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Abstract A nonlinear wave alternative for the standard

Black-Scholes option-pricing model is presented. The

adaptive-wave model, representing controlled Brownian

behavior of financial markets, is formally defined by

adaptive nonlinear Schrödinger (NLS) equations, defining

the option-pricing wave function in terms of the stock price

and time. The model includes two parameters: volatility

(playing the role of dispersion frequency coefficient),

which can be either fixed or stochastic, and adaptive

market potential that depends on the interest rate. The wave

function represents quantum probability amplitude, whose

absolute square is probability density function. Four types

of analytical solutions of the NLS equation are provided in

terms of Jacobi elliptic functions, all starting from de

Broglie’s plane-wave packet associated with the free

quantum-mechanical particle. The best agreement with the

Black-Scholes model shows the adaptive shock-wave NLS-

solution, which can be efficiently combined with adaptive

solitary-wave NLS-solution. Adjustable ‘weights’ of the

adaptive market-heat potential are estimated using either

unsupervised Hebbian learning or supervised Levenberg–

Marquardt algorithm. In the case of stochastic volatility, it

is itself represented by the wave function, so we come to

the so-called Manakov system of two coupled NLS equa-

tions (that admits closed-form solutions), with the common

adaptive market potential, which defines a bidirectional

spatio-temporal associative memory.
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Introduction

Realistic modeling of a global financial market represents a

global cognitive computation task [1], which has many

characteristics of a human brain [2] and its associative

processing of information [3]. This enormously complex

dynamical system can be observed from a multi-modular

cognitive machine perspective [4], or human-like machine

intelligence perspective [5], or machine consciousness

perspective [6, 7].

In the subdomain of classical financial option-pricing,

the celebrated Black-Scholes partial differential equation

(PDE) describes the time-evolution of the market value of a

stock option [8, 9]. Formally, for a function u = u(t, s)

defined on the domain 0 B s \?, 0 B t B T and

describing the market value of a stock option with the stock

(asset) price s, the Black-Scholes PDE can be written

(using the physicist notation: qzu = qu/qz) as a diffusion-

type equation:

otu ¼ �
1

2
ðrsÞ2ossu� rsosuþ ru; ð1Þ

where r[ 0 is the standard deviation, or volatility of s, r is

the short-term prevailing continuously compounded risk-

free interest rate, and T [ 0 is the time of maturity of the

stock option. In this formulation, it is assumed that the

underlying (typically the stock) follows a geometric

Brownian motion with ‘drift’ l and volatility r, given by

the stochastic differential equation (SDE) [10]
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dsðtÞ ¼ lsðtÞdt þ rsðtÞdWðtÞ; ð2Þ

where W is the standard Wiener process.

The economic ideas behind the Black-Scholes option

pricing theory translated to the stochastic methods and con-

cepts are as follows (see [11]). First, the option price depends

on the stock price and this is a random variable evolving with

time. Second, the efficient market hypothesis [12, 13], i.e., the

market incorporates instantaneously any information con-

cerning future market evolution, implies that the random term

in the stochastic equation must be delta-correlated. That is:

speculative prices are driven by white noise. It is known that

any white noise can be written as a combination of the

derivative of the Wiener process [14] and white shot noise (see

[15]). In this framework, the Black-Scholes option pricing

method was first based on the geometric Brownian motion

[8, 9], and it was lately extended to include white shot noise.

The Black-Sholes PDE (1) is usually derived from SDEs

describing the geometric Brownian motion (2), with the

stock-price solution given by:

sðtÞ ¼ sð0Þeðl�1
2
r2ÞtþrWðtÞ:

In mathematical finance, derivation is usually performed

using Itô lemma [16] (assuming that the underlying asset

obeys the Itô SDE), while in physics it is performed using

Stratonovich interpretation (assuming that the underlying

asset obeys the Stratonovich SDE [17]) [11, 15].

The PDE (1) resembles the backward Fokker–Planck

equation (also known as the Kolmogorov forward equation,

in which the probabilities diffuse outwards as time moves

forwards) that describes the time evolution of the proba-

bility density function p = p(t, x) for the position x of a

particle, and can be generalized to other observables as

well [18]. Its first use was statistical description of

Brownian motion of a particle in a fluid. Applied to the

option-pricing process p = p(t, s) with drift D1 = D1(t, s),

diffusion D2 = D2(t, s) and volatility r2, the forward

Fokker–Planck equation reads:

otp ¼
1

2
oss D2r

2p
� �

� os D1pð Þ:

The corresponding backward Fokker–Planck equation

(which is probabilistic diffusion in reverse, i.e., starting

at the final forecasts, the probabilities diffuse outward as

time moves backward) reads:

otp ¼ �
1

2
r2oss D2pð Þ � os D1pð Þ:

The solution of the PDE (1) depends on boundary

conditions, subject to a number of interpretations, some

requiring minor transformations of the basic BS equation

or its solution.

