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Output Feedback Consensus for High-order Stochastic Multi-agent Sys-
tems With Unknown Time-varying Delays
Baoyu Wen and Jiangshuai Huang* ■

Abstract: This paper addresses the dynamic output feedback leader-following consensus control for a class of high-
order stochastic multi-agent systems characterized by unknown time-varying delays. The agents are modeled as a
class of stochastic strict feedback nonlinear systems with unknown time-varying delays. Additionally, the states of
the agents are unknown for control design. To address these challenges, observers are designed firstly to estimate
the unknown states of each agent. Subsequently, a distributed observer-based output feedback consensus protocol,
relying solely on the outputs of neighboring agents, is introduced. It is shown that the followers can effectively
track the leader’s output with a 1st-moment exponential rate. The effectiveness of the proposed control scheme is
validated through simulation examples.

Keywords: Distributed control, output feedback control, stochastic multi-agent systems, unknown time-varying
delays.

1. INTRODUCTION

The past decades have witnessed significant research in-
terest in the distributed consensus control of multi-agent
systems (MASs) owing to their practical applications
([1-3], and related references therein). In practice, numer-
ous physical systems are susceptible to uncertainties and
random disturbances, such as noise from unpredictable en-
vironmental conditions, resulting in stochastic nonlineari-
ties in modelling of practical systems. As a result, it is of
great importance to investigate the distributed consensus
control of stochastic nonlinear MASs. Many related works
have been proposed in literature. For example, for first-
and second-order MASs, sufficient and necessary condi-
tions are provided in [4] to ensure mean square consen-
sus. In [5], the average consensus problem for first-order
discrete-time MASs in uncertain communication network
environments is investigated. For a category of high-order
nonlinear stochastic multi-agent systems (SMASs), [6]
proposes a set of distributed controllers designed to guar-
antee that the tracking error of each agent can be reduced
to an arbitrarily small value. Additionally, [7] presents an
observer-based distributed consensus protocol for a group
of high-order nonlinear SMASs, which guarantees 1st mo-
ment exponential leader-following consensus of the sys-
tems. Despite the progress made in consensus control for
SMASs, generalizing these findings to delayed nonlinear
SMASs remains challenging.

In the presence of delays, system performance may de-
teriorate, potentially leading to instability. To date, re-
search on time-delay consensus in multi-agent systems
has primarily focused on deterministic systems. Insuffi-
cient attention has been given to the consensus of stochas-
tic systems with time delays, with the majority of stud-
ies focusing on first- and second-order linear systems
[8-14]. For instance, in cases where the dynamic mod-
els of continuous-time MASs are single integrators and
the systems are subject to measurement noises and time
delays, a distributed leader-following consensus control
scheme is proposed in [10]. Another consensus algorithm
is designed in [11] for first-order MASs with time de-
lays and measurement noises, taking into account both
directed fixed and switching topologies. The stochastic
bounded consensus tracking problem is studied in [12] for
second-order MASs corrupted by random noises and sub-
ject to general sampling delays caused by the signal sam-
pling process. For heterogeneous MASs made up of first-
and second-order agents with random time delays, a dis-
tributed consensus algorithm on the basis of the probabil-
ity distribution of the time delays is constructed in [13]. In
[14], sufficient conditions are provided based on the linear
matrix inequalities for the existence of the expected dy-
namic output feedback consensus algorithm for SMASs
with time delays. Although progress has been made re-
garding first-, second-order, and linear SMASs with time
delays, as far as we know, there are no existing research
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achievements for higher-order nonlinear SMAs with time
delays. Furthermore, when the states of systems are un-
known, controlling time-delayed high-order SMASs with
strict-feedback form becomes increasingly complicated.

In practice, acquiring all the states for each agent is not
always feasible due to cost constraints or sensor failures.
In such cases, where only output information is available,
it is more realistic to investigate output feedback consen-
sus than to investigate state feedback consensus. Signifi-
cant advancements have been made in the study of output
feedback consensus for MASs. For instance, in [15], for
linear MASs with communication delays and switching
networks, a distributed feedforward approach is employed
to deal with the problem of cooperative output regula-
tion. For MASs with external disturbances and Markovian
jump parameters, the H-∞ consensus is studied in [16]
by applying a static output feedback control method. In
[17], an output-based control law is devised for a category
of discrete-time heterogeneous linear MASs with actua-
tor limitations on position and rate to, aiming to achieve
semiglobal leader-following output consensus. In [18], an
internal model-based control strategy is designed for a
group of nonlinear MASs with arbitrary relative degree to
realize cooperative semi-global output regulation. A dis-
tributed adaptive output feedback control strategy, based
on the backstepping technique, is introduced in [19] to
realize output consensus tracking for uncertain heteroge-
neous linear MASs with uncertainties. [20] presents a dy-
namic codec distributed output feedback protocol based
on an extended state observer, aiming to achieve consen-
sus for high-order nonlinear heterogeneous MASs.

