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Abstract How are we to go about understanding the

computations that underpin cognition? Here we set out a

methodological framework that helps understand different

approaches to solving this problem. We argue that a very

powerful stratagem is to attempt to ‘reverse engineer’ the

brain and that computational neuroscience plays a pivotal

role in this programme. En passant, we also tackle the oft-

asked and prior question of why we should build compu-

tational models of any kind. Our framework uses four

levels of conceptual analysis: computation, algorithm,

mechanism and biological substrate. As such it enables us

to understand how (algorithmic) AI and connectionism

may be recruited to help propel the reverse-engineering

programme forward. The framework also incorporates the

notion of different levels of structural description of the

brain, and analysis of this issue gives rise to a novel pro-

posal for capturing computations at multiple levels of

description in a single model.
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Introduction

There are several ways we might go about understanding a

cognitive agent. One approach is simply to observe its

behaviour—how it responds to various inputs and interacts

with its environment—and to try and construct another,

artificial agent which displays similar behaviour. An

alternative to this constructive technique starts by decon-

structing the agent at the physical level. That is, we ‘look

inside’ to discover the agent’s physical makeup and

establish the interconnection between, and function of, its

component parts. If the agent is a biological one, decon-

struction will involve gathering data on the structure of

the brain; this is the remit of neuroscience. Subsequent

reconstruction of the agent’s cognitive abilities, based on

the neuroscientific data obtained in deconstruction, will

result in a deep understanding of these abilities, and

involve the building of quantitative models; this is the

remit of computational neuroscience. The combination of

deconstruction and functional reconstruction constitute the

process of ‘reverse engineering’ the brain.

Reverse-engineering biological systems offers a pow-

erful paradigm for understanding cognition. Nature

presents us with the opportunity of finding solutions to a

plethora of computational problems that define cognition

and which, crucially, work in synergy with each other—an

issue which is revisited in the section ‘‘Algorithms and the

brain’’. While we promote computational neuroscience as a

key activity in this programme, this does not imply that

other, less biologically grounded computational approaches

(including AI and connectionism) are redundant. Rather,

these activities have key roles to play in developing the

reverse-engineering programme, and these roles will be

better appreciated when we have developed the principled

methodology for doing computational neuroscience. The

paper therefore deals largely with an exposition of this

methodological framework and exploring its implications.

However, before this, we take a step back and try to

answer a prior question: Why should we build computa-

tional models of any kind? Presumably, most readers of

this journal will accept the rationale for a programme of
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this kind without question. However, there are many

experimentalists in the biological sciences who question its

validity. It is therefore worth trying to address their con-

cerns. Only then can we hope for a rich and productive

dialog between experimentalists and modellers in the study

of cognition.

The Need for Computational Modelling

Consider the simple neural network model shown in

Fig. 1a. It consists of two coupled leaky-integrator model

neurons 1 and 2, with neuron 1 receiving a current pulse as

well the output of its neighbour. Such neural models are

typical of those used in rate-coded models of brain systems,

albeit usually in much more complex networks. The dia-

gram in Fig. 1a is beguilingly simple. Treated as a box-

and-arrow system with little or no quantitative character-

isation, we might be seduced into thinking we can predict

the result of the current injection experiment (Fig. 1c

perhaps?). However, a proper computational treatment tells

us otherwise.

Thus, suppose each neuron is described by an equation

of the form sdV/dt = -V ? F, where V is a ‘membrane

potential’ variable, and F is a forcing term. For neuron 2,

F2 = w12 y1, where y is the output of neuron 1, and for

neuron 1, F1 = w21 y2 ? I where I is an injected ‘current’

(shown in the circle). The outputs are given by a piecewise

linear function, h (Fig. 1b) where y = h(V). We now ask the

question: What is the output of neuron 1 when a rectan-

gular current pulse is input to the network? Four possible

results are shown in Fig. 1c–f. They include a simple

exponential rise or fall to equilibrium (panel c), oscillatory

behaviour (panel d), a rebound phenomenon after the

current is turned off (panel e), and ‘latching’ in which

neuron 1 remains active after the pulse has completed

(panel f).

The salient point here is that the outcome depends

enormously on the network parameters (inter-neuron

weights and characterisation of h(V)); we cannot predict

what the outcome will be by ‘doing the simulation in our

heads’. The same argument will apply to most ‘box-and-

arrow’ models, or qualitative analyses of neural systems.

Having built a successful computational model, what

can it tell us (if anything) about the underlying target

system? There is widespread skepticism in much of the

neuroscience community about the relevance of modeling.

Thus, De Schutter [9] has recently noted that ‘‘More than

two decades after the declaration of computational neuro-

science as a subfield [47] we must conclude that its impact

on mainstream neuroscience remains limited and, in par-

ticular, most neuroscientists deny theory a strong role in

their scientific approaches’’. Indeed, this problem is not

unique to computational neuroscience and appears to be

prevalent in much of the non-physical sciences including

social science and economics. It was in this arena that

Epstein [12] recently provided an extremely well argued

case for modelling, but his arguments could apply equally

well to computational neuroscience and cognitive model-

ling in general.

