals

plays a significant role in all swarm intelligence algorithms,

including SDS and PSOs. Although in nature, it is not only

the syntactical information that is exchanged between the

individuals but also semantic rules and beliefs about how to

process this information [22], in typical swarm intelligence

algorithms only the syntactical exchange of information is

taken into account.

In the study of the interaction of social insects, two

important elements are the individuals and the environ-

ment, which result in two integration schemes: the first is

the way in which individuals self-interact (interact with

each other) and the second is the interaction of the indi-

viduals with the environment [8]. Self-interaction between

individuals is carried out through recruitment strategies and

it has been demonstrated that, typically, various recruit-

ment strategies are used by ants [19] and honey bees. These

recruitment strategies are used to attract other members of

the society to gather around one or more desired areas,

either for foraging purposes or for moving to a new nest

site.

In general, there are many different forms of recruitment

strategies used by social insects; these may take the form of

global or local strategies; one-to-one or one-to-many

communication; and the deployment stochastic or deter-

ministic mechanisms. The nature of information sharing

varies in different environments and with different types of

social insects. Sometimes the information exchange is quite

complex where, for example, it might carry data about the

direction, suitability of the target and the distance; or

sometimes the information sharing is simply a stimulation

forcing a certain triggered action. What all these recruit-

ment and information exchange strategies have in common

is distributing useful information throughout their com-

munity [27].

However, in many hive-based (flock-based) agents—

like the ones deployed in this paper—the benefits of

memory and communication seem obvious, but as argued

in [42], these abilities are not beneficial in every environ-

ment, depending on the way resources are clustered

throughout the environment and whether the quality of the

food sources is sufficiently high.

The algorithms used in this paper both rely on memory

and communication to enable the agents explore various

parts of the search space; albeit the communication meth-

ods outlined herein are less greedy than the one presented

in [42]. Furthermore, the particular effect communication

has on the ‘‘creative’’ act of the swarm-based algorithms

used in this work is under further investigation.

The parable of ‘The Blind Men and the Elephant’ sug-

gests how social interactions can lead to more intelligent

behaviour. This famous tale, set in verse by Saxe [41] in

the nineteenth century, characterises six blind men

approaching an elephant. They end up having six different

ideas about the elephant, as each person has experienced

only one aspect of the elephant’s body: wall (elephant’s

side), spear (tusk), snake (trunk), tree (knee), fan (ear) and

rope (tail). The moral of the story is to show how people

build their beliefs by drawing them from incomplete

information, derived from incomplete knowledge about the

world [22]. If the blind men had been communicating

about what they were experiencing, they would have pos-

sibly come up with the conclusion that they were exploring

the heterogeneous qualities that make up an elephant.

Birds: Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is population-based

optimisation technique developed in 1995 by Kennedy and

Eberhart [14, 21]. It came about as a result of an attempt to

graphically simulate the choreography of fish schooling or

birds flying (e.g. pigeons, starlings, and shorebirds) in

coordinated flocks that show strong synchronisation in

turning, initiation of flights and landing, despite the fact

that experimental researches to find leaders in such flocks
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failed [18]. In particle swarms, although members of the

swarm neither have knowledge about the global behaviour

of the swarm nor a global information about the environ-

ment, the local interactions of the swarms result in complex

collective behaviour, such as flocking, herding, schooling,

exploration and foraging behaviour [4, 20, 24, 38].

Standard/Basic PSO

A swarm in PSO algorithm comprises of a number of

particles and each particle represents a point in a multi-

dimensional problem space. Particles in the swarm explore

the problem space searching for the optimal position,

which is defined by a fitness function. The position of each

particle, x, is thus dependent on the particle’s own expe-

rience and those of its neighbours. Each particle has a

memory, containing the best position found so far during

the course of the optimisation, which is called personal best

(pbest or p). Whereas the best position so far found

throughout the population, or the local neighbourhood, is

called global best (pg) and local best (pl) respectively.

