
International Journal of Control, Automation, and Systems 22(6) (2024) 1846-1855
http://dx.doi.org/10.1007/s12555-023-0869-6

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

PLC-based Implementation of Stochastic Optimization Method in the
Form of Evolutionary Strategies for PID, LQR, and MPC Control
Kajetan Zielonacki ■ and Jarosław Tarnawski* ■

Abstract: Programmable logic controllers (PLCs) are usually equipped with only basic direct control algorithms
like proportional-integral-derivative (PID). Modules included in engineering software running on a personal com-
puter (PC) are usually used to tune controllers. In this article, an alternative approach is considered, i.e. the devel-
opment of a stochastic optimizer based on the (µ ,λ ) evolution strategy (ES) in a PLC. For this purpose, a pseudo-
random number generator (pRNG) was implemented, which is not normally available in most PLCs. The properties
of popular random number generation methods were analyzed in terms of distribution uniformity and possibility
of implementation in a PLC. The Wichmann-Hill (WH) algorithm was chosen for implementation. The developed
generator with a uniform distribution was the basis for the implementation of a generator with a normal distribution.
Both generators are the engines of the stochastic optimization algorithm in the form of the (µ , λ ) strategy. For ver-
ification purposes, a modular servomechanism laboratory set was used as a test object for PID and linear-quadratic
regulator (LQR) control. Moreover, the possibility of using the developed optimizer was shown in an application
of model predictive control (MPC). Comprehensive tests confirmed the correctness of the implementation and high
functionality of the developed software. Calculation time issues are also investigated.

Keywords: Evolution strategies, global optimization, hardware in the loop, model predictive control, PLC, pRNG.

1. INTRODUCTION

The problems of implementing advanced control algo-
rithms using programmable logic controllers (PLCs) have
been reported in the literature for a long time. Especially
the model predictive control (MPC) technique has been
implemented many times in different versions [1-4]. In
many items in the literature one can find hybrid, layered
approaches based on a combination of a personal com-
puter (PC) and a PLC, where demanding calculations are
performed in the PC, and the results of these calculations
are directed to be realized by the PLC in the form of sim-
ple control systems, e.g., proportional-integral-derivative
(PID) [5,6]. Interesting papers on implementation of op-
timizers in PLC may be classified depending on differ-
ent types of optimization: general purposes optimizers [7],
quadratic programming (QP) [8,9] neural network [10],
particle swarm optimization [11] and ant colony [12]. Ver-
ification of programs written for the PLC can be carried
out directly with the actual control object, but it is most of-
ten carried out beforehand in a software-in-the-loop struc-
ture, where a model of the object is inside the PLC pro-
gram and allows the first tests of the implemented con-
trol algorithm entirely in the PLC. Another more advanced

form of verification is hardware in the loop (HIL), where
the control program is contained in the PLC, and the ob-
ject model is contained in a runtime environment.

Evolution strategies (ES) are meta-heuristic biology-
inspired algorithms. The implementation of the algorithm
is based on a stochastic mechanism for modifying an ex-
isting individual based on a normal distribution to create a
new, potentially better one. Continuously modifying indi-
viduals through recombination and mutation, and select-
ing the top performers within the population, enables the
identification of the optimal individual based on a speci-
fied criterion. This characteristic enables ES to function as
a black-box global optimization algorithm. Classic litera-
ture on evolutionary strategies are [13-15]. A more con-
temporary, comprehensive recommended read is [16].

Major contributions of the presented paper:

1) implementation and verification of uniform and nor-
mal pRNGs in a PLC,

2) development and verification of a stochastic opti-
mizer on PLC platform and its application to PID,
LQR and MPC control problems,

3) comparison of PLC and PC performance in a complex

Manuscript received December 18, 2023; revised March 22, 2024; accepted April 8, 2024. Recommended by Associate Editor Niket Kaisare
under the direction of Senior Editor Sangmoon Lee. Financial support of these studies from Gdańsk University of Technology by the
12/1/2023/IDUB/III.1a/Ra grant under the Radium - ‘Excellence Initiative - Research University’ program is gratefully acknowledged.

Kajetan Zielonacki and Jarosław Tarnawski are with the Faculty of Electrical and Control Engineering, Gdańsk University of Technology,
Narutowicza 11/12, Gdańsk, 80-233, Poland (e-mails: s181428@student.pg.edu.pl, jaroslaw.tarnawski@pg.edu.pl).
* Corresponding author.

©ICROS, KIEE and Springer 2024

http://www.springer.com/12555
https://orcid.org/0009-0004-7481-3247
https://orcid.org/0000-0002-5744-5671


PLC-based Implementation of Stochastic Optimization Method in the Form of Evolutionary Strategies for PID, ... 1847

computational task to determine the applicability of
the developed optimizer.

2. PSEUDO-RANDOM NUMBER GENERATOR
IN PLC

This section presents the process of implementing a
pseudo-random number generator (pRNG) in the PLC, us-
ing the structured text (ST) programming language. First,
an overview and comparison of different algorithms was
made. Then, the chosen generator was tested based on its
ability to generate uniformly distributed numbers. Lastly,
the method of generating normally distributed numbers
was described and verified.

2.1. Overview and comparison of pRNGs
A comparison between twelve pRNGs, of which nine

are available in MATLAB software [17] and three unavail-
able [18-20] were realized programmatically. These algo-
rithms were compared in terms of their period and unifor-
mity of distribution, as shown in Table 1.