Epstein [12] lays out 16 ‘reasons to model’ other than

prediction. This is important because it is often thought

that the sole purpose of building a quantitative (computa-

tional) model is to predict the outcome of future

experimental manipulations. While prediction may prove a

strong test of a model in the future, at the top of Epstein’s

list is a very powerful case for modelling—namely expla-

nation. In the neurosciences, it is generally agreed that

there is an ever growing ‘data mountain’ which needs

interpretation and explanation. If a model can provide a

Fig. 1 Non-intuitive behaviour

of even very simple models.

a A short current pulse is input

to a simple network of two

leaky integrator neurons.

b Piecewise nonlinear output

function. c–f Responses of

network to a current pulse using

different network parameters
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mechanistic account for a range of phenomena that were

not explicitly used to constrain its construction, then the

model has explanatory power and is of real utility. For

example, suppose electrophsyiological recordings (possibly

from several labs) have been made from neurons in two

tightly coupled populations showing behaviours similar to

those in Fig. 1. If, as is usually the case, we interpret a rate

coded leaky integrator as a model of a population (rather

than a single neuron per se), then the model used to derive

the results in Fig. 1 would have strong explanatory power.

Finally, it is interesting to note that another of Epstein’s

reasons to model is to ‘‘reveal the apparently simple (com-

plex) to be complex (simple)’’. Our two-neuron model is a

good example of revealing complexity in the apparently

simple. We now proceed to describe the methodological

framework for computational neuroscience.

A Principled Methodology to Computational

Modelling in the Neurosciences

Computational Levels of Analysis

How should one go about developing a model of a par-

ticular brain system, or of a particular cognitive function?

Our answer is based on the proposal by David Marr [34]

that brain functions address the solution of computational

problems. Further, Marr suggested that these problems

decompose (at least in the first instance) into three levels of

analysis. At the top level is a description of ‘what’ is being

computed and ‘why’—the computational task. This top

level is sometimes referred to simply as the ‘computation’.

In this case, the term ‘computation’ is used to mean

‘function’ rather than the act or process of computing. At

the next level we describe ‘how’ the computation is carried

out in terms of an algorithm and any associated represen-

tations. Finally we specify ‘where’ the computation is

carried out—which brain system implements the compu-

tation. This scheme, therefore, enjoins us to specify the

cognitive computation as precisely as we can, before pro-

ceeding to detail an algorithm and implementation.

Marr’s original example [34] provides a very clear

illustration, albeit outside the remit of cognitive modelling.

Consider the computation of the bill in a supermarket with

a cash register. In answer to the top level question of ‘what’

is being computed, it is the arithmetical operation of

addition. As to ‘why’ this is being done, it is simply that the

laws of addition reflect or model the way we should

accumulate prices together when shopping; it is incorrect,

for example, to multiply them together. Algorithmically,

we use the normal procedure (add digits representing the

same order of magnitude and ‘carry’ any overflow if

needed). Further, in cash registers, this will be done in

the decimal representation rather than binary (normally

encountered in machine arithmetic) because rounding

errors are incurred when converting between the everyday

(decimal) representation of currency and binary. As for the

implementation, this occurs using logic gates made out of

silicon, silicon-oxide and metal. Notice that choices at

different levels are, in principle, independent of each other.

For example, we could have chosen to use a binary rep-

resentation, and alternative implementations might make

use of mechanical machines or pencil and paper. The

importance of discovering good representations for solving

the problem is crucial. Thus, the use of a positional number

system, with a number-base and sequentially increasing

exponents (like decimal or binary numbers), is the key to

the algorithm used here; algorithms for manipulating the

number system of the ancient Romans are far more

complex.

As a somewhat more realistic application to cognition,

consider the problem of directing our visual gaze using

ballistic eye-movements or saccades. While we will leave

unanalysed several aspects of this problem, our treatment

will highlight the need for expansion of the simple tri-

level scheme described above. The specific computational

problem we focus on is: How do we direct gaze to relevant

or ‘salient’ locations in a visually cluttered environment?

We will leave unanswered the related problem of finding

how to compute what is salient but, in general, this will be

determined by a combination of bottom-up feature infor-

mation (edges, corners and the like) and top-down task

information [7].

One algorithm for doing this is shown subsequently.

Algorithm 1 An algorithm for directing visual gaze to salient points

in space

divide visual space into a set of small regions, {Ri} centred on xi

for each Ri do

assign salience si = S(xi)

end for

find location of maximal salience xmax = argmax(S(xi))

direct gaze to xmax

The representation used in the algorithm is the set of the

spatially localised saliences S(xi)). The implementation of

the algorithm must be done somewhere in the brain, but

there is, as it stands, no obvious way of implementing the

‘neuron-free’ algorithm into brain circuitry. What is needed

is another level of analysis which has to do with neural

mechanisms. Thus, we could propose that the calculation of

the maximally salient location xmax is performed by a

winner-take-all network (or combinations of such networks

over several spatial scales, if need be).
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In general, therefore, we suggest that Marr’s tri-level

scheme is augmented with an additional, mechanistic level

of analysis as shown in Fig. 2a [19].1

In our toy example, while the top three levels of analysis

have been identified, it remains to show how the abstract

neural mechanisms (winner-take-all nets) may be mapped

onto brain circuits. Figure 2a shows the suggested mapping

involves frontal eye fields (FEF), superior colliculus and

basal ganglia, all of which have been implicated in gaze

control [14, 21, 45]. This process of mechanism mapping—

from abstract neural mechanisms onto brain circuits and

systems—is the most challenging step in this top-down

approach; will the abstract neural mechanism correspond in

any simple way with a real biological substrate?

An alternative approach that avoids this problems is

illustrated in Fig. 2b. Here, we are still working to understand

a well-specified computational problem, but bypass, in the

first instance, the algorithmic level altogether. Instead, we

mine for mechanisms immediately available in the brain

circuits supposed to serve the solution of the problem.

However, this bottom-up approach is not without its draw-

backs because, while we are guaranteed a biologically

plausible solution, we are now bereft of an algorithm and so

there remains the problem of future algorithm extraction; this

issue is revisited in the section ‘‘Algorithms and the brain’’.