The standard PSO algorithm defines the position of each

particle by adding a velocity to the current position. Here is

the equation for updating the velocity of each particle:

vt
id ¼ wvt�1

id þ c1r1 pid � xt�1
id

� �
þ c2r2 pgd � xt�1

id

� �
ð1Þ

xt
id ¼ vt

id þ xt�1
id ð2Þ

where w is the inertia weight whose optimal value is problem

dependent [43]; vt�1
id is the velocity vector of particle i in

dimension d at time step t - 1; c1,2 are the learning factors

(also referred to as acceleration constants) for personal best

and neighbourhood best respectively (they are generally

constant and are usually set to 2); r1;2 are random numbers

adding stochasticity to the algorithm and they are drawn

from a uniform distribution on the unit interval U 0; 1ð Þ; pid

is the personal best position of particle xi in dimension d; and

pgd is global best (or neighbourhood best).

Therefore, PSO optimisation is based on particles’

individual experience and their social interaction with the

particle swarms.

After updating the velocities of the particles, their new

positions are determined. Algorithm 1 summarises the

behaviour of PSO algorithm when dealing with a minimi-

sation problem.

Ants: Stochastic Diffusion Search

This section introduces SDS [5], a multi-agent global

search and optimisation algorithm, which is based on

simple interaction of agents (inspired by one species of

ants, Leptothorax acervorum, where a ‘tandem calling’

mechanism (one-to-one communication) is used, where the

forager ant which finds the food location recruits a single

ant upon its return to the nest and therefore the location of

the food is physically publicised [28]). In SDS, direct one-

to-one communication (which is similar to tandem calling

recruitment) is utilised.

SDS introduced a new probabilistic approach for solving

best-fit pattern recognition and matching problems. SDS, as

a multi-agent population-based global search and optimi-

sation algorithm, is a distributed mode of computation

utilising interaction between simple agents [26].

Unlike many nature-inspired search algorithms, SDS has

a strong mathematical framework, which describes the

behaviour of the algorithm by investigating its resource

allocation [33], convergence to global optimum [34],

robustness and minimal convergence criteria [31] and lin-

ear time complexity [35].

SDS Architecture

The SDS algorithm commences a search or optimisation by

initialising its population. In any SDS search, each agent

maintains a hypothesis, h, defining a possible problem

Algorithm 1 PSO pseudo code
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solution. After initialisation two phases are followed (see

Algorithm 2):

In the test phase, SDS checks whether the agent

hypothesis is successful or not by performing a partial

hypothesis evaluation which returns a boolean value (e.g.

active or inactive). Later in the iteration, contingent on the

precise recruitment strategy employed successful hypoth-

eses diffuse across the population, and in this way, infor-

mation on potentially good solutions spreads throughout

the entire population of agents.

In the test phase, each agent performs partial function

evaluation, pFE, which is some function of the agent’s

hypothesis; pFE = f(h).

In the diffusion phase, each agent recruits another agent

for interaction and potential communication of hypothesis.

Standard SDS and Passive Recruitment

In standard SDS (as used in this paper), passive recruitment

mode is employed. In this mode, if the agent is inactive, a

second agent is randomly selected for diffusion; if the

second agent is active, its hypothesis is communicated

(diffused) to the inactive one. Otherwise there is no flow of

information between agents; instead, a completely new

hypothesis is generated for the first inactive agent at ran-

dom (see Algorithm 3).

Cooperation: Birds and Ants

In an ongoing research, an initial set of experiments aimed

to investigate whether the information diffusion mecha-

nism deployed in SDS (‘‘ants’’) on its own improves PSO

(‘‘birds’’) behaviour; early results strongly indicate this is

so (for detailed information and statistical analysis, see

[1]).

In the hybrid algorithm, each PSO particle has a current

position, a memory (personal best position) and a velocity;

each SDS agent, has a hypothesis and status (active or

inactive).

In the experiment reported here, every particle in PSO is

an SDS agent too—together termed pAgents. In pAgent,

SDS hypotheses are defined by the PSO particle positions

and an additional boolean variable (status) which deter-

mines whether the pAgent is active or inactive (see Fig. 1).

The behaviour of the hybrid algorithm in its simplest

form is presented in Algorithm 4.

In Algorithm 4, when the pAgents are initialised, pbests

are initially set to the position of the particles and gbest is

set to one of the particles randomly. In this work, the

probability of SDS updating the position of one pAgent

(i.e. pAg1) to the number of PSO function evaluations is

0.01 (see line 8). SDS is responsible for information

Algorithm 2 SDS algorithm

Algorithm 3 Passive

recruitment mode

Fig. 1 pAgent. This figure shows the structure of pAgent
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sharing (lines 26–27) and information dispensation (lines

28–29).