As far as we know, addressing high-order SMASs in
strict feedback form with unknown time-varying delays is
rarely considered in literature. Only a few results could
be obtained addressing similar problems. For instance,
in [21], a distributed tracking consensus control scheme
based on adaptive control and neural network is proposed
for a category of high-order nonlinear SMASs with time
delays. However, this approach solely guarantees that the
tracking error converges to a small neighborhood around
the origin. As far as we know, how to guarantee exponen-
tial convergence for the leader-following consensus under
the problem formulation in this paper remains unknown.

Inspired by the aforementioned discussions, this paper
studies the problem of 1st moment exponential leader-
following consensus for a group of high-order stochastic
nonlinear systems under a directed graph. In order to ad-
dress this issue, in this paper, a hybrid control design and
stability analysis paradigm is established, which includes
the design of a state observer combined with dynamic
gain, utilizing only the outputs of neighboring agents, and
a set of Lypunov-Krasovskii functions. Through an ap-
propriate state transformation, it is shown that the pro-
posed protocol guarantees 1st moment exponential leader-
following consensus for the system. By combining the

designed state observer with dynamic gains, the problem
is mainly transformed into determining the dynamics of
the gains and stability analysis with a set of Lypunov-
Krasovskii functions. The designed controllers ensure
1st moment exponential consensus of the strict-feedback
SMASs with unknown time delays. The main contribu-
tions of this paper are as

1) This paper establishes a hybrid control design and sta-
bility analysis paradigm for output feedback consen-
sus control of high-order strict-feedback SMASs with
unknown time-varying delays, which includes de-
signing a state observer combined with dynamic gains
and utilizing a set of Lyapunov-Krasovskii functions.
Compared with the methods proposed in [6,7], the
controller designed in this paper can handle time-
varying delays.

2) It is proved that the proposed protocol guarantees
1st moment exponential leader-following consensus
through an appropriate state transformation. Further-
more, this paper addresses the exponential leader-
following consensus in high-order strict-feedback
SMASs with unknown time-varying delays, where
previous approaches fell short of achieving exponen-
tial consensus. Compared with the method proposed
in [21], which can only ensure the tracking error con-
verges to a small neighborhood around the origin, the
method proposed in this paper can ensure the 1st mo-
ment exponential leader-following consensus of the
system.

The remaining sections are structured in the following:
Section 2 demonstrates the preliminaries and problem for-
mulation. The design of a universal output-feedback con-
trol law is detailed in Section 3. Section 4 presents simula-
tion results to demonstrate the control scheme is effective.
Lastly, conclusions are drawn in Section 5.

Notation: R denotes the set of reals, R+ denotes the set
of positive reals, and Rn represents the real n-dimensional
space. For a given real number h, |h| denotes the absolute
value of h. The N-dimensional identity matrix is repre-
sented by IN . For a given vector or matrix Y , Y T denotes
its transpose, and ∥Y∥ is the Euclidean norm of Y . Defin-
ing ∥A∥ = (Σn

k=1Σm
f=1a2

k f )
1/2 for a matrix A. E[b] denotes

the expectation of b.

2. PRELIMINARY AND PROBLEM
FORMULATION

We will introduce the graph and the problem formula-
tion in this section.

2.1. Preliminary
If the controlled system consists of N agents, and then,

an undirected graph G = (V,E ,A) is applied to indi-
cate the information exchanging between agents, where
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A = [ak f ] ∈ RN×N is the corresponding connectivity ma-
trix, V = {1, 2, · · · , N} represents the node set of the
agents, and E ⊆ V ×V indicates the edge set. The edge
(k, f ) in G means that agents k and f are able to com-
municate with each other to obtain information. When
( f ,k) ∈ E , let ak f = 1; otherwise ak f = 0. The degree ma-
trix of G can be represented by D = diag{d1, · · · , dN},
where dk = ∑

n
f=1 ak f . The corresponding Laplacian matrix

of G is denoted as L̄ = D−A. When the agent k can re-
ceive information from the leader, note bk = 1; otherwise
bk = 0. The corresponding connection weight matrix is
represented by B = diag{b1, · · · , bN}. Ḡ is an augmented
graph containing the undirected graph G and a leader with
edges between some followers and the leader.