Note that much simulation modelling in computational

neuroscience uses a bottom-up approach and is indifferent

to the existence of algorithms. However, according to our

methodological prescription, models should always be

cognisant of a top level computation. But what if this is not

the case—are such models useful? To answer this, suppose

we have a highly detailed and realistic model of an indi-

vidual neuron or neural microcircuit, say, but are unsure of

its overall computation. To the extent that such a model has

been extensively validated against its biological counter-

part by ensuring similar behaviour, the model is a genuine

surrogate for the biological system. As such, it may be

subject to a slew of experimental manipulations in an

attempt to unravel the mechanisms and, subsequently, the

computations, that the circuit or neuron performs. These

manipulations may be difficult and time consuming (taking

many months) in vivo or in vitro, or (more likely) may be

impossible, given the current state of experimental tech-

nology. In contrast, in silico, the manipulations of the

model and the harvesting of results may be quite rapid

(hours or days) given readily available parallel and clus-

tered computing. This leads to the notion that the model is

more like an ‘experimental preparation’, having similar

status to the in vitro preparations used by biologists. Such

in silico preparations will allow us to perform high

throughput neuroscience with the goal of discovering the

computations the biological substrate performs.2 At the

time of writing, the quintessential example of this approach

is the Blue Brain project [33] which is building biologically

realistic models of cortical circuits.

Structural Levels of Analysis

There is another sense in which the brain may be analysed

at many levels. This time we refer to the empirical obser-

vation that the brain may be described at multiple

structural levels of description (Fig. 3)

Fig. 2 Four-level scheme for analysing biological cognitive compu-

tation, and methods for using it. a Top down: mechanism mapping.

b Bottom-up: mechanism mining

Fig. 3 Multiple structural levels of description in the brain

1 In Marr’s original formulation of the computational framework,

which appeared in an MIT technical report [35], a fourth level was

described. However, this was dropped in the more popular account in

Marr [34]. Independently, Gurney proposed a four level account in

Ref. [15] which was subsequently developed in Ref. [19].

2 It is often argued that a ‘divine gift’ of a complete model of the

brain would be useless. In the light of the above discussion, however,

it would appear this is not true. It may be arduous to unravel the

function of all aspects of the model/brain, but this task would

certainly be easier than using biological experiments alone.
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At level 1 are intracellular signaling processes initiated

by neuromodulators (like dopamine). Modelling at this

level is the domain of what is now known as computational

systems biology [30]. Levels 2 and 3 deal with individual

neurons. At level 2, patches of neural membrane or single

neurons are modelled using, typically, the Hodgkin Huxley

formalism (see, e.g., Koch [31]). This describes the

dynamics of the membrane in terms of the multiplicity of

ionic currents it supports. At the next level, we deal only

with whole neurons and are more interested in neural firing

patterns. Models are often couched in a simplified or

reduced form—using only two variables—without

recourse to a detailed, multi-variable description of mem-

brane biophysics [29]. Also included here are the extremely

simplified leaky-integrate-and fire (LIF) neuron models

which use only a single variable representing the mem-

brane potential. At level 4, we consider microcircuits

within a single brain nucleus. The example par excellence

here is the cortical microcircuit that extends over six

neuronal layers. At level 5, microcircuits are agglomerated

into brain nuclei and, beyond that, into entire functional

modules (such as cortical sub-systems, hippocampus, basal

ganglia etc.). Models at these levels typically use rate

coded neurons (leaky integrators) but may also use LIF

spiking neurons. In practice, models may draw on features

from adjacent levels and there is nothing special about the

division into seven levels described here.

We are now enjoined to use two frameworks of analy-

sis—one structural and one computational; how are they to

mesh with each other? One possibility is to suppose that

computations are defined at a high (or systems) level

dealing with modules, say, and that implementation occurs

at the neural and molecular levels. Algorithms (and any

other intermediate levels of analysis) then sit somewhere in

between. This scheme interprets the two frameworks as

somehow running in parallel with each other, with each

one somehow mirroring the other. However, we argue that

the two frameworks deal primarily with different onto-

logical categories and are therefore best thought of as

‘orthogonal’ to each other. Thus, the four-level computa-

tional framework has to do mainly with the ideas and

concepts of computation, algorithm, abstract mechanism

and representation; the implementation is the only refer-

ence to the realm of the physical. In contrast, the structural

hierarchy is rooted entirely in the physical and delineates

objects typical of certain spatial scales.

We, and others [5], therefore believe it makes more

sense to allow the computational framework to become

manifest at every structural level of description, a scheme

which harmonises more naturally with an orthogonal

relationship between the two frameworks. Thus, each level

of structural description is a potential seat of computational

function, and so it is just as valid to think of computation at

the intracellular level—as studied in computational sys-

tems biology [30]—as it does at the level of a brain

nucleus. This is not to say that computations and support-

ing mechanisms may not reside at different structural

levels. An example of computation at the individual neural

level supported by lower level (dendritic and synaptic)

mechanisms is provided by Mel’s models of neuronal

receptive fields in the visual system [36]. Here, models of

neurons in visual cortex are able to show preferential

response to oriented features in a translationally invariant

way. This occurs under a mechanism in which physically

proximal groups of synapse (synaptic clusters) have to

work cooperatively in order for them to activate the cell.

The particular patterning of synaptic clustering then

endows the neuron with its highly specific response to

visual input. The key point in the current context is that the

cooperativity mechanism relies on voltage-dependent

membrane conductances (synaptic input only becomes

effective if it occurs on dendrites which are already par-

tially active, and the necessary ‘seed’ activity is provided

by other neigbouring synaptic inputs).