The Drawing Mechanism

This section explains how a sketch is provided to the

hybrid swarm algorithm (PSO-SDS) and how the hybrid

swarms make a drawing1 based on the original sketch.

Birds and Ants Set off to Draw

In the experimental setup of this work, a sketch is made on

a screen with a mouse. Once the hybrid swarm (of ‘birds’

and ‘ants’) are presented with this sketch, which is a vector

of (x, y) coordinates corresponding to the points consti-

tuting the sketch (see Fig. 2), they use it as an ‘inspiration’

and start making a drawing, which is based on the sketch,

but utilises the swarms’ ‘style’.

Each one of the points is traced by the swarm as

described in Algorithm 4. When the mouse pointer moves

on the digital canvas to make a sketch, it is equivalent to

moving the target. Each member of the swarm has the

shape of a disc (with the centre representing the position of

the particle) and as they move, their former position is

connected to the current one with an arrow. In this way, it

can be said that ‘the trace of the birds’/‘the footprint of the

ants’ stay on the canvas, creating a drawing inspired by the

initial sketch (see Fig. 3).

Therefore, the search space of the swarm is the canvas (a

two-dimensional array corresponding to the width and

height of the canvas in pixels), where agents are initialised,

and the goal of their performance is to ‘trace’ the points

constituting the sketch. The swarms search on the canvas is

terminated when they reach the end of the sketch (in other

words, when there are no more points to consider).

Algorithm 4 Hybrid algorithm

1 For this work, we consider a ‘drawing’ to be a representation of a

target image, built up from an arrangement of lines which define its

form; for the purposes of this work, a drawing where all aspects of the

original image are obscured is considered a poor ‘drawing’ of the

target (albeit it may [or may-not] be an aesthetically pleasing object in

its own right); a ‘creative’ drawing of the target is a drawing that

differs noticeably from the original, whilst maintaining good corre-

spondence [hi-fidelity] with at least some aspects of the original, such

that the target image is still ‘recognisable’ in the resultant drawing.
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In this context, gbest is the closest (fittest) particle to the

point (on the sketch) being considered at any time. The

hypotheses are the positions of each disc. The method used

to determine whether an agent is active or inactive, and

whether there should be information exchange, can be

found in the test phase and diffusion phase of Algorithm 4

respectively. Twenty of the hybrid ‘pAgents’ were used in

all the drawings of this work.

The next section presents a brief discussion on creativ-

ity, followed by a summary on whether swarms can show

creativity in the ‘artwork’ they produce.

Discussion on Creativity

The goal of this section is to discuss whether the hybrid

swarm algorithms have the potential to exhibit ‘computa-

tional creativity’ in what they draw and/or in the way they

interact.

On Freedom/Autonomy and Art

For many years, there has been discussion of the rela-

tionship between art, creativity and freedom; a debate

elegantly encapsulated in the famous German prose by

Ludwig Hevesi at the entrance of the Secession Building

in Vienna:

Der Zeit ihre Kunst

Der Kunst ihre Freiheit

That is: ‘‘To Time its Art; To Art its Freedom’’.

Which, centuries after, resonates an earlier observation

from Aristotle (384–322 BCE) [15] emphasising the

importance of freedom and autonomy (here, having ‘‘a

tincture of madness’’) in presenting a creative act.

There was never a genius without a tincture of

madness.

On the other hand Margaret Boden, in [7], more recently

argues that creativity has an ambiguous relationship with

freedom:

A style is a (culturally favoured) space of structural

possibilities: not a painting, but a way of painting. Or

a way of sculpting, or of composing fugues .. [] .. It’s

partly because of these [thinking] styles that crea-

tivity has an ambiguous relationship with freedom.

Among several definitions that have been given to cre-

ativity, around sixty of which (as stated by Taylor [47])

explore ‘combinational creativity’, which is defined as ‘‘the

generation of unfamiliar combinations of familiar ideas’’

[6], a category we suggest that the presented outputs best fit

in.

Considering the many factors constituting the evaluation

of what is deemed ‘creative’, raises core issues regarding

how humans evaluate creativity; their aesthetic capacity

and potentially that of other animals (e.g. as exhibited in,

say, mate selection). Galanter [16] suggests that perhaps

the ‘computational equivalent’ of a bird or an insect (e.g. in

evaluating mate selection) is all that is required for [com-

putational] aesthetic evaluation:

This provides some hope for those who would follow

a psychological path to computational aesthetic

evaluation, because creatures with simpler brains

than man practice mate selection.