2.2. Problem formulation
In this paper, we consider a SMAs consisting of N + 1

agents in which the dynamics of the kth (k = 0, 1, · · · , N)
agent can be modeled as

dχk, f = χk, f+1dt +h f (χ̄k, f , χ̄k, f (t −δ ))dt

+gT
f (χ̄k, f , χ̄k, f (t −δ ))dw,

f = 1, · · · , n−1,

dχk,n = ukdt +hn(χ̄k,n, χ̄k,n(t −δ ))dt (1)

+gT
n (χ̄k,n, χ̄k,n(t −δ ))dw,

yk = χk,1,

where χ̄k, f = (χk,1, · · · , χk, f )
T ∈ R f and χ̄k,n = (χk,1, · · · ,

χk,n)
T ∈ Rn represent the system state, uk ∈ R represents

the control input, and yk ∈ R represents the measurable
output of the system. The variable δ is an unknown time-
varying delay of the states, and w is an r-dimensional in-
dependent standard Wiener process (or Brownian motion).
When t ∈ [−δ ∗, 0), for k = 0, 1, · · · , N and f = 1, · · · , n,
the function χk, f (t) is defined to be equal to its initial value
χk, f (0), where δ ∗ is given in Assumption 2. For simplicity,
(t−δ ) in the equations will be represented as the subscript
(δ ). In the formulation, we refer to the agent with an index
of 0 as the leader, and agents with indexes 1, · · · , N as fol-
lowers. For f = 1, · · · , n, the uncertain nonlinear functions
h f (·) : R f ×R → R and g f (·) : R f ×R → Rr are Borel
measurable. Additionally, they satisfy Assumption 1. For
example, χ̄k, f (t − δ ) will be replaced by χ̄k, f (δ ) later. To
proceed, the following assumptions are presented.

Assumption 1: There are positive constants ρ1 and ρ2

holding the following inequalities for k = 1, · · · , N and
f = 1, · · · , n.

|h f (χ̄k, f , χ̄k, f (δ ))−h f (χ̄0, f , χ̄0, f (δ ))|

≤ ρ1

f

∑
l=1

(|χk,l −χ0,l |+ |χk,l(δ )−χ0,l(δ )|),

∥g f (χ̄k, f , χ̄k, f (δ ))−g f (χ̄0, f , χ̄0, f (δ ))∥

≤ ρ2

f

∑
l=1

(|χk,l −χ0,l |+ |χk,l(δ )−χ0,l(δ )|). (2)

Assumption 2: The unknown time-varying delay δ

and its derivative δ̇ satisfy,

0 ≤ δ ≤ δ
∗, δ̇ ≤ γ < 1,

where δ ∗ and γ are positive scalars.

Assumption 3: The augmented graph Ḡ contains a
spanning tree whose root is node 0. u0 is known to the
followers.

Remark 1: For a deterministic system, one can ob-
serve a similar condition on nonlinear terms in Assump-
tion 1 as presented in [22,23]. Additionally, [7] discusses
a similar assumption for the diffusion and drift terms in
stochastic systems without considering delay. Therefore,
combined with the above analysis, it is fair to say that As-
sumption 1 is reasonable. The description of time-varying
delay in Assumption 2 is common and can be found in
[8,15,22]. The condition that the communication topol-
ogy described in Assumption 3 should satisfy is a stan-
dard condition and is documented in [6,7,22]. In [6,7], u0

is a function that depends solely on time, and in [22], u0

is selected as u0 = 0. Therefore, it can be considered as
pre-known information for the followers.

Definition 1: For any twice continuously differentiable
non-negative function V (x, t) related to system (1), the dif-
ferential operator L is defined as

LV =
∂V
∂ t

+
∂V
∂x

f +
1
2

Tr
{

hT ∂V
∂ t

h
}
, (3)

where x, f , and h are the states and nonlinear functions,
respectively. Tr{·} denotes the matrix trace.