This linking of function across structural levels also

shows how computations at lower levels are forced to

become manifest at higher levels; there is no sense in

which, by working at a larger spatial scale, the details

somehow disappear. For example, it is often assumed that

neurons compute their linear weighted sum of inputs. This

computation is then carried through in neuron models at the

circuit and system level. However, as a result of analysis at

the membrane and synaptic level in individual neurons, it is

apparent that inhibition often acts more divisively rather

than subtractively [31]. This fundamental computation,

which is an emergent property of biophysical properties of

the neuronal membrane, does not become invisible as we

‘zoom out’ and go to higher levels of structural description;

rather it remains a ‘mechanistic leitmotif’ that runs across

all levels.

At higher levels we may incorporate divisive inhibi-

tion phenomenologically as follows. If x-, x? are

normalised inhibitory and excitatory inputs respectively,

to a neuron, then we can write their shunting inhibitory

interaction as x?(1 - x-). This approach has been

deployed effectively in models with simple spiking

neurons [24, 27]. Similarly the function of neuromodu-

lators like dopamine is a result of complex molecular

processes. However, it may be possible to capture their

overall influence in an approximate fashion using phe-

nomenological modelling [23, 48].

In summary then, lower level computations and mech-

anisms will often manifest themselves at higher levels,

and their influence may be captured by phenomenological

modelling. Alternative approaches to simultaneously

capturing computations at multiple levels are given in
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the section ‘‘Computation at multiple structural levels

revisited’’.

It is instructive now to revisit the computational analysis

scheme and ask the question: Are four levels of analysis

enough? In mechanism mining, the validity of assigning a

computational hypothesis to a target brain system may be

strengthened by incorporating more biological constraints

derived from the target system. This extra detail may be at

the same, or lower, structural levels of description than

some initial model. Thus, if after this biologically con-

strained mechanistic enrichment the ensuing model still

performs the required function, then this is taken as cor-

roborating evidence for the computational hypothesis being

applicable to the target neural substrate. The evidence is

even stronger if the computational ability can be quantified,

and the enriched model performs more successfully. In

addition, a more detailed model will usually have more

explanatory power by making contact with a wider variety

of neuroscientific data. On the other hand, if the more

realistic model fails to display the required function, we

should reconsider the computational identification for the

target brain system.

In general then, there may be a range of possible neu-

ronal models of varying complexity, between the abstract

neural mechanistic level and the underlying biological

systems. However, all such models are qualitatively similar

(neural models of some kind) and their number and com-

plexity is not pre-determined. We therefore choose not to

finesse Fig. 2 to explicitly accommodate them, so ‘four

levels are enough’. These ideas are illustrated further in the

‘case study’ in the next section.

A Case Study: Action Selection

and the Basal Ganglia

We now illustrate the methodologies outlined above in the

light of our own work in modelling the basal ganglia at

several levels of structural description. The basal ganglia

are the largest group of subcortical structures in the human

forebrain and have a critical influence over movement and

cognition. The basal ganglia have been implicated in a

wide range of processes, including perception and cogni-

tion (including working memory), and many aspects of

motor function. However, one recurring theme [10, 37] is

that they are associated with some kind of selection pro-

cessing. Our work has developed this idea of selection as a

unifying computational theoretical framework for under-

standing basal ganglia function [44]. Thus, we proposed

that the main role of the basal ganglia is to solve the

problem of action selection—the resolution of conflicts

between functional units within the brain that are in com-

petition for behavioural (or cognitive) expression.

In this scheme, functional command units send ‘action

requests’ to the basal ganglia in the form of efferent copies

of their encoding of action, and the basal ganglia acts as a

central ‘selector’ or ‘switch’ mediating the competition

for these action requests to be expressed (Fig. 4). Within

the basal ganglia, these requests are sent through discrete

information streams or channels which interact within

selective or competitive processing mechanisms. Those

requests with the largest overall activity or salience ‘win’

these competitions, resulting in depression of activity in the

corresponding basal ganglia output channels. This, in turn,

results in action selection as follows. Basal ganglia output

is inhibitory and is normally active. The output channels

form return loops, via thalamus, with the original func-

tional units that made the action requests. On the winning

channels, therefore, there is disinhibition of the target

thalamo-cortical circuits, allowing them to be active,

thereby enabling their behavioural expression.

Having proposed a computational function for the basal

ganglia, we then proceeded to perform a bottom-up mod-

elling study at the systems level of structural description.

This, therefore, raises the question of what mechanisms can

be mined from the anatomy that might support selection.

Figure 5a shows some of these and indicates a simplified

and partial view of basal ganglia anatomy in cartoon form

(for a recent review of basal ganglia anatomy and physi-

ology, see [43]).

The main input nucleus in the basal ganglia is the stri-

atum. This contains a complex microcircuit with several

varieties of interneurons which may support competitive

processing. In addition, the main population of projection

neurons show a bimodal (up/down state) behaviour that

may serve to filter weak action requests. The output nuclei

in primates are the internal segment of the globus pallidus

Fig. 4 Basic action selection mechanism for the basal ganglia. Two

action channels (labelled ‘1’ and ‘2’ around the circuit) are shown in

competition. Thick/thin lines indicate strong/weak signal strengths,

respectively

34 Cogn Comput (2009) 1:29–41
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(GPi) and substantia nigra pars reticulata (SNr). These

contain lateral inhibitory connections that may support

competitive processing. Finally, there is a system wide

circuit formed from focussed (‘intra-channel’) inhibition

from striatum to the output nuclei, and diffuse (‘cross-

channel’) excitation from another input station—the sub-

thalamic nucleus (STN).