In this context, as suggested in [13], the tastes of the

individual in male bowerbirds are made visible when they

gather collections of bones, glass, pebbles, shells, fruit,

plastic and metal scraps from their environment, and

arrange them to attract females [9]:

They perform a mating dance within a specially

prepared display court. The characteristics of an

individual’s dance or artefact display are specific to

the species, but also to the capabilities and, appar-

ently, the tastes of the individual.

Fig. 2 Sketch: the sketch whose constituting points are used as input

to the hybrid swarms

Fig. 3 The drawing of the hybrid swarms (PSO ? SDS)
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However the question of whether ‘mate selection

behaviour in animals implies making a judgement analo-

gous to aesthetic judgement in humans’ is perhaps (pace

Nagel’s famous discussion ‘What is it like to be a bat?

’[32]) a fundamentally unanswerable question.

In contrast, the role of education (or training) in rec-

ognising ‘good’ and ‘bad’, ‘creative’ and ‘non-creative’

has been experimentally probed. A suggestive study

investigating this topic by Watanabe [50] gathers a set of

children’s paintings and then adult humans are asked to

label the ‘‘good’’ from the ‘‘bad’’. Pigeons are then trained

through operant conditioning to only peck at good paint-

ings. After the training, when pigeons are exposed to a

novel set of already judged children’s paintings, they show

their ability in the correct classification of the paintings.

This emphasises the role of learning training and raises

the question on whether humans are fundamentally trained

(or ‘‘biased’’) to distinguish good and/or creative work.

Another tightly related topic to swarm intelligence in

this context is the creativity of social systems. Bown in

[10] indicates that our creative capabilities are contingent

on the objects and infrastructure available to us, which help

us achieve individual goals, in two ways:

One way to look at this is, as Clark does [11], in

terms of the mind being extended to a distributed

system with an embodied brain at the centre, and

surrounded by various other tools, from digits to

digital computers. Another way is to step away from

the centrality of human brains altogether and consider

social complexes as distributed systems involving

more or less cognitive elements.

Discussion on creativity and the conditions, which make

a particular work creative, have generated heated debate

amongst scientists and philosophers for many years [40];

for a theoretical review on ‘conditions of creativity’; the

‘systems’ view of creativity; cognitive approaches, etc see

also [46]. Although this article does not aim to resolve any

of these issues (or even suggest that the presented work

strongly fits and endorses the category of the ‘computa-

tionally creative realm’), we present an investigation of the

performance of a novel swarm intelligence drawing-system

which, we suggest, highlights core issues inherent in

exploring conceptual/artistic space(s). In turn this work is

viewed through the philosophical lens of Deleuze, offering

new insight on the putative creativity, autonomy and

authorship of the resulting hybrid swarm drawing-system.

On the ‘‘Creativity’’ of the Swarms

As stated in the introduction, there have been several rel-

evant attempts to create creative computer generated

artwork using Artificial Intelligence, Artificial Life and

Swarm Intelligence. Irrespective of whether the swarms are

considered genuinely creative or not, their similar indi-

vidualistic approach is not totally dissimilar to those of the

‘‘elephant artists’’ [51]:

After I have handed the loaded paintbrush to [the

elephants], they proceed to paint in their own dis-

tinctive style, with delicate strokes or broad ones,

gently dabbing the bristles on the paper or with a

sweeping flourish, vertical lines or arcs and loops,

ponderously or rapidly and so on. No two artists have

the same style.

Similarly, as is discussed in the next section, if the same

sketch is repeatedly given to the hybrid swarm architecture,

the output drawings, made by the swarms, are never the

same. In other words, even if the hybrid swarm mechanism

(of birds and ants) process the same input several times, it

will not make two identical drawings; furthermore, the

outputs it produces are not merely randomised variants of

the input. This can be demonstrated qualitatively by com-

paring the output of the hybrid swarm system with a simple

randomised tracing algorithm, where each point in the

sketch is surrounded with discs (similar to the pAgents) at a

Gaussian random distance and direction (contrast Figs. 4,

5). The reason why the hybrid swarm drawings are dif-

ferent from the simple randomised sketch is that the

underlying PSO flocking component-algorithm constantly

endeavours to accurately trace the input image whilst the

SDS foraging component constantly endeavours to explore

the wider canvas (i.e. together the two swarm mechanisms

ensure high-level fidelity to the input without making an

exact low-level copy of the original sketch).2

Thus, despite the fact that the swarms are constrained by

the rules they follow (rules that were defined earlier in the

paper), the stochastic parts of the algorithms allow them to

exhibit a swarm-controlled ‘‘regulated difference’’ rather

than a simple ‘‘random difference’’.