Because of its high complexity and resource occupancy,
instead of using the Mersenne Twister (MT) generator in
PLC, which proved to be the best amongst tested genera-
tors, it was decided to use a much simpler to implement
WH generator, which does not deviate significantly with
its results. The current nanosecond was used as the seed.
This algorithm is based on using three seeds in range 1-
30000

s1 = (171 · s1) mod 30269, (1)

s2 = (172 · s2) mod 30307, (2)

s3 = (170 · s3) mod 30323, (3)

r =
( s1

30269
+

s2

30307
+

s3

30323

)
mod 1, (4)

where s1, s2, s3, are the seeds, and r is the output. A test
was carried out, comparing PLC-implemented pRNG with

Table 1. Comparison of pRNGs.

Generator Period Average value
MT 219937 −1 0.50004

SIMD-MT 219937 −1 0.50001
MCG 231 −2 0.5004

MLFG 2124 0.5001
CMRG 2191 0.4998

Philox 4x32 2193 0.4994
Threefry 4x64 2514 0.5005
SHR3CONG 264 0.4996

SWB 21492 0.5004
Middle-square 26561 0.5043
Wichmann-Hill 250 0.5004

BBS 241 0.4996

Table 2. Comparison of WH and MT.

Average value 0.500006 0.499929
Average value error 5.99e-05 7.06e-05
Standard deviation 0.288812 0.288768

Standard deviation error 1.37e-04 9.35e-05
Maximum value 0.99999989 0.99999991
Minimum value 3.42e-7 5.03e-7

-5 -4 -3 -2 -1 0 1 2 3 4 5

X

0

0.1

0.2

0.3

0.4

P
D

F
 V

a
lu

e

Box-Muller Transformation

Normal distribution

Fig. 1. PDF of normal distribution and obtained values.

MATLAB-based MT for 1000000 generated values. The
results in Table 2 show that WH generates numbers very
close to the desired mean of 0.5, and does it only slightly
worse than MT. It even produced numbers with standard
deviation closer to the desired value, which for uniform
values in the range 0-1, is equal to (1−0)√

12
≈ 0.288675.

2.2. Generating normally distributed values

In order to implement an evolutionary optimization al-
gorithm, besides uniformly distributed values, ones with
normal deviation are also necessary. For this purpose,
the Box-Muller (BM) transformation [21] was used. This
operation converts a pair of independent, uniformly dis-
tributed numbers U1 and U2 to a pair of independent, nor-
mally distributed numbers X1 and X2, with mean value of
0 and standard deviation of 1. The transformation is given
by the formula{

X1 =
√
−2lnU1 cos(2πU2),

X2 =
√
−2lnU1 sin(2πU2).

(5)

Fig. 1 depicts the probability density function (PDF) of
10000 values obtained using this method, with a superim-
posed normal distribution.

3. EVOLUTION STRATEGIES IN PLC

This section contains the description and implementa-
tion of the evolutionary algorithm in a PLC, which was
later tested with example test functions to search for both
minima and maxima, along with execution time compari-
son in both PLC and PC.



1848 Kajetan Zielonacki and Jarosław Tarnawski

3.1. Program structure
In PLC, a program realizing the (µ,λ ) strategy, as

described in [22], was implemented in the LAD (ladder
logic) programming language. It consists of eight sub-
programs written in ST, as shown in Fig. 2.

"Generator_UD" generates a table of pseudo-random
numbers with an uniform distribution. "Generator_ND"
generates a table of pseudo-random numbers with
a normal distribution, using the BM transformation.
"Initialization" defines all necessary variables and
creates an initial population P, consisting of µ individuals.
"Selection" draws individuals with replacement from
the initial population, and puts them in λ -sized tempo-
rary population T . "Recombination" crosses individuals
from population T and puts them in λ -sized descendant
population. "Mutation" realizes a correction of standard
deviation values and modifies values of independent vari-
ables. "Sort" assigns values of adaptation function to
each of individuals and sorts them accordingly, using the
bubble-sort algorithm.

After executing all subprograms, the process is repeated
up to the stop condition. This structure ensures that each
stage of optimization is performed in separate cycles in
order to minimize the risk of watchdog timeout.

3.2. Initial tests
The optimizer was tested for its ability to find the global

maximum of a two-dimensional function, given by the for-
mula

f (x) = 21.5+ x1sin(4+π · x1)+ x2sin(20π · x2), (6)

and limited within the scope of considerations: x1 ∈ [−3,
12.1], x2 ∈ [4.1, 5.8]. The function above consists of many
local maxima, and its global maximum is in the point
(11.24, 5.73) with value of approximately 38.45. Another
test function was a 2-dimensional Rosenbrock function,
given by a formula

f (x) = a · (x2 − x2
1)

2 +(x1 −b)2, (7)

Generator_UD Generator_ND Initialization Selection

RecombinationMutationSort
Stop
Con-
dition

Return Solution

Yes

No

Fig. 2. (µ,λ ) strategy block diagram.

(a) (b)

Fig. 3. Optimized functions with overlaid extremes found
each iteration.

Table 3. Results of test functions optimization.

Maximization of (9) Minimization of (10)
x1 11.16 0.986
x2 5.25 0.980

f (x1,x2) 37.99 0.005
Error 0.46 0.005

with a = 100 and b = 1, limited within the scope of con-
siderations: x1 ∈ [−2.048, 2.048], x2 ∈ [−2.048, 2.048].
It also consists of many local minima, and its global mini-
mum is in the point (1, 1), with value of 0. The optimizer’s
population sizes were chosen as: µ = 50 and λ = 100.
After generating first population for the first function (8),
the best solution found was in point (9.23, 5.02) with
value of 35.72. When repeated 50 times, the best individ-
ual from the offspring population was located at the point
(11.22166, 4.40671) with value of 34.53 (worse than first
generation). This is a result of the stochastic nature of the
algorithm and overwriting individuals every iteration. This
issue was addressed by assigning the coordinates of the
best individual from the offspring population, along with
its fitness value and the iteration number in which it was
found, to array “Best” every iteration. After a hundred cy-
cles, this array was sorted in ascending (or descending)
order based on fitness values.