At the systems level, we focussed initially on this latter

mechanism, which constitutes a feedforward, off-centre on-

surround network. It is illustrated in more detail for two

channels in Fig. 5b. The polarity of the centre-surround

scheme ensures a ‘winner-lose-all’ network, which is just

what is required in the circuit of Fig. 4 in order to use release

of inhibition as a means of gating actions in target structures.

While the circuit shown in Fig. 5b can, in principle,

perform selection, it is not robust against widely varying

signal levels (excitation can predominate without careful

tuning of weights). However, the correspondence between

this circuit and the basal ganglia is also not robust because

our description of basal ganglia anatomy has, so far, been

somewhat simplified. We now ask: What happens under a

mechanistic enrichment at the systems level, when the full

basal ganglia circuit is used?

The basal ganglia also contain a nucleus—the external

segment of the globus pallidus (GPe)—which receives

input from striatum and STN, and which projects only

internally to other basal ganglia nuclei. The striatum is also

divided into two populations of projection neurons: one

which projects primarily to the output nuclei (as shown in

Fig. 5), and one projecting preferentially to the GPe. Fur-

ther, the two populations are distinguished by their

preference for dopaminergic receptor types (D1 or D2). We

constructed a model of the basal ganglia using the full

anatomy as constraint, together with a simple phenome-

nological model of dopamine effects at D1 and D2

receptors [17] (see Fig. 6).

The resulting model was able to show robust selection

and switching between actions consistent with the basal

ganglia—action selection hypothesis [18]. In the new

functional architecture, we proposed that the role of the

GPe is to supply control signals to the selection circuit.

Indeed, analysis and simulation confirmed that the closed

loop formed by STN and GPe acted like an automatic gain

Fig. 5 Mining for selection

mechanisms in the basal

ganglia. a Mechanisms at

systems, circuit and neuronal

level. b Systems level

mechanism constituted by

feedforward, off-centre on

surround network (two-channel

instantiation)

Fig. 6 Systems level model of the basal ganglia showing new

functional architecture with selection and control pathways
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control on STN excitation to ensure the correct operation of

the selection circuit over a wide signal range.

Further mechanistic enrichment of the model at the

systems level, with additional connectivity intrinsic to the

basal ganglia, also increased selection performance [16]. In

addition, enrichment at the level of spiking neurons

delivered a model which could still carry out a selective

function, and account for a wide variety of oscillatory

behaviour with the same parameter set [27].

Our work with basal ganglia models has helped shape

many of the ideas described in this paper. It will therefore

be used again later as an expositional vehicle in subsequent

developments and their discussion.

Computational Neuroscience, Connectionism and AI

We now proceed to consider the broader implications of

the framework developed above. In this context, we seek

answers to questions like: How do different species of

cognitive modelling, such as connectionism and AI, sit

within the framework? What is their relationship to com-

putational neuroscience? How can they help in the effort of

reverse engineering the brain?

Connectionism deals largely with the study of abstract

neural networks. As such it would appear to deal with the

mechanistic level of analysis, although principled connec-

tionist models are usually testing a top level computational

hypothesis. The existence of a neuronal-free algorithm is

not usually addressed, and neither is any mapping onto

brain systems (although this is not always the case). This is

to be contrasted with computational neuroscience which

demands that all four computational levels of analysis be

considered. However, the abstraction from direct biological

veracity can be a strength if harnessed correctly, because it

can lead to discovery of the most general principles oper-

ating in the brain that underpin certain cognitive processes.

For example, Hinton and Shallice [22] developed a

model of dyslexia with substantial explanatory power. The

network was a mixture of feedforward subnets and a

recurrent subnet. By making a number of network archi-

tectural manipulations (e.g., the use of sparse and fully

interconnected feedforward layers, and various placements

of the recurrent subnet in the processing hierarchy), they

showed that certain aspects of the net’s ability to show

dyslexic behaviour were contingent only on the existence

of a recurrent subnet which can support basins of attraction.

The network also illustrates a general feature of many

connectionist networks—that multiple psychological phe-

nomena (in this case types of reading error) can be

considered to be emergent phenomena resulting from a

single system model; multiple patterns of behaviour do not

necessarily require multiple paths or subsystems.

In contrast to connectionism, AI deals primarily with

computation and algorithm. It has no strong requirement to

posit neural mechanisms, much less a biological imple-

mentation. The only possible exception here is the study of

‘neural networks’. However, we chose to consider this field

to be more closely allied with connectionism than sym-

bolic-AI, and it is to this latter specialism we refer to when

subsequently using the term ‘AI’. However, even if we

demand attention be paid only to those algorithms which

could be implemented in abstract neural mechanisms, we

cannot know a priori which algorithms are suitable candi-

dates for subsequent mechanism mapping. It is therefore

worthwhile being as liberal as possible in our algorithm

development, and to embrace insights gained directly from

studies in AI.

One class of algorithm developed in the AI community

which lend themselves to an abstract neural representation

are those constructed with reference to directed graphs. The

nodes in the graphs may then be interpreted as neural

populations and the directed edges as weighted connections

between the populations. An example of this class of

algorithms is the Bayesian belief networks used to con-

struct cognitive models of the environment. In this scheme,

a ‘belief propagation’ algorithm passes messages between

the nodes of a graphical model that captures the causal

structure of the environment. Rao [42] shows how these

graphs may be implemented in networks of leaky integrator

neurons and how these network can then implement

sequential and hierarchical Bayesian inference.