Swarm Regulated Autonomy Versus Gaussian

Constrained Autonomy

The drawings in Fig. 4 (top and middle) show two outputs

from a simple randomised algorithm when configured to

exhibit limited ‘random’ variations in behaviour (i.e. there

is only small Gaussian random distance and direction from

2 Although in principle, both functions (exploration and exploitation;

local and global search of the conceptual space) could be carried out

by either algorithm on its own, the basic SDS mechanism is not the

best local optimiser and similarly a ‘standard’ PSO is not the best

global optimiser, hence the motivation for exploring the properties of

their hybridisation; promising early results of which have been

reported elsewhere [1].
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the points of the original sketch; we term such behaviour

Gaussian Constrained (GC) freedom); comparing the two

drawings, we note a lack of any significant difference

between them. Furthermore, when more ‘autonomy’ is

granted to the randomised algorithm (by increasing the

variance in the underlying Gaussian, which allows

the technique to explore broader areas of the canvas), the

algorithm soon begins to deviate excessively from the

original sketch. For this reason, such randomisation results

in a very poor—low fidelity—interpretation of the original

sketch (Fig. 4 bottom). In contrast, although the agents in

the hybrid ‘birds and ants swarms’ are free to access any

part of the canvas, the ‘swarm-control’ mechanism natu-

rally enables the system to maintain recognisable fidelity to

the original input. In this way, contra the hybrid system, it

can be seen that simply by extending a basic swarm

mechanism by giving it more randomised behaviour (giv-

ing it more ‘random autonomy’) fails to demonstrate that

more ‘creative drawings’ would be produced.

The Swarm Regulated freedom (SR freedom) or ‘con-

trolled freedom’ (or the ‘tincture of madness’) exhibited by

the hybrid swarm algorithm (induced by the stochastic side

of the algorithms) is crucial to the resultant work and is the

reason why having the same sketch does not result in the

system producing identical drawings. This freedom emerges,

among other things, from the stochasticity of SDS algorithm

in picking agents for communication, as well as choosing

agents to diffuse information; the tincture of madness in PSO

algorithm is induced via its strategy of spreading the particles

throughout the search space as well as the stochastic ele-

ments in deciding the next move of each particle. Although

the algorithms (PSO and SDS) are nature-inspired, we do not

claim that the presented work is an accurate model of natural

systems. Furthermore, whilst designing the algorithm, there

was no explicit ‘Hundertwasser-like’ attempt [37] by which

we mean the stress on using curves instead of straight lines,

as Hundertwasser considered straight lines not nature-like

and tried not to use straight lines in his works to bias the style

of the system’s drawings.

Fig. 4 The drawings of the swarms with random behaviour: this

figure shows the drawings made with a simple randomised tracing

algorithm, using Gaussian random distance and direction from the

lines of the original sketch. The first two drawings (top and middle)

use the same Gaussian random distance (e.g. d) and the bottom

drawing uses the Gaussian random distance of d 9 6

Fig. 5 Different drawings of the hybrid swarms off a single sketch
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Human Swarm

The autonomy or freedom that is explored in Swarm

Regulated Freedom versus Gaussian Constrained Freedom

could also be found in the human swarm currently being

produced in contemporary art practices. Tino Sehgal—an

artist employing swarm tactics into his art practice—has

held several workshops in designated art galleries ques-

tioning whether it is ‘‘possible to maintain your place in the

collective while asserting your individuality?’’ [39] and

exploring the differences between the collective or swarm

and the individual, and how the two can coexist—or not. In

these workshops Sehgal gives participants simple instruc-

tions and guidelines in order to observe how human

swarms function and appear visually from both a local and

global perspective. Below, one of the participants (Rich-

ards [39]) describes Tino Sehgal’s instructions for this

workshop:

One of the exercises we did on the second day was to

walk together from one end of the [Tate Modern]

Turbine Hall to the other (perhaps more as a collec-

tive than a swarm), with each length we were asked to

slowly increase the speed with which we were trav-

elling while at the same time maintaining our col-

lectively. Other swarms were more free flowing and

non-directional—starting together in a relatively

close group, facing the same way and then moving

with an awareness of each other but without anyone

deliberately taking the lead.