Fig. 3 shows the plot of the optimized functions pre-
sented with overlaid extremes found in each iteration. As
evident from the graph, the stochastic nature of the algo-
rithm is highly noticeable. The best maximum is not found
in every iteration, but by repeating this process a suffi-
cient number of times, it enables a satisfactory approach
towards the global extremum of the objective function. Ta-
ble 3 shows results for optimizing both test functions.

3.3. Execution time comparison
Tests described above were carried out both in PC and

Siemens S7-1200 PLC in order to compare the program
processing time. For parameters given above (µ = 50,
λ = 100 and 50 generations), on average it took 20 ms to
process the whole program tuning the PID on PC, whereas
on PLC, the average execution time was 1 m 44 s.



PLC-based Implementation of Stochastic Optimization Method in the Form of Evolutionary Strategies for PID, ... 1849

4. PID TUNING WITH A SIMULATED OBJECT

In this section, the process of finding the optimal PID
algorithm is described and applied to a object simulated
in the PLC, providing initial test results for practical veri-
fication of applied optimizer.

4.1. Object simulated in a PLC
The first test of the optimizer regarding its ability to

tune a PID, was carried out entirely in a PLC. A simple ob-
ject of first-order inertia with delay was being simulated,
given by the transfer function

G(s) =
1

s+1
e−0.1s, (8)

where s is a complex variable in Laplace transformation.
The object has been discretized using a zero-order hold
method with a sampling time of 0.01 s, resulting in the
discrete transfer function

G(z) =
0.00995z−10

z−0.99
, (9)

where z is a complex variable in Laurent transformation.
From the above transfer function, the differential equa-
tion of the object can be determined using the substitution
G(z) = Y (z)

U(z) , where Y (z) and U(z) are Laurent transforma-
tions of input and output signals, respectively

y(k+1) = 0.99y(k)+0.00995u(k−10). (10)

A diagram of the implemented control system is shown
in Fig. 4.

The optimization procedure is performed off-line. The
decision variables are the PID settings, and the objective
function is the integral of the absolute error (IAE) obtained
for each set of tuning parameters. Since the implementa-
tion of the algorithm takes place in a PLC, which executes
the program in defined cycles, it is necessary to discretize
the algorithm

u(k) = Kpe(k)+Ki

n

∑
0
(e(k) ·Ts)

PID
Controller Plant

IAE/ISE
PID

parameters

(µ,λ ) optimization

+

−

u(t) y(t)e(t)r(t)

System’s simulation

Fig. 4. Scheme of a program for finding optimal PID set-
tings.

+Kd
e(k)− e(k−1)

Ts
, (11)

where k is current sample, n is total number of samples and
Ts is the sampling time. The setpoint is a step reference
signal r(t) with a value of 1. The controller is initialized
with settings from the first position in the offspring popu-
lation table O. Then, the control signal, computed by the
controller, is applied to the system. After approximately
15 seconds, the performance index value is calculated.
The obtained value is assigned to a specific set of settings,
and this process is repeated until the entire settings pop-
ulation is tested. Finally, these settings are sorted in as-
cending order based on their assigned performance index
value. The best gains found were as follows: Kp = 0.9982,
Ki = 0.9987, and Kd = 0.0121 with J equal to 1.0064.

The program described above yields satisfactory re-
sults, allowing it to find PID controller settings that ex-
pedite the approach to zero control error while reducing
rise and settling times.

4.2. Execution time comparison
Again, the PID-tuning program processing time was

compared between PC and Siemens S7-1200 PLC for the
same parameters on each device. Since the whole response
of a system for each set of PID parameters must be calcu-
lated, it took noticeably longer to execute in comparison
with evaluation of a function. On average, for a PC it took
approximately 230 ms, while on PLC, the average execu-
tion time was 19 m 18 s.

5. PID CONTROL WITH A REAL OBJECT

After succesfully applying the (µ , λ ) strategy to opti-
mize the parameters of the controller, an attempt was made
to use it to control a real object, a modular servo mecha-
nism. This section contains the description of the object,
its model derivation and controller tuning and verification.

5.1. Test object
To verify the operation of the optimizing algorithm for

the selection of PID controller settings, a servo mechanism
provided by INTECO shown in Fig. 5 was utilized. After
connecting it to the PLC, this module can transmit control
signals to the motor and receive data from the encoder.
The control signal is a pulse width modulation (PWM)
waveform, with a range of 0-100%.

Fig. 5. INTECO modular servo.



1850 Kajetan Zielonacki and Jarosław Tarnawski

5.2. Servo model
The controlled variables in the servo mechanism are ve-

locity and angle. It was decided to control the velocity.
The tested object can be represented as a first-order iner-
tial system, given by a transfer function

G(s) =
K

Tbs+1
e−Td s, (12)

where K is the static gain, Tb is the inertia time constant,
ant Td is the delay time constant. To identify the object, a
step response test was carried out, based on the knowledge
of step responses of first-order inertial systems [23]

K =
∆y
∆u

,
y(t)− yss1

yss2 − yss1
=


0.632 for t = Tb,

0.865 for t = 2Tb,

0.950 for t = 3Tb,

(13)

where y is the object’s response, u is the control signal
and yss1, yss2 are the steady state output values. A PWM
step signal of 100% was applied to the servo, resulting in
a measurement of a steady-state rotational speed of 162
radians per second. Later, however, it was discovered that
above the input signal level of 88% PWM, the steady-state
response does not change, hence, the static gain was de-
termined to be K = 162