Definition 2 [7]: If there are positive constants m1 and
m2 such that E[|χk, f − χ0, f |] ≤ m1e−m2t , t > 0 for k = 1,
· · · , N and f = 1, · · · , n, then it can be said that the agents
achieve 1st moment exponential leader-following consen-
sus.

Lemma 1 [24]: If Assumption 3 is satisfied, then the
symmetric matrix L̂= L̄+B associated with Ḡ is positive
definite.

Lemma 2 [24]: Let n-dimensional column vectors
B1 = (0, · · · , 0, 1)T and B2 = (1, · · · , 0, 0)T. D̃, A ∈ Rn×n

are matrices defined as D̃ = diag{0, 1, · · · , n − 1} and

A =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
0 0 · · · 0

. Then, row vectors Kα = (α1, · · · ,

αn) ∈ R1×n and Kβ = (β1, · · · , βn) ∈ R1×n exist such that
M1 = IN ⊗A− (L̄+B)⊗ (B1Kα) and M2 = IN ⊗A− IN ⊗
(KT

β
BT

2 ) are Hurwitz matrices, where IN is defined in No-
tation, L̄ and B are given in the graph subsection. In addi-
tion, there exist positive definite matrices Pi ∈RNn×Nn and
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a positive constant h that satisfy the following inequalities

MT
i Pi +PiMi ≤−INn, i = 1, 2,

−hPi ≤ Pi(IN ⊗ D̃)+(IN ⊗ D̃)Pi ≤ hPi.

Lemma 3 [25]: For (χ,γ)∈R2, the following Young’s
inequality holds

χγ ≤ vp

p
|χ|p + 1

qvq |γ|
q,

where v is an arbitrary constant greater than 0, p, and q are
constants greater than 1 and satisfy (p−1)(q−1) = 1.

3. OUTPUT FEEDBACK CONTROL DESIGN

For the control system (1), where the full states are not
available, a set of high-gain observers are designed for
each agent (k = 0, 1, 2, · · · , N) to estimate the unknown
states as follows:

dzk, f =
(
zk, f+1 +β f L f (yk − zk,1)

)
dt,

f = 1, · · · , n−1,

dzk,n = (uk +βnLn(yk − zk,1))dt, (4)

where β f are the parameters designed in Lemma 2, L is
a dynamic gain that satisfies L(t) ≥ 1, which will be de-
signed later.

Let

θk, f = χk, f −χ0, f ,ηk, f = zk, f − z0, f ,

θk = (θk,1,θk,2, · · · ,θk,n),

ηk = (ηk,1,ηk,2, · · · ,ηk,n),

θ = (θ T
1 ,θ

T
2 , · · · ,θ T

N )
T ,

η = (ηT
1 ,η

T
2 , · · · ,ηT

N )
T , (5)

for k = 1, 2, · · · , N. Then, based on (1) and (4), we can
obtain

dθk, f =
(
θk, f+1+h f (χ̄k, f , χ̄k, f (δ ))−h f (χ̄0, f , χ̄0, f (δ ))

)
dt

+
(

gT
f (χ̄k, f , χ̄k, f (δ ))−gT

f (χ̄0, f , χ̄0, f (δ ))
)

dw,

f = 1, 2, · · · , n−1,

dθk,n =
(
uk−u0+hn(χ̄k,n, χ̄k,n(δ ))−hn(χ̄0,n, χ̄0,n(δ ))

)
dt

+
(

gT
n (χ̄k,n, χ̄k,n(δ ))−gT

n (χ̄0,n, χ̄0,n(δ ))
)

dw,

(6)

and

dηk, f =
(

ηk, f+1 +β f L f (θk,1 −ηk,1)
)

dt,

f = 1, 2, · · · , n−1,

dηk,n =
(

uk −u0 +βnLn(θk,1 −ηk,1)
)

dt. (7)

As far as we can see, through appropriate state transfor-
mations, the output feedback consensus of system (1) can
be solved by tackling the stabilization problem of systems
(6) and (7).