Participants followed a natural leader, which created a

global visual affect and local social interaction through

visual perception (or one-to-one communication). There-

fore, participants followed someone by looking at what

direction they took and by keeping space between them-

selves and the other participants. This could be seen as

similar interaction between participants and the ‘tandem

calling’ mechanism (one-to-one communication) that we

see in the forager ant, which finds the food location,

recruits a single ant upon its return to the nest. Although

limited, there appears to be some autonomy. Participants

could walk slower and hang back from the group or they

could overtake the leader.

The global visual affect that the human swarm takes

could be judged as a visual representation effect. The

participants have limited control over the decisions on the

overall global appearance of the way the artwork looks,

except for the local decisions they make on how and where

to move; in a similar way, the agents in the hybrid swarm

system described earlier are able to move anywhere in the

canvas, but they tend to follow the outline of the initial

sketch. The global visuals that are created through the

movements of the swarm (over which participants have

some control, but restricted to the Turbine Hall space),

could only be seen from an audience perspective in this

instance.

On Deleuze’s Rhizome

One of the philosophical frameworks which can help illu-

minate the claimed autonomy of the hybrid swarm system is

Deleuze’s Rhizome. In this research, the concept of the

rhizomatic ‘assemblage’ as exemplified by the wasp-orchid

relation (as heterogeneous elements which form a rhizome)

is explored and expanded to cover different aspects of the

swarms performance. Deleuze et al. [12] in their 2004 book,

A Thousand Plateaus, describe the concept as follows:

How could movements of deterritorialization and

processes of reterritorialization not be relative,

always connected, caught up in one another? The

orchid deterritorializes by forming an image, a trac-

ing of a wasp; but the wasp reterritorializes on that

image. The wasp is nevertheless deterritorialized,

becoming a piece in the orchid as reproductive

apparatus. But it reterritorializes the orchid by

transporting its pollen. Wasp and orchid, as hetero-

geneous elements, form a rhizome. It could be said

that the orchid imitates the wasp, reproducing its

image in a signifying fashion (mimesis, mimicry,

lure, etc.). But this is true only on the level of the

strata—a parallelism between two strata such that a

plant organization on one imitates an animal organi-

zation on the other. At the same time, something else

entirely is going on: not imitation at all but a capture

of code, surplus value of code, an increase in valence,

a veritable becoming, a becoming-wasp of the orchid

and a becoming-orchid of the wasp. Each of these

becomings brings about the deterritorialization of one

term and the reterritorialization of the other; the two

becomings interlink and form relays in a circulation

of intensities pushing the deterritorialization ever

further. There is neither imitation nor resemblance,

only an exploding of two heterogeneous series on the

line of flight composed by a common rhizome that

can no longer be attributed to or subjugated by any-

thing signifying.

In the example of the wasp and the orchid, each are

involved less in mimesis than in a network of becoming:

the wasp ‘‘becomes’’ orchid, just as the orchid ‘‘becomes’’

wasp; they each form a rhizome with the other, an

exchanging or capturing of each other’s ‘codes’ or formal

behavioural characteristics through the mutual formation of

novel structural schemata for each entity.

In the context of this paper, and at each moment in time,

when the movement of one PSO particle is considered (see
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‘‘Birds: Particle Swarm Optimisation’’), the particle itself

could be seen as adopting the role of a wasp and the

cognitive and social components (particle’s best position—

memory—and global best position respectively) the role of

the orchid, attracting the wasp to fly towards them (via

communication). Since the moving particle might discover

a better position (based on its fitness value) than its current

cognitive/social components, the roles of wasp and orchid

are interchangeable.

The same principle applies to the SDS mechanism;

during the diffusion phase, when an inactive agent ran-

domly chooses an active agent, the inactive agent takes the

role of a wasp and the active agent take the role of an

orchid, sharing its informational ‘valence’ with the wasp

(inactive agent). Since an inactive agent can be active in

subsequent iterations and the active agent could be inac-

tive, the roles of wasp and orchid are interchangeable in

SDS too.