88 = 1.84. By examining the step
response shown in Fig. 6 (note that the signal was applied
one second after the measurement started), both time con-
stants were determined to be equal to 1.03 and 0.05, for Tb

and Td accordingly, resulting in a transfer function, which
later was discretized with a sample time of 10 ms, which
is recommended by the manufacturer, resulting in a differ-
ential equation

y(k+1) = 0.9903y(k)+0.01778u(k−5). (14)

5.3. PI tuning for the servo
After initial tests, it was decided not to use the differen-

tiating component for regulation, because each time it de-
teriorated the quality indices compared to PI results. Also,

0 5 10 15

Time [s]

0

50

100

150

A
n

g
u

la
r 

v
e

lo
c
it
y
 [

ra
d

/s
e

c
]

0

20

40

60

80

P
W

M
 [

%
]

T
d

X 1.05

Y 1.06048

X 2.08

Y 102.536

K

T
b

X 14.54

Y 161.922

Fig. 6. Plant step response with marked points for its pa-
rameter estimation.

because of the control signal being constrained within the
range of 0-88%, an anti-windup filter was applied. The
tuning process is similar to the one described in Subsec-
tion 4.1, the only difference being the reference trajectory,
incorporating both increases and decreases in the setpoint
value. In addition to tuning based on the integral of ab-
solute error (IAE) criterion, the integral of squared error
(ISE) criterion was also used, resulting in two sets of pa-
rameters for further comparisons.

5.4. Verification
In order to verify the performance of the developed al-

gorithm, it was decided to compare the obtained qual-
ity indices with a PI controller tuned using evolutionary
strategies, with a PI controller tuned in Siemens S7-1200
PLC using the built-in tool. The results for tuning the PI
controller based on the ISE criterion are shown in Fig. 7,
for tuning based on the IAE criterion in Fig. 8, and the
results for the controller tuned in Siemens are presented
in Fig. 9. These plots represent the reference signal r in
rad
sec , the output signal y in rad

sec and the control signal u in
%. Then, Table 4 represents the comparison of IAE and
ISE criteria for both ES-tuned and Siemens-tuned PI con-
troller.

The results of the study indicate that the PI con-

0 10 20 30 40 50 60

Time [s]

0

50

100

A
n
g
u
la

r 
V

e
lo

c
it
y
 [
ra

d
/s

]

Trajectory 1, |e| = 472.7,  e
2
 = 29421

u y r

0 10 20 30 40 50 60

Time [s]

0

50

100

A
n
g
u
la

r 
V

e
lo

c
it
y
 [
ra

d
/s

]

Trajectory 2, |e| = 139.0488, e
2
 = 8143.2

u y r

Fig. 7. The results for the controller tuned based on the
ISE criterion.

0 10 20 30 40 50 60

Time [s]

0

50

100

A
n
g
u
la

r 
V

e
lo

c
it
y
 [
ra

d
/s

]

Trajectory 1, |e| = 471.6003,  e
2
 = 29472

u y r

0 10 20 30 40 50 60

Time [s]

0

50

100

A
n
g
u
la

r 
V

e
lo

c
it
y
 [
ra

d
/s

]

Trajectory 2, |e| = 137.7599, e
2
 = 8160.8

u y r

Fig. 8. The results for the controller tuned based on the
IAE criterion.



PLC-based Implementation of Stochastic Optimization Method in the Form of Evolutionary Strategies for PID, ... 1851

0 10 20 30 40 50 60

Time [s]

0

50

100

A
n
g
u
la

r 
V

e
lo

c
it
y
 [
ra

d
/s

]

Trajectory 1, |e| = 478.21, e
2
 = 30013

u y r

0 10 20 30 40 50 60

Time [s]

0

50

100

A
n
g
u
la

r 
V

e
lo

c
it
y
 [
ra

d
/s

]

Trajectory 2, |e| = 124.84, e
2
 = 8462.4

u y r

Fig. 9. The results for the controller tuned by Siemens
built-in tool.

Table 4. PID verification results.

1st trajectory 2nd trajectory
Tuning type Kp Ki IAE ISE IAE ISE

IAE 1.789 3.544 471.6 29472 137.76 8160.8
ISE 1.636 3.457 472.7 29421 139.05 8143.2

Siemens 7.949 3.089 478.2 30013 124.84 8462.4

troller tuned using evolutionary strategies outperformed
the Siemens-tuned PI controller in three out of four quality
indicators evaluated. This demonstrates the effectiveness
of the evolutionary strategy approach in achieving better
control performance for the considered system.

These findings highlight the advantages of utilizing
evolutionary strategies for PI controller tuning. The results
emphasize the potential of evolutionary methods in opti-
mizing control parameters and achieving superior control
performance compared to traditional tuning methods.

6. LQR CONTROL WITH A REAL OBJECT

Another attempt on verification of developed optimizer
was to utilize the linear-quadratic regulator for control of
the position of the servo. As described in Subsection 6.2,
the controlled variables in the servo mechanism are its ve-
locity and angle. In order to derive the model for the angle,
the state-space representation was used, which allowed for
obtaining optimal state feedback gains.

6.1. Discrete LQR algorithm
The full dynamical model of the DC-motor including

angle and velocity can be described as a transfer function

G(s) =
K

s(sTd +1)
, (15)

where K is the static gain, and Tb is the inertia time con-
stant. For simplicity, the delay is omitted in this case.
This allows for a discrete state-space representation of the
model

{
x[k+1] = ADx[k]+BDu[k],
y[k] =CDx[k],

(16)

where

AD = eATs =

[
1 Tb(1− e−

Ts
Tb )

0 e−
Ts
Tb

]
,

BD =

[
K(Ts −Tb(1− e−

Ts
Tb ))

K(1− e−
Ts
Tb )

]
,

CD =

[
1 0
0 1

]
.