The basic Eq. 1 can be applied to a number of one-

dimensional models of interpretations of prices given to u,

e.g., puts or calls, and to s, e.g., stocks or futures, divi-

dends, etc. The most important examples are European call

and put options (see Fig. 1), defined by:

uCallðs; tÞ ¼ sNðd1Þe�Td � kNðd2Þe�rT ; ð3Þ

uPutðs; tÞ ¼ kNð�d2Þe�rT � sNð�d1Þe�Td; ð4Þ

N ðkÞ ¼ 1

2
1þ erf

k
ffiffiffi
2
p
� �� �

;

d1 ¼
ln s

k

� �
þ T r � dþ r2

2

� �

r
ffiffiffiffi
T
p ;

d2 ¼
ln s

k

� �
þ T r � d� r2

2

� �

r
ffiffiffiffi
T
p ;

where erf(k) is the (real-valued) error function, k denotes

the strike price and d represents the dividend yield. In

addition, for each of the call and put options, there are five

Greeks (see, e.g. [19]), or sensitivities of the option-price

with respect to the following quantities:

1. The stock price—Delta: DCall ¼ osuCall and DPut ¼
osuPut;

2. The interest rate—Rho: qCall = qruCall and qPut =

qruPut;

3. The volatility: VegaCall = qruCall and VegaPut =

qruPut;

4. The elapsed time since entering into the option—

Theta: HCall ¼ oT uCall and HPut ¼ oT uPut; and

5. The second partial derivative of the option-price with

respect to the stock price—Gamma: CCall ¼ ossuCall

and CPut ¼ ossuPut .
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OptionFig. 1 European call (3) and

put (4) options, as the solutions

of the Black-Sholes PDE (1).

Used parameters are: r = 0.3,

r = 0.05, k = 100, d = 0.04

[19]
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In practice, the volatility r is the least known parameter

in (1), and its estimation is generally the most important

part of pricing options. Usually, the volatility is given in a

yearly basis, baselined to some standard, e.g., 252 trading

days per year, or 360 or 365 calendar days. However, and

especially after the 1987 crash, the geometric Brownian

motion model and the BS formula were unable to repro-

duce the option price data of real markets.

The Black-Scholes model assumes that the underlying

volatility is constant over the life of the derivative, and

unaffected by the changes in the price level of the under-

lying. However, this model cannot explain long-observed

features of the implied volatility surface such as volatility

smile and skew, which indicate that implied volatility does

tend to vary with respect to strike price and expiration. By

assuming that the volatility of the underlying price is a

stochastic process itself, rather than a constant, it becomes

possible to model derivatives more accurately.

As an alternative, models of financial dynamics based

on two-dimensional diffusion processes, known as sto-

chastic volatility (SV) models [20], are being widely

accepted as a reasonable explanation for many empirical

observations collected under the name of ‘stylized facts’

[21]. In such models the volatility, that is, the standard

deviation of returns, originally thought to be a constant, is a

random process coupled with the return in an SDE of the

form similar to (2), so that they both form a two-dimen-

sional diffusion process governed by a pair of Langevin

equations [20, 22, 23].

Using the standard Kolmogorov probability approach,

instead of the market value of an option given by the

Black-Scholes equation (1), we could consider the corre-

sponding probability density function (PDF) given by the

backward Fokker–Planck equation (see [15]). Alterna-

tively, we can obtain the same PDF (for the market value of

a stock option), using the quantum-probability formalism

[24, 25], as a solution to a time-dependent linear Schrö-

dinger equation for the evolution of the complex-valued

wave w-function for which the absolute square, |w|2, is the

PDF (see [26]).

In this paper, I will go a step further and propose a novel

general quantum-probability based,1 option-pricing model,

which is both nonlinear (see [29–32]) and adaptive (see

[33–36]). More precisely, I propose a quantum neural

computation [37] approach to option price modeling, based

on the nonlinear Schrödinger (NLS) equation with adaptive

parameters.

Adaptive Nonlinear Schrödinger Equation Model

This new adaptive wave-form approach to financial option

modeling is motivated by:

1. Modern adaptive markets hypothesis of A. Lo [38, 39];

2. My adaptive path integral approach to human cogni-

tion [40–42];

3. Elliott wave (fractal) market theory [43–45]; and

4. My recent monograph: ‘Quantum Neural Computa-

tion’ [37], as well as papers on entropic crowd

modeling based on the concept of controlled Brownian

motion [46–48].

To satisfy both efficient and behavioral markets, as well

as their essential nonlinear complexity, I propose an

adaptive, wave-form, nonlinear and stochastic option-

pricing model with stock price s, volatility r and interest

rate r. The model is formally defined as a complex-valued,

focusing (1 ? 1)–NLS equation, defining the option-price

wave function w = w (s, t), whose absolute square |w (s, t)|2

represents the probability density function (PDF) for the

option price in terms of the stock price and time. In natural

quantum units, this NLS equation reads:

iotw ¼ �
1

2
rossw� bjwj2w; ði ¼

ffiffiffiffiffiffiffi
�1
p

Þ ð5Þ

where dispersion frequency coefficient r is the volatility

(which can be either constant or stochastic process itself),

while Landau coefficient b = b (r, w) represents the

adaptive market potential, which is, in the simplest non-

adaptive scenario, equal to the interest rate r, while in the

adaptive case depends on the set of adjustable parameters

{wi}. In this case, b (r, w) can be related to the market

temperature (which obeys Boltzmann distribution [49]).