For k = 1, 2, · · · , N, define

ẽk, f = θk, f −ηk, f , f = 1, 2, · · · , n. (8)

According to (6) and (7), the derivative of ẽk, f can be
calculated as

dẽk, f =
(

ẽk, f+1 −β f L f ẽk,1 +h f
(
χ̄k, f , χ̄k, f (δ )

)
−h f

(
χ̄0, f , χ̄0, f (δ )

))
dt +

(
gT

f

(
χ̄k, f , χ̄k, f (δ )

)
−gT

f

(
χ̄0, f , χ̄0, f (δ )

))
dw, f = 1, 2, · · · , n−1,

dẽk,n =
(

hn
(
χ̄k,n, χ̄k,n(δ )

)
−hn

(
χ̄0,n, χ̄0,n(δ )

)
−βnLnẽk,1

)
dt +

(
gT

n

(
χ̄k,n, χ̄k,n(δ )

)
−gT

n

(
χ̄0,n, χ̄0,n(δ )

))
dw.

For k = 1, 2, · · · , N, introduce the state transformations
as

ẑk, f =
ηk, f

L f−1+h , êk, f =
ẽk, f

L f−1+h , f = 1, 2, · · · , n, (9)

with h defined in Lemma 2, and L being a dynamic gain
to be designed, whose initial value is chosen as L(0) = 1.
Combining with (6) and (7), the converted systems can be
obtained as

dẑk, f =

(
Lẑk, f+1 − ( f −1+h)

dL/dt
L

ẑk, f

)
dt

+β f Lêk,1dt, f = 1, 2, · · · , n−1,

dẑk,n =

(
L(uk −u0)− (n−1+h)

dL/dt
L

ẑk,n

+βnLêk,1

)
dt, (10)

and

dêk, f =

(
Lêk, f+1 −β f Lêk,1 − ( f −1+h)

dL/dt
L

êk, f

+ϑk, f

)
dt +ϱT

k, f dw, f = 1, 2, · · · , n−1,

dêk,n =

(
−Lβnêk,1−(n−1+h)

dL/dt
L

êk,n+ϑk,n

)
dt

+ϱT
k,ndw, (11)

with ϑk, f = (h f (χ̄k, f , χ̄k, f (δ ))− h f (χ̄0, f , χ̄0, f (δ )))/L f−1+h

and ϱk, f = (g f (χ̄k, f , χ̄k, f (δ ))−g f (χ̄0, f , χ̄0, f (δ )))/L f−1+h.

Proposition 1: If Assumptions 1-3 hold, then we can
design a suitable dynamic gain L(t) such that systems (10)
and (11) can be stabilized by

uk =−(Γk ⊗Kα)ẑ+u0, (12)
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where Kα is the vector given in Lemma 2, Γk is the kth row
of L̂, and ẑ = (ẑT

1 , ẑT
2 , · · · , ẑT

N)
T with ẑk = (ẑk,1, · · · , ẑk,n)

T .

Proof: Design controllers uk (k = 1, 2, · · · , N) for (10)
as shown in (12). Then, by substituting (12) into (10), one
can obtain that

dẑk, f =

(
Lẑk, f+1−( f−1+h)

dL/dt
L

ẑk, f +β f Lêk,1

)
dt,

f = 1, 2, · · · , n−1,

dẑk,n =

(
−L(Γk ⊗Kα)ẑ− (n−1+h)

dL/dt
L

ẑk,n

+βnLêk,1

)
dt. (13)

Denote êk = (êT
k,1, · · · , êT

k,n)
T . Then, (13) and (11) can

be represented as the following compact forms

dẑk =

(
LAẑk −L(Γk ⊗ (B1Kα))ẑ+LKT

β
êk,1

− dL/dt
L

Dẑk

)
dt, (14)

and

dêk =

(
LGêk −

dL/dt
L

Dẑk +Θk

)
dt +OT

k dw, (15)

respectively, where D = diag(h, f −1+h, · · · , n−1+h),
G = A−KT

β
BT

2 , Θk = {ϑk,1, · · · , ϑk,n}T , and Ok = {ϱk,1,
· · · , ϱk,n}.

Let ê = (êT
1 , êT

2 , · · · , êT
N)

T , then (14) and (15) can be
expressed as

dẑ =
(

LM1ẑ− dL/dt
L

(IN ⊗D)ẑ+L(Φe ⊗KT
β
)
)

dt,

(16)

and

dê =
(

LM2ê− dL/dt
L

(IN ⊗D)ê+Θ

)
dt +OT dw,

(17)

respectively, where M1 = IN ⊗A−L̂⊗ (B1Kα) and M2 =
(IN ⊗ G) are defined in Lemma 2, Φe = (ê1,1, ê2,1, · · · ,
êN,1)

T , Θ = (Θ T
1 , Θ T

2 , · · · , Θ T
N )

T , and O = (O1, O2, · · · ,
ON).