Ts is a sampling time of 10 ms. The task at hand is to
find the optimal feedback law

u[k] =−Fe[k], e[k] = yr − y[k], (17)

where F =
[
F1 F2

]
is the vector of feedback gains and yr

is the reference trajectory vector, s.t. it minimizes the cost
function

J =
N

∑
k=0

(eT [k]Qe[k]+uT [k]Ru[k]), (18)

subject to the state equation (16), where Q and R are pos-
itive definitive weight matrices, determining the cost of
error and input, respectively.

6.2. Finding the optimal gains

To find the optimal F feedback gain vector, a similar ap-
proach was taken as before. For each set of gains being the
decision variables, a simulation of system response was
generated, and the cost function corresponding to these
gains was calculated. The set of considerations for this
case was [0,1] for both gains and matrices Q and R were

chosen arbitrarily as Q =

[
10 0
0 1

]
, R = 50. The best gains

found were as follows: F1 = 0.9974, F2 = 0.2702, with J
equal to 214450.

6.3. Verification

After developing a technique to obtain optimal feed-
back gains for the LQR, it was applied to control the po-
sition of the servo mechanism described earlier. Fig. 10
shows the results of the process, where the first plot con-
tains the output angle α of the servo with overlaid refer-
ence trajectory αr, and the second plot depicts the control
signal. The control quality is satisfactory, however, it was
not possible to eliminate the steady-state error due to the
fact that the smallest PWM value from which the motor
will respond is 4%. Despite that fact, the steady-state er-
ror was not bigger than 1%.



1852 Kajetan Zielonacki and Jarosław Tarnawski

0 10 20 30 40 50 60

Time [s]

0

200

400

A
n

g
le

 [
ra

d
]

r

0 10 20 30 40 50 60

Time [s]

-100

0

100

%
 P

W
M

Fig. 10. Results of LQR control.

7. MPC CONTROL FOR DRINKING WATER
DISTRIBUTION SYSTEM

Another example of the application of a prepared op-
timizer based on evolutionary strategies can be the pre-
dictive control of balance distribution or supply systems
based on forecasted demand and limited generation or
storage capacity. Examples of such systems include drink-
ing water distribution systems [24] or control in micro-
grids [25]. Let’s use the example described in [24].

7.1. Control problem description
The control problem addressed there concerns a system

for supplying drinking water to a section of a city (sim-
plified for didactic purposes). It is assumed that from the
external module of the system a forecast of water demand
is provided on a horizon of 24 hours with hourly steps.
The system consists of following technological equip-
ment: water intake, pump pumping water to the network,
water tank, treatment station and a valve directing water
from the pump to the network or to the tank (Fig. 11). It is
also assumed that the capacity of the source and the treat-
ment station is greater than the pump. During peak water
demand hours, it significantly exceeds the capacity of the
pump. It is then necessary to use previously stored water
in the reservoir. With the known tariff for electricity, limi-
tations in the form of pump capacity and the dimensions of
the tank, optimizer is applied to calculate the control sig-
nals of the pump and splitter so that the amount of water
directed to the network realizes the externally determined
demand at the lowest possible cost.

Fig. 11. Case study with part of drinking water distribu-
tion systems.

7.2. Optimization problem formulation
Defining the optimization problem can be presented as

follows:

min
u

f (x) = wc

H

∑
i=1

(c(i)P(i))2 +we

H

∑
i=1

(D(i)−N(i))2 ,

(19)

such that

N(i) = P(i)−S(i), (20)

T (i+1) = T (i)+S(i), (21)

T (0) = 200, (22)

0 ≤ P(i)≤ 100, (23)

−100 ≤ S(i)≤ 100, (24)

0 ≤ T (i)≤ 500, (25)

0 ≤ N(i)≤ 200, (26)

i ∈ 1···H, (27)

where D is the demand in [m3

h ], N is the flow to network
in [m3

h ], P is the pump flow in [m3

h ], S is the splitter flow
(positive to tank, negative from tank) in [m3

h ], T is the vol-
ume of water in the tank in [m3], c is the electricity tariff
in PLN, H is the control/prediction horizon in [h] and wc,
we are cost and error weight factors, respectively.

Previously, in [24], this task was solved in a hierarchi-
cal control system, in which the layer determining the op-
timal trajectories of pump and splitter was realized by a
PC with QP optimization software, while the lower layer
in the form of PID control realizing the setpoints deter-
mined by the trajectory optimizer was built in a PLC. The
application of the ES optimizer in the PLC considered in
this article makes it possible to achieve the goals of pre-
dictive control only with the PLC without any other com-
putational machines.

In each iteration of the MPC controller’s operation to
obtain a control signal, a nonlinear optimization task with
constraints is solved using the developed stochastic opti-
mizer developed. As a result of solving the optimization
task, two control variables are obtained simultaneously.
Hence, the entire controller is nonlinear and multivariable.

7.3. Adopting ES optimizer for DWDS problem
The main limitation of being able to transfer directly

from QP to ES the formulation of the optimization prob-
lem is the difficulty of incorporating equality constraints
into evolutionary strategies. A literature review was con-
ducted for the inclusion of balance equations in optimiza-
tion calculations in evolutionary strategies. Review article
[26] was particularly useful. An approach that is variously
called in different sources was attempted. In [14] we can
find “repair algorithms” or “assurance of feasibility”. Each
of these techniques has been used to some extent in this
article.