The term V(w) = - b |w|2represents the w - dependent

potential field. Physically, the NLS Eq. 5 describes a

nonlinear wave-packet defined by the complex-valued

wave function w (s, t) of real space and time parameters. In

the present context, the space-like variable s denotes the

stock (asset) price.

Analytical NLS-Solution

NLS equation can be exactly solved using the power

series expansion method [50, 51] of Jacobi elliptic func-

tions [52].

In case of low interest-rate r, b(r) � 1, V(w)? 0, so

Eq. 5 can be approximated by a linear wave packet, defined

by a continuous superposition of de Broglie’s plane waves,

associated with a free quantum particle. This linear wave

packet is defined by the linear Schrö dinger equation with

zero potential energy (in natural units):

1 Note that the domain of validity of the ‘quantum probability’ is not

restricted to the microscopic world [27]. There are macroscopic

features of classically behaving systems, which cannot be explained

without recourse to the quantum dynamics (see [28] and references

therein).
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iotw ¼ �
1

2
ossw: ð6Þ

Thus, we consider the w-function describing a single de

Broglie’s plane wave, with the wave number (or,

momentum) k and circular frequency x:

wðs; tÞ ¼ /ðnÞeiðks�xtÞ;
with n ¼ s� rkt and /ðnÞ 2 R:

ð7Þ

Its substitution into the linear Schrödinger Eq. 6 gives

the linear harmonic oscillator ODE, whose eigenvalues are

natural frequencies of (6), and the solution is given by a

Fourier sine or cosine series (see, e.g. [53, 54]). This linear

quantum-mechanical approach to low interest-rate option-

pricing evolution has been elaborated elsewhere [55].

Similarly, substituting (7) into the NLS Eq. 5, we obtain

a nonlinear oscillator ODE:

/00ðnÞ þ x� 1

2
rk2

� 	
/ðnÞ þ b/3ðnÞ ¼ 0: ð8Þ

Following [51], I suppose that a solution / (n) for (8) can

be obtained as a linear expansion

/ðnÞ ¼ a0 þ a1snðnÞ; ð9Þ

where sn(s) = sn(s, m) are Jacobi elliptic sine functions

with elliptic modulus m 2 ½0; 1� , such that snðs; 0Þ ¼ sinðsÞ
and snðs; 1Þ ¼ tanhðsÞ.2 Using standard identities with

associated elliptic cosine functions cn(n) and elliptic

functions of the third kind dn(n), we have

/0ðnÞ ¼ a1cnðnÞdnðnÞ;
/00ðnÞ ¼ �a1fsnðnÞ½1� m2sn2ðnÞ� þ m2snðnÞ½1� sn2ðnÞ�g:

ð10Þ

Substituting (9) and (10) into (8), after doing some algebra,

we get

a0¼ 0; a1¼�m

ffiffiffiffiffiffiffi�r
b

r
; x¼ 1

2
ð1þm2þ k2Þ; ð11Þ

which, substituted into the nonlinear oscillator (8), gives

/ðnÞ ¼ �m

ffiffiffiffiffiffiffi�r
b

r
snðnÞ; for m 2 ½0; 1�; and

/ðnÞ ¼ �
ffiffiffiffiffiffiffi�r
b

r
tanhðnÞ; for m ¼ 1:

Using the substitutions (7) and (11), we now obtain the

exact periodic solution of (5) as

w1ðs; tÞ ¼ �m

ffiffiffiffiffiffiffiffiffiffi�r
bðwÞ

r
snðs� rktÞei½ks�1

2
rtð1þm2þk2Þ�;

for m 2 ½0; 1Þ;
ð12Þ

w2ðs; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi�r
bðwÞ

r
tanhðs� rktÞei½ks�1

2
rtð2þk2Þ�;

for m ¼ 1;

ð13Þ

where (12) defines the general solution (see Fig. 2), while

(13) defines the envelope shock-wave3 (or, ‘dark soliton’)

solution (Fig. 3) of the NLS Eq. 5. The same shock-wave

solution with stochastic volatility rt (defined as a simple

random walk) is given in Fig. 4.

Alternatively, if we seek a solution /(n) as a linear

expansion of Jacobi elliptic cosine functions, such that

cn(s, 0) = cos (s) and cn(s, 1) = sech(s),4 in a linear form:

/ðnÞ ¼ a0 þ a1cnðnÞ;

then we get

w3ðs; tÞ ¼ �m

ffiffiffiffiffiffiffiffiffiffi
r

bðwÞ

r
cnðs� rktÞei½ks�1

2
rtð1�2m2þk2Þ�;

for m 2 ½0; 1Þ;
ð14Þ

w4ðs; tÞ ¼ �
ffiffiffiffiffiffiffiffiffiffi

r
bðwÞ

r
sechðs� rktÞei½ks�1

2
rtðk2�1Þ�;

for m ¼ 1;

ð15Þ

where (14) defines the general solution (Fig. 5), while (15)

defines the envelope solitary-wave (or, ‘bright soliton’)

solution (Fig. 6, 7) of the NLS Eq. 5. The same soliton

solution with stochastic volatility rt (a simple random

walk) is given in Fig. 4.