Other examples of graph-based algorithms come from

the study of visual processing in which a graph or lattice is

imposed naturally via the spatial (retinotopic) topography

of the visual field. Typically in vision, there is a tradeoff

between applying smoothing constraints (visual informa-

tion tends to be continuous across objects in the world) and

segmenting across boundaries (there are different objects

and backgrounds). Solutions may be found by constructing

Lyaponov or energy function that embody these constraints

over a spatial lattice; examples from image velocity

encoding and scene segmentation are given in Gurney and

Wright [20] and Lee and Yuille [32], respectively.

Even with no obvious graphical interpretation, abstract

algorithms find a niche in understanding biological cogni-

tion. For example, reinforcement learning (as a branch of

machine learning) and, in particular, the temporal difference

algorithms have proven to be fertile areas for developing

models of reward-driven learning in animals [39, 46].

Algorithms and the Brain

Notwithstanding the apparent utility of algorithms noted in

the previous section, does it make sense to suppose that the

brain, in all its intricate complexity, can be described
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algorithmically? Debate on the relationship between algo-

rithm and brain-and-mind has raged throughout the history

of cognitive modelling. It is with some trepidation, there-

fore, that we now venture a contribution to this debate, but

it is an issue which intrudes directly into our four-level

computational analysis. Thus, when working in a top-down

way, what would be the status of an algorithm which is

compelling in its explanatory power, but which cannot be

transcribed into an abstract neural mechanism or, even if

this is possible, results in a mechanism which maps poorly

onto the biology? Conversely, in the mechanism mining

approach, are we always guaranteed to extract an algorithm

which can capture—at least approximately—the neural

mechanism in our original model? We start by looking at

some of the historically influential perspectives.

In a seminal article, Putnam [41] presented AI

researchers with a stark choice: either it is possible to

construct a theory of cognition akin to theories in phys-

ics—a single overarching algorithm that will have

enormous explanatory power and provide a deep under-

standing of brain and mind—or AI will be just ’one

damned thing after another’—a mixed bag of numerous,

and highly diverse mechanisms and software ‘kludges’.

The second possibility is a somewhat disparaging

description of the proposal by Minsky [38] that mind may

be described as a massive collection of semi-autonomous,

highly interconnected agents that are themselves mindless.

Putnam is skeptical that this approach will prove fruitful

but, in contrast, Dennett [8] embraced it dubbing it ‘‘Mind

as Gadget’’ and describing it as ‘‘an object which one

should not expect to be governed by ‘deep’, mathematical

laws, but nevertheless a designed object, analyzable in

functional terms: ends and means, costs and benefits, ele-

gant solutions on the one hand, and on the other, shortcuts,

jury-rigs, and cheap ad hoc fixes.’’

It is intriguing to note that modern software architec-

tures have become so complex that their understanding

appears to bear striking similarities with the Mind as

Gadget. Thus, Booch [3] notes… ‘‘Philippe Kruchten has

observed that ‘the life of a software architect is a long and

rapid succession of suboptimal design decisions taken

partly in the dark.’ The journey between vision and ulti-

mate executable system is complex… that path is marked

by myriad decisions, some large and some small, some of

which advance progress while others represent vestigial

dead ends or trigger points for scrap and rework’’. Without

implying any teleology, this statement could equally apply

to the evolution of the brain. Further, Booch coins terms to

define software architectures that reflect the mechanism/

algorithm debate and our mining/mapping paradigms. ‘‘An

Accidental architecture… emerges from the multitude of

individual design decisions that occur during development,

only after which can we name that architecture… An

Intentional architecture is explicitly identified and then

implemented’’. In our language intentional architectures

are like the algorithms discovered top down in mechanism

mapping, while accidental architectures are like the

(potentially very complex) neuronal models built under

mechanism mining.

It is not surprising that the brain may be more of an

accidental than intentional architecture (Mind as Gadget)

because optimising biological (embodied) cognition is a

compromise under many conflicting constraints, over mil-

lions of years of evolution. A good example of this is

provided in visual perception in the primate brain. Thus,

there is a massively disproportionate area of visual cortex

devoted to the central (foveal) 2–3� of the visual field, with

the rest (the periphery) receiving much less neural resource

(so-called ‘cortical magnification’ at the fovea). The fovea

is, as a result, analysed computationally at very high spatial

resolution and along several dimensions (e.g., colour, ste-

reo, object motion, etc.) while information in the periphery

is relatively sparsely encoded. If one were designing an

optimal vision system alone, this may appear to be a rather

poor solution. However, the biological resources (brain

tissue) that would have to be used in order to represent the

entire visual field at the same resolution as the fovea would

be enormous; cranial size would be increased by at least an

order of magnitude. This is far from optimal in terms of

satisfying a multi-objective optimality function which must

include other constraints such as the organism’s mobility,

and metabolic demand. The biological solution to the

problem of perception under embodied constraint such as

these is active vision (see, e.g., [13]). Here, rapid and

accurate eye-movements (saccades) are used to pinpoint a

series of foveal targets in quick succession. This enables a

representation of the overall scene to be assembled from

memory traces of previous views, although the information

content therein may be comparatively minimal [4]. The

conflicting constraint of cranial size and rapid scene anal-

ysis appear to have led to a ‘hacked’ and suboptimal

solution for vision, although it is clearly a sufficiently good

solution for survival.