PLC-based Implementation of Stochastic Optimization Method in the Form of Evolutionary Strategies for PID, ... 1853

Optimizer ES ( =150, =300,#gen=250) fitness value 1138.61,  error 34.20 m
3
 (1.65 %),  cost 1108.56 PLN

0

50

100

P
U

M
P

[m
3
/h

]

-100

-50

0

50

S
P

L
IT

T
E

R

[m
3
/h

]

0

100

200

N
E

T
W

O
R

K

[m
3
/h

] realization demand

-2

0

2

E
R

R
O

R

[m
3
/h

]

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

500

T
A

N
K

[m
3
]

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0

0.5

1

P
R

IC
E

S

[P
L
N

/k
W

h
]

Fig. 12. ES optimizer results.

Table 5. Chromosome of an individual for ES optimizer.

P1 P2 ... PH S1 S2 ... SH σP1 σP2 ... σPH σS1 σS2 ... σSH

Due to the specificity of the task, the following method
of coding the chromosome was adopted. When we assume
that H is the prediction horizon, the chromosome will take
the dimension 4 ·H as in Table 5.

7.4. ES optimization results and MPC scheme
Example results of solving the water supply task using

an evolutionary optimizer are shown in Fig. 12. Observ-
ing the results, we see a small and acceptable supply error,
maintaining the process sizes of the pump, splitter, reser-
voir condition within the a priori specified ranges, cost-
effective management of pump operation.

7.5. Time of calculation issue
An important aspect of an optimizer that affects its use-

fulness is its computation time. It is well know that evo-
lutionary strategies have significantly lower speed of con-
vergence than gradient optimizers. It is also known that
the PLC has much less computing power than the PC.

In view of the assumption that λ = 2µ and a simula-
tion step of 1 h, in fact there are three variables that af-
fect the computation time and the value of the objective
function. These are the population size - µ , the number
of generations of the algorithm - NumGen and the control
horizon - H. Extensive search calculations were performed
on the PC to estimate the value of the objective function
and the time required for calculations for different val-
ues of µ and NumGen. The results for a control horizon
of 24 h are shown in Fig. 13. Since the optimizer oper-
ates in a stochastic manner, each scenario was counted 10
times and averaged values are shown in the figures. Then,
selecting the results of the objective function below the

Fig. 13. Fitness function values depending on number of
individuals and iterations of the algorithm.

Table 6. Time needed for ES optimizer calculation for dif-
ferent µ , H and NumGen.

µ NumGen H Fitness* S7-1500 PC i9
200 300 24 1156.1 58 min 49 s 3.7 s
100 250 24 1199.3 23 min 48 s 1.6 s
100 250 12 727.1 12 min 7 s 1.28 s
100 250 6 388.9 6 min 28 s 0.8 s

* comparable only for the same control horizons H

conventionally determined level of 1200, it was checked
which combination of parameters offers such a result in
the shortest time. For comparison, several combinations
with different values of parameters are shown in Table 6.

7.6. MPC RH verification
It should be noted that the horizon of 24 steps is quite

long and shorter ones, e.g., 12 or 6 hours, are usually suffi-
cient. The results of predictive control based on a one-time
solution per day (H24, QP) and scenarios with the reced-
ing horizon (RH) strategy for different prediction horizons
(24 h, 12 h, 6 h, and 3 h) are shown in Fig. 14 and Table
7. The used weights factors were we = 1000, wc = 1. The



1854 Kajetan Zielonacki and Jarosław Tarnawski

0 500 1000 1500

time [min]

0

50

100

150

200

d
e
m

a
n
d
 D

 a
n
d
 f
lo

w
 t
o
 n

e
tw

o
rk

 N
 [
m

3
/h

]

demand

QP

H24

H24RH

H12RH

H6RH

H3RH

H6RH HIL

Fig. 14. MPC control strategies based on ES optimizer
with different horizons and with/without receding
horizon mechanism.

Table 7. Results of MPC control.

Method Error [m3] Error [%] Cost [PLN]
QP 17.5 0.85 1081.1
H24 51.4 2.48 1105.5

H24RH 51.5 2.49 1149.1
H12RH 33.8 1.64 1156.2
H6RH 23.8 1.15 1138.0
H3RH 71.0 3.43 1124.9

H6RH HIL 27.0 1.31 1126.6

Fig. 15. HIL verification structure.

other shown analysis results were obtained using the ES
optimizer.

The results of the QP optimizer are undoubtedly the
best. However, the results obtained with the ES optimizer
are not much worse and certainly useful for the described
task. Actually, the only unacceptable scenario turned out
to be the one with a horizon length of 3 h. The scenario
with a horizon of 6 h, for which the optimization cal-
culations take less than 7 minutes in the PLC, fulfils its
purpose. Verification for this scenario was also done in
the hardware loop structure as in Fig. 15. The model was
simulated in MATLAB/Simulink, and signals exchanged
through the acquisition card.

8. CONCLUSIONS

The great advantages of ES are the lack of need to know
the gradient function and the excellent scalability to mul-
tiple dimensions. The consequence of such ES is com-

putational redundancy. This paper presents the process of
building an optimizer for the PLC platform based on evo-
lutionary strategies.

Taking into account the trade-off between performance
quality and ease of implementation, the WH method
for obtaining homogeneous distributions and the BM
transformation method for obtaining normal distributions
based on the homogeneous ones were selected, imple-
mented and verified. Implementation of the optimization
algorithms under PLC conditions had to take into account
the limited computing power and memory compared to a
PC.

The correctness of the implementation was verified on
several standard multidimensional test functions. mThe
developed estimator was tested with a real device, which
was a DC motor. PID control was used for speed control.
The results of the confrontation with the tuning mech-
anism built into the Siemens PLC engineering software
show virtually consistent results in terms of control qual-
ity. Control of the motor shaft angle was implemented us-
ing LQR control. The optimizer was used to determine the
optimal state feedback gain matrix (taking into account Q
and R matrices) of this controller. Verification indicated
the correctness of this solution.