In all four solution expressions (12), (13), (14) and (15),

the adaptive potential b(w) is yet to be calculated using

either unsupervised Hebbian learning, or supervised

Levenberg–Marquardt algorithm (see, e.g. [56, 57]). In this

way, the NLS Eq. 5 resembles the ‘quantum stochastic-

filtering neural network’ model of [58–60]. While the

authors of the prior quantum neural network performed

2 For example, the general pendulum equation:

a00ðt;/Þ þ sin½aðt;/Þ� ¼ 0

has the elliptic solution:

aðt;/Þ ¼ 2 sin�1 sin
/
2

� �� 	
sn t; sin2 /

2

� �� 	
:

3 A shock wave is a type of fast-propagating nonlinear disturbance

that carries energy and can propagate through a medium (or, field). It

is characterized by an abrupt, nearly discontinuous change in the

characteristics of the medium. The energy of a shock wave dissipates

relatively quickly with distance and its entropy increases. On the

other hand, a soliton is a self-reinforcing nonlinear solitary wave

packet that maintains its shape while it travels at constant speed. It is

caused by a cancelation of nonlinear and dispersive effects in the

medium (or, field).
4 A closely related solution of an anharmonic oscillator ODE:

/00ðsÞ þ /ðsÞ þ /3ðsÞ ¼ 0

is given by

/ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2m

1� 2m

r

cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m

1� 2m

r

s;m

 !

:
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Fig. 2 The general Jacobi sine

solution (12) of the NLS

equation (5) with k = 1.2,

m = 0.5, r = b = 1, for

t [ (0, 5) and s [ (-7,18).

Thick line represents ?Re[w
(s, t)], while dash line
represents -Re[ w (s, t)]

Fig. 3 The dark shock-wave

solution (13) of the NLS Eq. 5

with k = 1.2, r = b = 1, for

t [ (0, 5) and s [ (-7, 18).

Thick line represents ? Re[w
(s, t)], while dash line
represents -Re[w (s, t)]

Fig. 4 The ?tanh solution from

Fig. 3, with stochastic volatility

rt (random walk)
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Fig. 5 The general Jacobi

cosine solution (14) of the NLS

Eq. 5 with k = 1.2, m = 0.5, r
= b = 1, for t [ (0, 10) and

s [ (-7, 18). Thick line
represents ?Re[w (s, t)], while

dash line represents -Re[w
(s, t)]

Fig. 6 The bright solitary-wave

solution (15) of the NLS

equation (5) with k = 1.2, r
= b = 1, for t [ (0, 10) and

s [ (-7, 18). Thick line

represents ?Re[ w (s, t)], while

dash line represents -Re[w
(s, t)]

Fig. 7 The ?sech soliton from

Fig. 6, with stochastic volatility

rt (random walk)
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only numerical (finite-difference) simulations of their

model, this paper provides theoretic foundation (of both

single NLS network and coupled NLS network) with

closed-form analytical solutions. Any kind of numerical

analysis can be easily performed using above closed-form

solutions wi(s, t), (i = 1, ..., 4).

Fitting the Black-Scholes Model Using Adaptive

NLS-PDF

The adaptive NLS-PDFs of the shock-wave type (13) can

be used to fit the Black-Scholes call and put options.

Specifically, I have used the spatial part of (13),

/ðsÞ ¼
ffiffiffi
r
b

r
tanhðs� ktrÞ













2

; ð16Þ

where the adaptive market-heat potential b (r, w) is chosen

as:

bðr;wÞ ¼ r
Xn

i¼1

wi
1erf

wi
2s

wi
3

� �
ð17Þ

The following parameter estimates were obtained using

100 iterations of the Levenberg–Marquardt algorithm. In

case of the call option fit (see Fig. 8), n = 5,

w1
1 = 24.8952, w2

1 = -78112.3, w3
1 = -48178.3,

w1
2 = 24.8951, w2

2 = -78112.3, w3
2 = -48178.3,

w1
3 = 24.895, w2

3 = -78112.3, w3
3 = -48178.3,

w1
4 = -37.3927, w2

4 = -3108.08, w3
4 = -1520633,

w1
5 = -37.2757, w2

5 = -3968.35, w3
5 = -159782.

rNLS
call = -0.119341rBS, kNLS

call = 0.0156422kBS, TNLS
call =

15.6423TBS.