Pursuing, then, the notion of accidental architecture/

Mind as Gadget, what is the status of each of the compo-

nent gadgets (algorithms)—the so-called ‘‘shortcuts, jury-

rigs, and cheap ad hoc fixes?’’ In a seminal paper on

connectionism and its relation to symbolic AI, Smolensky

[49] supplies one possible answer. Smolensky’s argument

is contingent on the designation of a sub-symbolic level of

analysis which corresponds roughly to our level of abstract

neural mechanism. According to Smolensky, the sub-

symbolic description of most cognitive processes is the

best description we can hope for. We may attempt an

analysis at a higher, rule-based algorithmic level but any

such attempt will be, at best, crude and approximate
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(certain cognitive processes such as doing mathematics are

intrinsically rule based and are exceptions to this rule). The

main point is that any high level algorithmic account is an

emergent property of the sub-symbolic level. As such, it

may be descriptive of the cognitive ability, but is not a

generative account of what governs the behaviour.

One answer to the question—Is algorithm extraction

guaranteed in mechanism mining?—is, therefore, a clear

’No’, for the success of this programme is limited by the

extent to which algorithmic regularities emerge from the

mechanistic model. Smolensky’s account hinges, however,

on a particular understanding of sub-symbolic computa-

tion; namely that it deals with highly distributed

representations in which each sub-symbol (or neural pop-

ulation) takes part in the representation of many high level

symbolic objects. This is not always the case, and many

computational neuroscience models use localist represen-

tations (whose status is less contentious now perhaps, than

it was when Smolensky was writing).

This is true, in particular, of the models of basal ganglia

described in the section ‘‘A case study: action selection and

the basal ganglia’’ in which discrete action channels are

encoded by discrete neural populations. This feature of the

model makes it a strong candidate for algorithm extraction

and, indeed, a successful attempt has been made [2]. The

first step was to identify the notion of ‘decision making’—

normally used by psychologists and neuroscientists in the

comparatively narrow context of choice tasks in the labo-

ratory—with that of action selection—normally used by

ethologists and roboticists in naturalistic settings. Since

action selection is the putative function of basal ganglia,

the identification of these two functions implies that the

basal ganglia is a decision-making device. Decision mak-

ing has an extensive theoretical foundation [1] and, in

particular, there is an optimal statistical test for decision

making with more than two choices the multiple sequential

probability ratio test (MSPRT). Bogacz and Gurney [2]

showed that many aspects of the anatomy and physiology

of the circuit involving the cortex and basal ganglia are

exactly those required to implement MSPRT.

Without specifying the process in detail, Fig. 7 gives a

flavour of how this was done. Thus, each node in a directed

graph describing a subset of the basal ganglia anatomy is

associated with an algebraic expression, and each such

term is a component in the calculation of the MSPRT (the

use of directed graphs here mirrors their utility in mecha-

nism mapping, observed in the section ‘‘Computational

neuroscience, connectionism and AI’’). This style of

neuronal computation is quite different from that in

Smolemsky’s sub-symbolic paradigm. It does not, there-

fore, suffer from the limitations on the significance of

associated algorithms imposed therein. However, further

work is required to fully explore the extraction of MSPRT

from basal the ganglia. For example, is the algorithm able

to incorporate detailed descriptions of basal ganglia

microcircuits? It may transpire that, like our systems level

case study, such inclusions serve to make MSPRT more

robust, or it may be that these circuits represent the need to

satisfy other, as yet unseen constraints (compare active

vision), so that MSPRT gets ’diluted’ or approximated

under a series of ‘kludges’.

While we have used MSPRT in a computational neu-

roscience setting, this algorithm has its roots in engineering

[11]. It is natural then, to ask, can the interdisciplinary

traffic go both ways? Recently, Hussain et al. [28] showed

that a control architecture for autonomous vehicle guidance

had several features with analogues in the vertebrate brain.

This promises a biologically inspired approach to control

theory which, in turn, promises discovery of additional

brain-relevant algorithms.

Turning now to mechanism mapping—What is the sta-

tus of an algorithm developed with no reference to the

brain (but perhaps with strong explanatory power)? By

definition, in this approach, Smolensky’s arguments cannot

hold sway because we take the position that the algorithm

is primary, and that the relevant brain circuits optimise an

implementation of the algorithm. However, if we cannot

discover sufficiently accurate representation of the algo-

rithm in an abstract neural mechanism, and subsequently, a

biological implementation (mapping) of that mechanism,

we must ultimately abandon the algorithm as biologically

plausible.

Fig. 7 Algorithm extraction for the systems level models of basal

ganglia; MSPRT decision making
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In sum, under mechanism mining, algorithms enjoy two

kinds of status: on the one hand (after Smolensky), they

could be emergent, approximate descriptions of a primary

explanatory neuronal mechanism or, having extracted an

algorithm, we can choose to think of the mechanism as

subsidiary, being merely a route to algorithm implemen-

tation in the brain. In contrast, under mechanism mapping,

algorithms are, perforce, primary and their validity relies

on a successful mapping.

Computation at Multiple Structural Levels Revisited

In the section ‘‘Structural levels of analysis’’ it was noted

that mechanisms at lower levels of description will often

manifest themselves at higher levels of description, and

that their effects maybe be captured at higher levels by

modelling them phenomenologically.

An alternative approach is to build a more detailed

model at a level low enough to capture all mechanisms of

interest at their native level of description, and which is

sufficiently anatomically extensive to cover all large-scale

(system-wide) interactions that would be included in a

higher level model. This was the approach we took with

our large-scale spiking model of the basal ganglia [27].