The most challenging example of the use of the devel-
oped ES optimizer was applied to the MPC control for a
simulated section of the water supply system. A repetition
strategy was used, i.e., the optimization task was solved
every hour and only the control set for the first hour of
the entire control horizon was applied to the object. The
results obtained are comparable to calculations with QP
optimization, confirming the application potential of such
an optimizer.

The functionality of the optimizer developed on the
PLC platform has been comprehensively verified and val-
idated. The key issue is the calculation time, which is sig-
nificantly longer than for PC and gradient optimizers.

CONFLICT OF INTEREST AND DATA
AVAILABILITY STATEMENT

All authors have no conflicts of interest. The program
code for tuning PID and LQR controllers and for the MPC
controller in the form of a Siemens TIA Portal V18 PLC
project has been attached to the content of the article as
supplementary material. For the convenience of readers,
text versions of individual procedures and a description of
the program structure have also been prepared.

REFERENCES

[1] M. He and C. Chen, “An effective online computation
scheme for constrained model predictive control in embed-
ded systems,” Proc. of 6th World Congress on Intelligent
Control and Automation, vol. 2, pp. 6699-6703, 2006.

https://doi.org/10.1109/WCICA.2006.1714380
https://doi.org/10.1109/WCICA.2006.1714380
https://doi.org/10.1109/WCICA.2006.1714380
https://doi.org/10.1109/WCICA.2006.1714380


PLC-based Implementation of Stochastic Optimization Method in the Form of Evolutionary Strategies for PID, ... 1855

[2] B. Käpernick, “PLC implementation of a nonlinear model
predictive controller,” IFAC Proceedings Volumes, vol. 47,
no. 3, pp. 1892-1897, 2014.

[3] P. Krupa, D. Limon, and T. Alamo, “Implementation
of model predictive control in programmable logic con-
trollers,” IEEE Transactions on Control Systems Technol-
ogy, vol. 29, no. 3, pp. 1117-1130, 2021.

[4] G. Valencia-Palomo and J. Rossiter, “Efficient suboptimal
parametric solutions to predictive control for PLC appli-
cations,” Control Engineering Practice, vol. 19, no. 7, pp.
732-743, 2011.

[5] F. Delfino, M. Rossi, R. Minciardi, and M. Robba, “An op-
timization based architecture for local systems managed by
PLC devices,” Proc. of IEEE International Symposium on
Systems Engineering (ISSE), pp. 17-22, 2015.

[6] J. Tarnawski, P. Kudełka, and M. Korzeniowski, “Ad-
vanced control with PLC-code generator for aMPC con-
troller implementation and cooperation with external com-
putational server for dealing with multidimensionality,
constraints and LMI based robustness,” IEEE Access, vol.
10, pp. 10597-10617, 2022.

[7] A. Purohit and J. Buch, “Evaluation of optimization solvers
on programmable logic controller,” Proc. of IEEE Confer-
ence on Control Applications (CCA), pp. 533-538, 2015.

[8] D. Kouzoupis, A. Zanelli, H. Peyrl, and H. Ferreau, “To-
wards proper assessment of QP algorithms for embedded
model predictive control,” Proc. of European Control Con-
ference (ECC), pp. 2609-2616, 2015.

[9] C. Schreppel and J. Brembeck, “A QP solver implementa-
tion for embedded systems applied to control allocation,”
Computation, vol. 8, no. 4, p. 88, 2020.

[10] M. Mohamed, M. Ghazali, S. Idrus, and N. Wahab, “Op-
timization through artificial neural network on a pro-
grammable logic controller for a sludge drying plant,”
Proc. of IEEE 9th International Colloquium on Signal Pro-
cessing and Its Applications, pp. 103-105, 2013.

[11] S. Howimanporn, S. Chookaew, and W. Sootkaneung, “Im-
plementation of PSO based gain-scheduled PID and LQR
for DC motor control using PLC and SCADA,” Proc. of In-
ternational Conference on Control and Robots (ICCR), pp.
52-56, 2018.

[12] J. Lu, “Design of PLC intelligent control system based on
improved genetic ant colony algorithm,” Proc. of IEEE 2nd
International Conference on Electronic Technology, Com-
munication and Information (ICETCI), pp. 1185-1188,
2022.

[13] H. Schwefel, Evolution and Optimum Seeking: The Sixth
Generation, John Wiley & Sons, Inc., 1993.

[14] Z. Michalewicz, Genetic Algorithms + Data Structures =
Evolution Programs, Springer-Verlag, Berlin, Heidelberg,
pp. 372-373, 1996.

[15] D. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addition-Westly, Reading MA,
1989.

[16] T. Bäck, C. Foussette, and P. Krause, Contemporary Evo-
lution Strategies, Springer, Berlin, vol. 86, 2013.

[17] “Creating and Controlling a Random Number Stream,”,
Mathworks, https://www.mathworks.com/help/matlab/mat
h/creating-and-controlling-a-random-number-stream.html,
Accessed on 2023-11-20.

[18] V. Neumann, “Various techniques used in connection with
random digits,” Notes By GE Forsythe, pp. 36-38, 1951.

[19] B. Wichmann and I. Hill, “Algorithm AS 183: An efficient
and portable pseudo-random number generator,” Journal of
The Royal Statistical Society. Series C (Applied Statistics),
vol. 31, pp. 188-190, 1982.

[20] L. Blum, M. Blum, and M. Shub, “A simple unpredictable
pseudo-random number generator,” SIAM Journal on Com-
puting, vol. 15, pp. 364-383, 1986.

[21] G. Box and M. Muller, “A note on the generation of random
normal deviates,” The Annals of Mathematical Statistics,
vol. 29, pp. 610-611, 1958.