Next, we will select a suitable Lyapunov function V and
design an appropriate dynamic gain L(t).

Select Vz = ẑT P1ẑ and Ve = êT P2ê, where the positive
matrices P1 and P2 are presented in Lemma 2. And then,
using D = D̃+hIn with D̃ provided by Lemma 2, we have

LVz = LẑT (MT
1 P1 +P1M1)ẑ+2LẑT P1(Φe ⊗KT

β
)

−2h
dL/dt

L
zT P1z+(IN ⊗ D̃)P1)ẑ

− dL/dt
L

ẑT (P1(IN ⊗ D̃), (18)

and

LVe = LêT (MT
2 P2 +P2M2)ê+(IN ⊗ D̃)P2)ê

− dL/dt
L

êT (P2(IN ⊗ D̃)+2êT P2Θ

−2h
dL/dt

L
eT P2e+Tr{OP2OT}. (19)

In the next step, we are going to estimate the right-hand
side terms of (18) and (19). Based on Lemma 2, we know
that

LẑT (MT
1 P1 +P1M1)ẑ ≤−L∥ẑ∥2,

LêT (MT
2 P2 +P2M2)ê ≤−L∥ê∥2.

Note

2LẑT P1(Φe ⊗KT
β
)≤ 2Lς1∥ẑ∥ · ∥ê∥,

where ς1 = ∥P1∥
√

∑
n
f=1 β 2

f .
According to Lemma 3, the following inequality can be

obtained

2ς1∥ẑ∥ · ∥ê∥ ≤ 1
2
∥ẑ∥2 +4ς

2
1 ∥ê∥2.

According to Assumption 1, (8) and (9), we have∣∣h f
(
χ̄k, f , χ̄k, f (δ )

)
−h f

(
χ̄0, f , χ̄0, f (δ )

)∣∣/L f−1+h

≤ ρ1/L f−1+h
f

∑
l=1

(|χk,l −χ0,l |+ |χk,l(δ )−χ0,l(δ )|)

≤ ρ1

f

∑
l=1

1
L f−l (|êk,l |+ |ẑk,l |+ |êk,l(δ )|+ |ẑk,l(δ )|).

Then, due to L(t)≥ 1 for t ≥ 0, the following inequality
can be obtained

|h f (χ̄k, f , χ̄k, f (δ ))−h f (χ̄0, f , χ̄0, f (δ ))|/L f−1+h

≤ ρ1

f

∑
l=1

(
|êk,l |+ |ẑk,l |+ |êk,l(δ )|+ |ẑk,l(δ )|

)
,

which implies that

∥Θ∥ ≤ ρ1n
√

nN(∥ê∥+∥ẑ∥+∥ê(δ )∥+∥ẑ(δ )∥),

and

2êT P2Θ ≤ 2ς2
(
∥ê∥2 +∥ê∥∥ẑ∥+∥ê∥∥ê(δ )∥

+∥ê∥∥ẑ(δ )∥
)
,

where ς2 = n
√

nN∥P2∥ρ1.
By applying Young’s inequality, it can be got

2ς2∥ê∥∥ẑ∥ ≤ ς2√
1+8ς 2

1 −1
∥ẑ∥2
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+ ς2(
√

1+8ς 2
1 −1)∥ê∥2,

and

2∥ê∥∥ê(δ )∥ ≤ ∥ê∥2 +∥ê(δ )∥2,

2∥ê∥∥ẑ(δ )∥ ≤ ∥ê∥2 +∥ẑ(δ )∥2.

Similarly,

|(g f (χ̄k, f , χ̄k, f (δ ))−g f (χ̄0, f , χ̄0, f (δ )))|/L f−1+h

≤ ρ2

f

∑
l=1

(|êk,l |+ |ẑk,l |+ |êk,l(δ )|+ |ẑk,l(δ )|).