This model implemented the anatomy in Fig. 6 but used

leaky integrate-and-fire neurons calibrated against different

neuronal species in the basal ganglia. These model neurons

also incorporated additional, mechanistic enrichment

dealing with dopaminergic modulation, synaptic input and

shunting inhibition (see section ‘‘A principled methodology

to computational modelling in the neurosciences’’). While

not as vigorously bottom-up in design as the models in the

Blue Brain project [33], the resulting model is sufficiently

complex to make it an ‘experimental preparation’ (see

section ‘‘Computational levels of analysis’’), and it con-

tinues to be ‘mined’ for new insights [26].

While such preparation-like models are valuable, min-

ing them can be challenging because all mechanisms at all

levels are universally present on a massive scale. It is as if

we are confronted with a high magnification view of a very

large piece of brain tissue without the ability to ‘zoom out’

to lower magnification to see the bigger picture. The

approach we want to advocate here is inspired by this

metaphor.

Thus, suppose we wish to capture computations at the

individual neural level using realistic, conductance-based

(compartmental) models. It should be possible to study

their effects in a small microcircuit of only a few such

neurons, so long as their signal environment is similar to

that which would occur in a homogeneous model of many

thousands of such neurons. The signal environment has two

aspects: the raw encoding scheme (point event spikes or

firing rates) and the patterning and significance of the

signals. In the case of the single neuron models, an

approximation to their veridical signal environment may be

generated by a network of simplified spiking neurons, so

long as they can supply spike trains of the right statistics

(mean firing rate, bursting or tonic etc.). This network may

be quite extensive containing many thousands of neurons,

and can also be studied in its own right. We refer to the

small cluster of biologically realistic neurons as a model

core, embedded into a model surround comprising the

simplified spiking neuron network.

This core-surround embedding scheme may be repli-

cated recursively (in the style of nested Russian-dolls) so

that the large-scale spiking neural network (previously a

model surround) could become a model core by being

embedded into a rate-coded, systems level model surround.

The transition from spikes to rates (and vice versa) will, of

course, require the construction of novel, hybrid model

neurons.

Beyond this rate-spike boundary, small-scale rate-coded

models can be easily embedded into larger scale surrounds.

It is in this context that we implemented a core-surround

model of the Stroop task. In this well-studied psychological

task, subjects have either to name the colour of the ink in

which words are printed or read the words themselves. The

task probes decision and response conflict because the

words are themselves colour words like ‘RED’, ‘GREEN’,

etc., and conflict can occur if the word does not match with

its ink colour (e.g., ‘RED’ in blue ink). In this case,

(ink)colour naming causes an increased reaction time.

In our model of the Stroop task [50], the core comprised

the biologically constrained model of the basal ganglia [17,

18] described in the section ‘‘A case study: action selection

and the basal ganglia’’, together with an extension to

include cortico-thalamic processing [25]. This was then

embedded into a surround comprising the high-level con-

nectionist model of Stroop processing developed by Cohen

et al. [6]. This model implements processing of word and

colour information to the point where they form the basis

of a decision in the Stroop task. In the original model of

Cohen et al., the final outcome of each task trial was

determined using a simple, mathematically defined deci-

sion mechanism. However, under the action-selection/

decision-making identification described in section

‘‘Algorithms and the brain’’, we replaced this by the action-

selection mechanism of the basal ganglia, thalamo-cortical

looped architecture (Fig. 8).

Modelling, in their entirety, the colour and word pro-

cessing used in the Stroop task at the same level as the

basal ganglia would be a massive undertaking, necessitat-

ing careful interpretation of large numbers of cortical areas.

Indeed, much of the relevant information may be currently

unknown. The connectionist model surround therefore

serves as an extremely useful expedient.
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The key to the success of this project was the observa-

tion that the connectionist model supplied output signals

which could be interpreted as salience inputs to the basal

ganglia. That is, the connectionist model supplied a valid

signal environment for the basal ganglia through a common

signal interface.

A second application of the embedding scheme is

exemplified in our work using models of basal ganglia-

thalamo-cortical loops to control autonomous robots [40].

Here, the model surround was the sensory and motor sys-

tems that enabled behavioural expression of the robot.

These were not biologically mimetic but, nevertheless,

supplied a signal environment to the basal ganglia that

could test its functionality. Thus, inputs took the form of

action requests, and release of inhibition by basal ganglia

on motor systems was interpreted as action selection.

In summary, the core-surround embedding (or ‘zoom

lens’) approach offers several advantages in working at

multiple levels of structural description. First, it promises

easier interpretation of the computations being offered at

each level of description. Computations at the lowest levels

of description may be observed operating veridically in

their native mechanistic environment, without recourse to

phenomenological approximation. Simultaneously, com-

putations at higher levels will be more easily perceived by

being able to ‘zoom out’ to those levels of description.

Second, the use of higher level cores obviate the need to

model large swathes of the brain at a low level of

description when much of the data required to do this

properly may simply not be available. Third, the compu-

tational resources required for an embedding model will be

substantially reduced in comparison with a homogeneous,

lower level counterpart.

Conclusion

We have made a case for quantitative computational mod-

elling as a powerful route to understanding cognition.

Within this general strategy we argued that a programme

of reverse engineering the brain, by building biologically

constrained models using methods in computational neu-

roscience, holds most promise. Given the enormity of this

Grand Challenge, however, we need principled methods of

conducting this programme. To this end, we have outlined a

four-level framework (computation, algorithm, mechanism

and biological substrate) which provides a principled

approach to model building. This framework can be used to

show the relation between computational neuroscience and

other modelling disciplines, such as connectionism and AI,

and points the way for a unified attack on the programme by

all three approaches. The four-level framework can also

encompass working at multiple structural levels of

description in the brain (from membranes to systems) and

we have proposed a method—the use of core-surround

embedding—for working at multiple levels simultaneously.
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