[22] J. Arabas, Wykłady Z Algorytmów Ewolucyjnych,
Wydawnictwa Naukowo-Techniczne, 2004.

[23] K. Åström and T. Hägglund, Advanced PID Control, ISA-
The Instrumentation, Systems, and Automation Society,
2006.

[24] J. Tarnawski, T. Rutkowski, and A. Cimiński, “Implemen-
tation of hierarchical control of drinking water supply sys-
tem: Didactic project - Computer controlled system,” Proc.
of 22nd International Conference on Methods and Models
in Automation and Robotics (MMAR), pp. 831-836, 2017.

[25] A. Kowalczyk, A. Włodarczyk, and J. Tarnawski, “Micro-
grid energy management system,” Proc. of 21st Interna-
tional Conference on Methods and Models in Automation
and Robotics (MMAR), pp. 157-162, 2016.

[26] O. Kramer, “A review of constraint-handling techniques for
evolution strategies,” Applied Computational Intelligence
and Soft Computing, vol. 2010, pp. 1-19, 2010.

Kajetan Zielonacki was born in Gdynia,
Poland, in 2000. He received his B.Eng.
degree in automatics and robotics from
the Gdańsk University of Technology in
2023. His research interests include pro-
grammable logic controllers, optimal con-
trol, and evolutionary algorithms.

Jarosław Tarnawski was born in Gdańsk,
Poland, in 1974. He received his M.Sc. and
Ph.D. degrees from the Gdansk University
of Technology. He is currently an Assistant
Professor with the Department of Elec-
trical Engineering, Control Systems and
Computer Science, Gdańsk University of
Technology. His research interests include
mathematical modeling, identification, op-

timization, and hierarchical control systems.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

https://doi.org/10.3182/20140824-6-ZA-1003.00911
https://doi.org/10.3182/20140824-6-ZA-1003.00911
https://doi.org/10.3182/20140824-6-ZA-1003.00911
https://doi.org/10.1109/TCST.2020.2992959
https://doi.org/10.1109/TCST.2020.2992959
https://doi.org/10.1109/TCST.2020.2992959
https://doi.org/10.1109/TCST.2020.2992959
https://doi.org/10.1016/j.conengprac.2011.04.001
https://doi.org/10.1016/j.conengprac.2011.04.001
https://doi.org/10.1016/j.conengprac.2011.04.001
https://doi.org/10.1016/j.conengprac.2011.04.001
https://doi.org/10.1109/SysEng.2015.7302506
https://doi.org/10.1109/SysEng.2015.7302506
https://doi.org/10.1109/SysEng.2015.7302506
https://doi.org/10.1109/SysEng.2015.7302506
https://doi.org/10.1109/ACCESS.2022.3142054
https://doi.org/10.1109/ACCESS.2022.3142054
https://doi.org/10.1109/ACCESS.2022.3142054
https://doi.org/10.1109/ACCESS.2022.3142054
https://doi.org/10.1109/ACCESS.2022.3142054
https://doi.org/10.1109/ACCESS.2022.3142054
https://doi.org/10.1109/CCA.2015.7320684
https://doi.org/10.1109/CCA.2015.7320684
https://doi.org/10.1109/CCA.2015.7320684
https://doi.org/10.1109/ECC.2015.7330931
https://doi.org/10.1109/ECC.2015.7330931
https://doi.org/10.1109/ECC.2015.7330931
https://doi.org/10.1109/ECC.2015.7330931
https://doi.org/10.3390/computation8040088
https://doi.org/10.3390/computation8040088
https://doi.org/10.3390/computation8040088
https://doi.org/10.1109/CSPA.2013.6530023
https://doi.org/10.1109/CSPA.2013.6530023
https://doi.org/10.1109/CSPA.2013.6530023
https://doi.org/10.1109/CSPA.2013.6530023
https://doi.org/10.1109/CSPA.2013.6530023
https://doi.org/10.1109/ICCR.2018.8534485
https://doi.org/10.1109/ICCR.2018.8534485
https://doi.org/10.1109/ICCR.2018.8534485
https://doi.org/10.1109/ICCR.2018.8534485
https://doi.org/10.1109/ICCR.2018.8534485
https://doi.org/10.1109/ICETCI55101.2022.9832155
https://doi.org/10.1109/ICETCI55101.2022.9832155
https://doi.org/10.1109/ICETCI55101.2022.9832155
https://doi.org/10.1109/ICETCI55101.2022.9832155
https://doi.org/10.1109/ICETCI55101.2022.9832155
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1007/978-3-642-40137-4
https://doi.org/10.1007/978-3-642-40137-4
https://www.mathworks.com/help/matlab/math/creating-and-controlling-a-random-number-stream.html
https://www.mathworks.com/help/matlab/math/creating-and-controlling-a-random-number-stream.html
https://doi.org/10.2307/2347988
https://doi.org/10.2307/2347988
https://doi.org/10.2307/2347988
https://doi.org/10.2307/2347988
https://doi.org/10.1137/0215025
https://doi.org/10.1137/0215025
https://doi.org/10.1137/0215025
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1214/aoms/1177706645
https://doi.org/10.1109/MMAR.2017.8046936
https://doi.org/10.1109/MMAR.2017.8046936
https://doi.org/10.1109/MMAR.2017.8046936
https://doi.org/10.1109/MMAR.2017.8046936
https://doi.org/10.1109/MMAR.2017.8046936
https://doi.org/10.1109/MMAR.2016.7575125
https://doi.org/10.1109/MMAR.2016.7575125
https://doi.org/10.1109/MMAR.2016.7575125
https://doi.org/10.1109/MMAR.2016.7575125
https://doi.org/10.1155/2010/185063
https://doi.org/10.1155/2010/185063
https://doi.org/10.1155/2010/185063