In case of the put option fit (see Fig. 9), n = 3,

wa
1 = 0.000222367, wb

1 = 82032.8, wc
1 = 63876.9,

wa
2 = -0.428113, wb

2 = 439.148, wc
2 = 205780.0,

wa
3 = 4.70615, wb

3 = 27.1558, wc
3 = 139805.0

rput
NLS = -0.003444rBS, kput

NLS = -3.10354kBS,

Tput
NLS = -3103.54TBS.

As can be seen from Fig. 9, there is a kink near s = 100.

This kink, which is a natural characteristic of the spatial

shock-wave (16), can be smoothed out by taking the sum of

the spatial parts of the shock-wave NLS-solution (13) and

the soliton NLS-solution (15) as:

/ðsÞ ¼
ffiffiffi
r
b

r
d1 tanhðs� ktrÞ þ d2sechðs� ktrÞ½ �













2

: ð18Þ

In this case, using 100 iterations of the Levenberg–Mar-

quardt algorithm, the following parameter estimates were

obtained:

w1
1 = -0.00190885, w2

1 = 6798.78, w3
1 = 5329.46,

w1
2 = 18.1757, w2

2 = 23.5253, w3
2 = 18354.9,

w1
3 = -71.7315, w2

3 = 4.15999, w3
3 = 12807.2,

d1 = 0.345078, d2 = -12.3948.

rNLS
put = -0.247932BS, kNLS

put = 0.260764kBS, TNLS
put =

260.764TBS.

The adaptive NLS-based Greeks can now be defined,

using b = r and above modified (r, k, t) values, by the

following partial derivatives of the spatial part of the

shock-wave solution (13):

where abs0(z) denotes the partial derivative of the

absolute value upon the corresponding variable z.

Delta ¼ os/ðsÞ ¼ 2

ffiffiffiffiffiffiffi
�r

r

r ffiffiffiffiffiffi
r
r










r
sech2ðs� ktrÞj tanhðs� ktrÞjabs0

ffiffiffiffiffiffiffi
�r

r

r
tanhðs� ktrÞ

� �
;

Gamma ¼ oss/ðsÞ ¼ �
2sech4ðs� ktrÞ

r
rabs0

ffiffiffiffiffiffiffi
�r

r

r
tanhðs� ktrÞ

� �2
"

þ
ffiffiffiffiffiffi
r
r










r
j tanhðs� ktrÞj rabs00

ffiffiffiffiffiffiffi
�r

r

r
tanhðs� ktrÞ

� ��

þr

ffiffiffiffiffiffiffi
�r

r

r
sinhð2s� 2ktrÞabs0

ffiffiffiffiffiffiffi
�r

r

r
tanhðs� ktrÞ

� ��	
;

Vega ¼ or/ðsÞ ¼
ffiffiffiffiffiffiffiffiffi
�rr
p ffiffiffiffiffi

r
r



 


q

j tanhðs� ktrÞj tanhðs� ktrÞ � 2ktrsech2ðs� ktrÞ
� �

abs0
ffiffiffiffiffiffi
�r

r

p
tanhðs� ktrÞ

� �

r
;

Rho ¼ or/ðsÞ ¼
�r

r

� �3=2
ffiffiffiffiffi
r
r



 


q

tanhðs� ktrÞj tanhðs� ktrÞjabs0
ffiffiffiffiffiffi
�r

r

p
tanhðs� ktrÞ

� �

r
;

Theta ¼ ot/ðsÞ ¼ 2kr �r
r

� �3=2
ffiffiffiffiffiffi
r
r










r
sech2ðs� ktrÞj tanhðs� ktrÞjabs0

ffiffiffiffiffiffiffi
�r

r

r
tanhðs� ktrÞ

� �
;
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Coupled Adaptive NLS-System for Volatility 1 Option-

Price Evolution Modeling

For the purpose of including a controlled stochastic vola-

tility5 into the adaptive-wave model (5), the full bidirec-

tional quantum neural computation model for option price

forecasting can be represented as a self-organized system

of two coupled self-focusing NLS equations: one defining

the option-price wave function w = w (s, t) and the other

defining the volatility wave function r = r (s, t). The two

NLS equations are coupled so that the volatility r is a

parameter in the option-price NLS, while the option-price

w is a parameter in the volatility NLS. In addition, both

processes evolve in a common self-organizing market heat

potential, so they effectively represent an adaptively con-

trolled Brownian behavior of a hypothetical financial

market.

Formally, I here propose an adaptive, symmetrically

coupled, volatility ? option-pricing model (with interest

rate r and Hebbian learning rate c), which represents a

bidirectional spatio-temporal associative memory. The

model is defined by the following coupled-NLS?Hebb

system:

Volatility NLS : iotr ¼ �
1

2
ossr� b jrj2 þ jwj2

� �
r;

ð19Þ

Option price NLS : iotw ¼ �
1

2
ossw� b jrj2 þ jwj2

� �
w;

ð20Þ

with :bðr;wÞ ¼ r
XN

i¼1

wigi; and

Adaptation ODE : _wi ¼ �wi þ cjrjgijwj:
ð21Þ

In this coupled model, the r-NLS (19) governs the

(s, t)—evolution of stochastic volatility, which plays the

role of a nonlinear coefficient in (20); the w-NLS (20)

defines the (s, t)—evolution of option price, which plays

the role of a nonlinear coefficient in (19). The purpose of

this coupling is to generate a leverage effect, i.e. stock

volatility is (negatively) correlated to stock returns6 (see,

e.g. [62]). The w-ODE (21) defines the (r , w)—coupling-

based continuous Hebbian learning with the learning rate c.