One can get

∥O∥ ≤ ρ2n
√

nN(∥ê∥+∥ẑ∥+∥ê(δ )∥+∥ẑ(δ )∥),

and

Tr{OP2OT} ≤ ς3(∥ê∥2 +∥ẑ∥2 +∥ê(δ )∥2 +∥ẑ(δ )∥2),
(20)

where ς3 = 4n
√

nN∥P2∥ρ2.
Moreover, according to −hP1 ≤ P1(IN ⊗ D̃) + (IN ⊗

D̃)P1 ≤ hP1 and −hP2 ≤ P2(IN ⊗ D̃) + (IN ⊗ D̃)P2 ≤ hP2

in Lemma 2, we have

− dL/dt
L

ẑT (P1(IN ⊗ D̃)+(IN ⊗ D̃)P1)ẑ

≤ h
|dL/dt|

L
ẑT P1ẑ,

− dL/dt
L

êT (P2(IN ⊗ D̃)+(IN ⊗ D̃)P2)ê

≤ h
|dL/dt|

L
êT P2ê. (21)

Let V =Vz +8ς 2
1 Ve +W with

W = 8
ς 2

1 (ς2 + ς3)eυδ ∗

1− γ

×
∫ t

t−δ

e−υ(t−s)
(

ẑ(s)T ẑ(s)+ ê(s)T ê(s)
)

ds.

According to (18)-(21), one can get

LV ≤ h
(|dL/dt|−2dL/dt)

L
ẑT P1ẑ

+ ς2

(√
1+8ς 2

1 +1
)
∥ẑ∥2 − L

2
∥ẑ∥2

+8ς
2
1 ς3∥ẑ∥2 +8

ς 2
1 (ς2 + ς3)eυδ ∗

1− γ
∥ẑ∥2 −υW

+8ς
2
1

(
−L

2
∥ê∥2+h

(|dL/dt|−2dL/dt)
L

êT P2ê

+ ς3∥ê∥2 + ς2

(
3+
√

1+8ς 2
1

)
∥ê∥2

+
(ς2 + ς3)eυδ ∗

1− γ
∥ê∥2

)
. (22)

Let

dL/dt =−L
h

(
(L−1)

6ω1
−1− ς2

ω2

(√
1+8ς 2

1 +3
)

− ξ1

ω2

(
ς3 +

(ς2 + ς3)eυδ ∗

1− γ

))
, (23)

where ω1 = max{λmax(P1), λmax(P2)}, ξ1 = max{8ς 2
1 , 1},

and ω2 = min{λmin(P1), λmin(P2)}. From (23), we know
that the upper bound of L(t) is Lmax =

(
3 ς2

ω2

(√
1+8ς 2

1 +

3
)
+3 ξ1

ω2

(
ς3 +

(ς2+ς3)eυδ∗

1−γ

)
+3+ 1

2ω1

)
2ω1.

Substitute (23) into (22), one has

LV ≤−Vz −8ς
2
1 Ve −υW ≤−σV, (24)

where σ = min{υ , 1}.
From (24), we know that E[V (t)] ≤ V (0)e−σt . There-

fore, the following inequalities are obtained.

E[|ẑ(t)|]≤

√
V (0)

λmin(P1)
e−

σ

2 t ,

E[|ê(t)|]≤

√
V (0)

λmin(P2)
e−

σ

2 t . (25)

Hence, the system composed of (10)-(12) is 1st moment
exponential stable.

Theorem 1: If Assumptions 1-3 hold, then based on
the constructed time-varying parameter L(t), the 1st mo-
ment exponential leader-follower consensus of system (1)
can be addressed through the following control protocol

uk =−Kα ∆

(
N

∑
f=1

ak, f (zk − z f )+bk(zk − z0)

)
+u0,

(26)

where ∆ = diag{L−h, L−1−h, · · · , L−n+1−h}, zk = (zk,1, · · · ,
zk,n)

T are the states of high observers (4), and Kα ∈ R1×n

is the vector given in Lemma 2.

Proof: From Proposition 1, it can be seen the system
composed of (10)-(12) with the dynamic of L(t) designed
in (23) is 1st moment exponential stable.