Deleuze’s wasp and orchid coupling in a Thousand

Plateaus [12] challenges the concept of copy and the tra-

ditional notion that the copy is only as good as the nearness

to its original; here ‘mimicry’ is already an activity of

mutual transformation, emerging as neither good nor bad

but rather as a constant experimentation in an intensive

state of becoming, and this is where creativity lies.

Another example of human swarm is shared research

where there is a ‘swarming of knowledge’ around a topic.

The topic is the focus and it controls the freedom of the

swarm. The sharing in this case happens through examples

of work, writing as well as other sources. This goes along

the performance of the swarm intelligence algorithm that

enacts the behaviour of one species of ants—L. acervo-

rum—foraging (SDS) and other algorithm that simulates

the behaviour of birds flocking (PSO). Thus, when one

agent interacts with the other, they can influence or being

influenced (using both their global best and memory); each

agent can interchangeably enact the role of the orchid and

the wasp in constant state of becoming as they trace the

initial sketch on the canvas, using the rules through which

autonomy expresses itself—the ‘rules’ that although enable

the wasps to have the autonomy to fly anywhere on the

canvas, still motivate them to be influenced by the orchids.

In this way, whenever the swarms produce a drawing

using the initial sketch, the effects that the ‘‘wasps’’ create

each time exhibits different states underlined by a process

of becoming: which has a visual expression (through the

trace of the members of the swarms on the canvas) and a

non-visual expression (via information exchange between

the members of the swarms). Observing the drawing pro-

cess from a higher level of abstract activity and being

inspired by Deleuze and Guattari’s Rhizome, the initial

sketch can be associated with the orchid, aiming to attract

the wasps (swarms population) to itself. The final drawings

of the swarms, despite giving the freedom and autonomy,

still aim to stay loyal to the initial sketch.

In the swarm intelligence algorithms used in this work,

the movement of agents and their communication are

tightly coupled as the agents depend on the communication

they have with each other in order to ensure movement. At

each point in time, when the initial sketch is being traced

by the swarms, each agent is deterritorialising as it utilises

its personal and global bests to move and then reterritori-

alises itself onto the next agent when they interact. The

agents move through the use of the cognition and social

components, reproducing an original drawing in a form of

mimicry—which is not the same as other instances of the

swarms’ original drawings from a single sketch—thus

creating another new image of itself in a constant state of

becoming; this state of mimicry is not copying but a cap-

ture of formal characteristics.

As discussed earlier, communication between the agents

is essential for the production of the final drawing; how-

ever, the drawings do not register the communication (no

visualisation showing which agent is communicating with

which at each step in time). As O’Sullivan [36] suggests,

for example, creativity does not need to be evaluated in

visual terms. Therefore, instead of judging the creativity of

the swarms solely on the drawings they produce, other

factors which might suggest creativity should be taken into

account. Here, the constant state of becoming can be per-

ceived as the non-visible layer of communication that

happens between the members of the swarm.

Anthropologists also use the term ‘deterritorialised’ as a

weakened set of ties to a place and that certain memories

tend to transcend boundaries and movement of time, which

indicates the change of culture that still relies on anchors

[3]. At that moment, the deterritorialising process begins

when the local culture is enclosed by the global commu-

nity. A deteritoralisation takes place when the local culture

becomes global. As communities move into different

locations, they take on a different meaning that they pre-

viously held; they are reterritorialised culturally and

become part of the global culture. Similar to the behaviour

of swarm intelligence algorithms, the local interactions

between agents lead to the global behaviour of the swarm.

They form a symbiotic relationship between local and

global.

Conclusion

In this paper, we have discussed the possibility for the

exhibition of ‘computational creativity’ by a novel hybrid-

swarm algorithm. This specific work described herein uses

swarm intelligence techniques to explore the difference

between using Gaussian Constrained Autonomy (GC
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autonomy) and Swarm Regulated Autonomy (SR auton-

omy) in the production of ‘traced’ line drawings; our work

highlights the features of swarm-regulated difference ver-

sus simple-random difference (exploration) in the produc-

tion of such ‘drawings’ by computer.

The computational artist so described is the outcome of

a novel marriage between two classical swarm intelligence

algorithms (PSO and SDS) whose scientific value is cur-

rently being investigated [1]. We raise the question

of whether integrating swarm intelligence algorithms

(inspired by social systems in nature) could possibly lead to

a different way of exploring creative spaces and whether

the swarms demonstrate computational creativity in a

representational and non-representational way.
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