The adaptive market-heat potential b (r, w), previously

defined by (17), is now generalized into a scalar product of

the ‘synaptic weight’ vector wi and the Gaussian kernel

vector gi, yet to be defined.

The bidirectional associative memory model (19)–(21)

effectively performs quantum neural computation [37], by

giving a spatio-temporal and quantum generalization of

Kosko’s BAM family of neural networks [63, 64]. In

Stock

Option

NLS

BS

70 80 90 100 110 120 130 140

0

10

20

30

40

Fig. 8 Fitting the Black–Scholes call option with b (w)-adaptive PDF

of the shock-wave NLS-solution (13)

Fig. 9 Fitting the Black-Scholes put option with b (w)-adaptive PDF

of the shock-wave NLS w2(s, t) solution (13). Notice the kink near

s = 100

Fig. 10 Smoothing out the kink in the put option fit, by combining

the shock-wave solution with the soliton solution, as defined by (18)

5 Controlled stochastic volatility here represents volatility evolving in

a stochastic manner but within the controlled boundaries.

6 The hypothesis that financial leverage can explain the leverage

effect was first discussed by F. Black [61].
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addition, the shock-wave and solitary-wave nature of the

coupled NLS equations may describe brain-like effects

frequently occurring in financial markets: volatility/price

propagation, reflection and collision of shock and solitary

waves (see [65]).

The coupled NLS-system (19), (20), without an

embedded w-learning (i.e., for constant b = r – the interest

rate), actually defines the well-known Manakov system,

which was proven by S. Manakov in 1973 [66] to be

completely integrable, by the existence of infinite number

of involutive integrals of motion. It admits ‘bright’ and

‘dark’ soliton solutions. Manakov system has been used to

describe the interaction between wave packets in dispersive

conservative media, and also the interaction between

orthogonally polarized components in nonlinear optical

fibers (see, e.g. [67, 68] and references therein).

The simplest solution of (19)–(20), the so-called Man-

akov bright 2-soliton, has the form resembling that of (15)

and (Fig. 6) (see [69–75]), defined by:

wsolðs; tÞ ¼ 2bcsechð2bðsþ 4atÞÞe�2ið2a2tþas�2b2tÞ; ð22Þ

where wsolðs; tÞ ¼
rðs; tÞ
wðs; tÞ

� �
; c ¼ ðc1; c2ÞT is a unit vector

such that |c1|2 ? |c2|2 = 1. Real-valued parameters a and b

are some simple functions of (r, b, k), which can be

determined by either Hebbian learning of Levenberg–

Marquardt algorithm. Also, shock-wave solutions similar

to (13) are derived in Appendix. We can argue that in some

short-time financial situations, the adaptation effect (21)

can be neglected, so our option-pricing model (19)–(20)

can be reduced to the Manakov 2-soliton model (22), as

depicted and explained in Fig. 11.

More complex exact soliton solutions have been

derived for the Manakov system (19)–(20) with different

procedures (see Appendix, as well as [76–78]). For

example, in [76], using bright one-soliton solutions (of

the type of (15)) of the system (19)–(20), many physical

phenomena, such as unstable birefringence property,

soliton trapping and daughter wave (‘shadow’) formation,

were studied. Similarly, searching for modulation insta-

bilities and homoclinic orbits was performed in [79–81].

In particular, local bifurcations of ‘wave and daughter

waves’ from single-component waves have been studied

in various forms of coupled NLS-systems, including the

Manakov system (see [82] and references therein). Let us

assume that a small volatility r-component bifurcates

from a pure option-price w-pulse. Thus, at the bifurca-

tion point, the volatility component is infinitesimally

small, while the option-price component is governed by

the equation

ossw� wþ w3 ¼ 0;

whose homoclinic soliton solution is

wðsÞ ¼
ffiffiffi
2
p

sechs: ð23Þ

A necessary condition for a local bifurcation of a

homoclinic soliton solution with a small-amplitude

volatility component from the option-price pulse (23) is

that there is a nontrivial localized solution to the linearized

problem of the r-component. This takes the form of a

linear Schrödinger equation

ossr� x2rþ 2sech2sr ¼ 0; ð24Þ

which can be solved exactly (see [83]), and for local

bifurcation we require r ? 0 as |s|? ± ?.

As a final remark, numerical solution of the adaptive

Manakov system (19)–(21), with any possible extensions,

is quite straightforward, using the powerful numerical

method of lines (see Appendix in [37]). Another possibility

is Berger-Oliger adaptive mesh refinement when recur-

sively numerically solving partial differential equations

Fig. 11 Hypothetical market scenario including sample PDFs for

volatility jrj2 and |w|2 of the Manakov 2-soliton (22). On the left, we

observe the (s, t)—evolution of stochastic volatility: we have a

collision of two volatility component-solitons, S1(s, t) and S2(s, t),
which join together into the resulting soliton S2(s, t), annihilating the

S1(s, t) component in the process. On the right, we observe the

(s, t) - evolution of option price: we have a collision of two option

component-solitons, S1(s, t) and S2(s, t), which pass through each

other without much change, except at the collision point. Due to

symmetry of the Manakov system, volatility and option price can

exchange their roles
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with wave-like solutions, using characteristic (double-null)

grids (see [84] and reference therein).

Hebbian learning dynamics: analytical solution

Regarding the Hebbian learning (21) embedded into the

Manakov system (19)–(20), suppose e.g. that we have

N = 10 synaptic weights (in a single neural layer), with the

learning rate c = 0.7. The zero-mean Gaussians are defined

as:

gi ¼ e
� t2

2ri ; ði ¼ 1; . . .;NÞ;

where {ri} are (-1, ?1)-random standard deviations.

Using random initial conditions, we get (by Mathematica

of Maple ODE-solvers) the following analytical solutions

of the Hebbian learning ODEs:

where erf(s) denotes the real-valued error function,

while erfi(s) denotes the imaginary error function defined

as: erf(i s)/i.

In this way, we get the alternative expression for

adaptive market-heat potential: b (w) = r
P

i=1
N wigi, with

interest rate r (see Fig. 12). Insertion of b (w), including

the product |r (s, t)||w (s, t)| calculated at time t into

any Manakov solutions, gives the recursive QNN

dynamics w (s, t ? 1) for volatility and option-price

forecasting at time t ? 1. For example, an instant

snapshot of the adaptive bright sech-soliton w4(s, t) is

given in Fig. 13.

Conclusion

I have proposed a nonlinear adaptive–wave alternative to

the standard Black-Scholes option pricing model. The new

model, philosophically founded on adaptive markets

hypothesis [38, 39] and Elliott wave market theory [43,

44], describes adaptively controlled Brownian market

behavior, formally defined by adaptive NLS-equation.

Four types of analytical solutions of the NLS equation are

provided in terms of Jacobi elliptic functions, all starting

from de Broglie’s plane waves associated with the free

quantum-mechanical particle. The best agreement with the

Fig. 12 Time plot of the quick adaptive potential term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=bðwÞ

p
(as

it appears in wi(s, t), i = 1, ..., 4) for the sample value of w
(s, t) = 0.5

w1ðtÞ ¼ e�t 136485 erfð0:686579ð106069t � 1ÞÞjwj2 þ 0:912318jwj2 � 0:00675663
h i

;

w2ðtÞ ¼ e�t 0:932205 erfð0:553239ð16336t � 1ÞÞjwj2 þ 0:527646jwj2 � 0:249822
h i

;

w3ðtÞ ¼ e�t 0:471627erfið0:477447ð2:19341t þ 1ÞÞjwj2 � 0:274787jwj2 þ 0:582548
h i

;

w4ðtÞ ¼ e�t 0:52899erfið0:6535ð117079t þ 1ÞÞjwj2 � 0:453506jwj2 þ 0:0773187
h i

;

w5ðtÞ ¼ e�t 0:362728erfið0:324902ð4:73659t þ 1ÞÞjwj2 � 0:137812jwj2 þ 0:798481
h i

;

w6ðtÞ ¼ e�t 0:523292erfið0:6177ð131043t þ 1ÞÞjwj2 � 0:416953jwj2 � 0:288671
h i

;

w7ðtÞ ¼ e�t 0:692907 erfð0:454319ð2:42241t � 1ÞÞjwj2 þ 0:332217jwj2 þ 0:761879
h i

;

w8ðtÞ ¼ e�t 0:432141 erfð0:315332ð5:02843t � 1ÞÞjwj2 þ 0:148814jwj2 � 0:33264
h i

;

w9ðtÞ ¼ e�t 0:530916erfið0:673709ð11016t þ 1ÞÞjwj2 � 0:473963jwj2 � 0:17079
h i

;

w10ðtÞ ¼ e�t 0:443395 erfð0:322143ð4:81806t � 1ÞÞjwj2 þ 0:155768jwj2 þ 0:49451
h i

;
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Black-Scholes model shows the adaptive shock-wave

NLS-solution, which can be efficiently combined with

adaptive solitary-wave NLS-solution. Adjustable ’weights’

of the adaptive market potential are estimated using either

unsupervised Hebbian learning, or supervised Levenberg-

Marquardt algorithm. For the case of stochastic volatility,

it is itself represented by the wave function, so we come

to the integrable Manakov system of two coupled

NLS equations with the common adaptive potential,

defining a bidirectional spatio-temporal associative mem-

ory machine.

As depicted in most Figures in this paper, the presented

adaptive-wave model, both the single NLS-equation (5)

and the coupled NLS-system (19)–(21), which represents a

bidirectional associative memory, is a spatio-temporal

dynamical system of great nonlinear complexity (see [36]),

much more complex then the Black-Scholes model. This

makes the new wave model harder to analyze, but at the

same time, its immense variety is potentially much closer

to the real financial market complexity, especially at the

time of economic crisis abundant in shock-waves.

Finally, close in spirit to the adaptive-wave model is the

method of adaptive wavelets in modern signal processing

(see [85] and references therein, as well as [37] for an

overview), which could be used for various market dimen-

sionality reduction, signals separation and denoising as well

as optimization of discriminatory market information.

Appendix: Manakov System

Manakov’s own method was based on the Lax pair

representation.7

Alternatively, for normalized value of the market-heat

potential, b = r = 1, Manakov system allows solutions of

the form:

rðs; tÞ ¼ uðsÞeiw2
rt; wðs; tÞ ¼ /ðsÞeiw2

wt; ð26Þ

where u, / are real-valued functions and wr, ww are

positive wave parameters for volatility and option-price.

Substituting (26) into the Manakov equations we get the

ODE-system [68]

u00ðsÞ ¼ w2
ruðsÞ � ½u2ðsÞ þ /2ðsÞ�uðsÞ; ð27Þ

/00ðsÞ ¼ w2
w/ðsÞ � ½/2ðsÞ þ u2ðsÞ�/ðsÞ: ð28Þ

For wr = ww = w, Eqs. 27 and 28 have a one-

parameter family of symmetric single-humped soliton

solutions (see the left part of Fig. 14) given by

uðsÞ ¼ �/ðsÞ ¼ wsechðwsÞ; ð29Þ

as well as periodic solutions:

uðsÞ ¼ A cosðBsÞ and /ðsÞ ¼ A sinðBsÞ; ð30Þ

where A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ B2
p

(with B an arbitrary parameter). For

Fig. 13 A snapshot of the

adaptive ± sech-soliton w4(s, t)
with stochastic volatility rt and

trained potential b (w)

calculated at a sample fixed

time t0. We can see that due to

quick learning dynamics, the

whole solution is now decaying

much faster than in Fig. 6

7 The Manakov system (19)–(20) has the following Lax pair [86]

representation:

ox/ ¼ M/ and ot/ ¼ B/; or oxB� otM ¼ ½M;B�; with

MðkÞ ¼
ik w1 w2

�w1 ik 0

�w2 0 ik

0

B@

1

CA and

BðkÞ ¼ �i

2k2 � jw1j
2 � jw2j

2
2iw1k� oxw1 2iw2k� oxw2

�2iw�1k� oxw
�
1 �2k2 þ jw1j

2 w�1w2

�2iw�2k� oxw
�
2 w1w

�
2 �2k2 þ jw2j

2

0

B@

1

CA:

ð25Þ
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0 \ w \ 1 there is also another, in general asymmetric,

one-parameter family of solutions for each fixed w [68]

uðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� w2Þ

p
coshðwsÞ=j;

/ðsÞ ¼ �w
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� w2Þ

p
sinhðs� s0Þ=j; where

j ¼ coshðsÞ coshðwsÞ � w sinhðsÞ sinhðwsÞ;
ð31Þ

in which u is symmetric and / antisymmetric.

On the other hand, for negative values of the potential b,

the Manakov equations accept dark soliton solutions of the

form [87]

rðs; tÞ ¼ wðs; tÞ ¼ k tanhðksÞ � i½ �eiðks�5k2tÞ; ð32Þ

which are localized dips on a finite-amplitude background

wave (see the middle part of Fig. 14). In this very interesting

case, volatility and option-price fields are coupled together,

forming a dark compound soliton. Note that their respective

relative amplitudes are controlled by the corresponding

nonlinearities and frequency. For b = -1 the Manakov

equations alow also solutions of the form:

rðs; tÞ ¼ uðsÞe�iw2
rt; wðs; tÞ ¼ /ðsÞeiw2

wt: ð33Þ

Introducing (33) into the Manakov equations, we get the

ODE-system:

u00ðsÞ ¼ ½u2ðsÞ þ /2ðsÞ�uðsÞ � w2
ruðsÞ; ð34Þ

/00ðsÞ ¼ ½/2ðsÞ þ u2ðsÞ�/ðsÞ � w2
w/ðsÞ; ð35Þ

which, for wr = ww = w, allow for kink-shaped localized

soliton solutions (see the right part of Fig. 14) given by [87]

uðsÞ ¼ �/ðsÞ ¼ ðw=
ffiffiffi
2
p
Þ tanhðws=

ffiffiffi
2
p
Þ; ð36Þ

as well as periodic solutions (30). Inserting (14) back into

(33) gives the double-kink solution for the Manakov system:

rðs; tÞ ¼ �ðw=
ffiffiffi
2
p
Þ tanhðws=

ffiffiffi
2
p
Þe�iw2t;

wðs; tÞ ¼ �ðw=
ffiffiffi
2
p
Þ tanhðws=

ffiffiffi
2
p
Þe�iw2t:

ð37Þ
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