According to (9) and L(t) is bounded, we have

E[|ηk, f |] = L f−1+hE[|ẑk, f |]≤ κ f 1e−
σ

2 t ,

E[|ẽk, f |] = L f−1+hE[|êk, f |]≤ κ f 2e−
σ

2 t , (27)

where κ f 1 = L f−1+h
max

√
V (0)

λmin(P1)
and κ f 2 = L f−1+h

max

√
V (0)

λmin(P2)

for f = 1, · · · , n.
From (8) and (27), and the fact that L(t) is bounded, it

can be concluded that (6) and (7) are 1st moment expo-
nential stable based on the following designed controller

uk =−(Γk ⊗ (Kα ∆))η +u0,
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where (9) and (12) are used.
According to (5), (8), and (27), one can get

E[|χk, f −χ0, f |] = E[|ηk, f + ẽk, f |]
≤ E[|ηk, f |]+E[|ẽk, f |]≤ κ f e−

σ

2 t , (28)

where κ f = κ f 1 + κ f 2. Therefore, we know that the 1st
moment exponential leader-follower consensus of system
(1) can be achieved under the control of protocol as (26)
and (4). This completes the proof of Theorem 1. □

4. SIMULATION RESULTS AND ANALYSIS

In this section, the effectiveness of the proposed proto-
col is verified through simulation examples.

The dynamic model of a chemical reactor which con-
tains delayed cyclic streams and random disturbances can
be described as [22], is shown below

χ̇k,1 =− 1
ζk,1

χk,1 − ιk,1χk,1 +
1− εk,2

ϖk,1
χk,2 +Q1(·),

χ̇k,2 =− 1
ζk,2

χk,2 − ιk,2χk,2 +
εk,1

ϖk,2
χk,1(δ )+

hk,2

ϖk,2
uk

+Q2(·),
yk = χk1, (29)

where χk,1, χk,2 represent the compositions; ζk,1, ζk,2 are
the reactor residence times; ιk,1, ιk,2 stand for the reac-
tion constants; εk,1 and εk,2 refer to the recycle flow rate;
ϖk,1, ϖk,2 denote the reactor volumes; δ indicates the un-
known time-varying delay; Q1(·) and Q2(·) are nonlinear
functions that describe the system uncertainties and exter-
nal disturbances. The corresponding simulation parame-
ters are defined as: ζk,1 = ζk,2 = 10; ιk,1 = 0.02; ιk,2 = 0.05,
εk,1 = 0.2, εk,2 = 0.2, ϖk,1 = ϖk,2 = hk,2 = 0.8. Q1(·) =
0.03χk,1 + c1(χk,1 + χk,1(δ ))ẇ and Q2(·) = −0.25χk,2(δ )+
c2(χk,2 + χk,2(δ ))ẇ are system uncertainties and external
disturbances with stochastic disturbance w defined in sys-
tem (1), and δ = 0.6+0.2sin(t), where c1 and c2 are con-
stants. Substitute these parameters into (29), then it can be
transformed into

dχk,1 = (χk,2 + ϵ1(χk,1))dt +H1(χk,1,χk,1(δ ))dw,

dχk,2 = (uk + ϵ2(χ̄k,2, χ̄k,2(δ )))+H2(χ̄k,2, χ̄k,2(δ ))dw,

yk = χk1, (30)

where ϵ1(χk,1)=−0.09χk,1, ϵ2(χ̄k,2, χ̄k,2(δ ))=−0.15χk,2−
0.25χk,1(δ ) − 0.25χk,2(δ ), H1(χk,1(t),χk,1(δ )) = c1(χk,1 +
χk,1(δ )), and H2(χ̄k,2(t), χ̄k,2(δ )) = c2(χk,2 +χk,2(δ )).

Furthermore, one has

|ϵ1| ≤ 0.09|χk,1|,

|ϵ2| ≤ 0.25
2

∑
f=1

(
|χk, f (t)|+ |χk, f (δ )|

)
,

Fig. 1. Communication topology of multi-agent systems
(30).

Table 1. Initial value of states and observer on t∈[−δ ∗, 0).

States Initial value Observer Initial value
χ0,1 1.6 z0,1 0.1
χ0,2 0.1 z0,2 0.1
χ1,1 0.1 z1,1 0.5
χ1,2 0.4 z1,2 0.4
χ2,1 0.7 z2,1 0.3
χ2,2 0.3 z2,2 0.3
χ3,1 0.9 z3,1 0.1
χ3,2 0.6 z3,2 0.6
χ4,1 1.3 z4,1 0.7
χ4,2 0.9 z4,2 0.9

H1 ≤ c1(|χk,1(t)|+ |χk,1(δ )|),
H2 ≤ c2(|χk,2(t)|+ |χk,2(δ )|). (31)

According to the formulas shown in (31), it is obvi-
ous that Assumption 1 is satisfied. It follows from (4) that
the distributed dynamic observers of system (30) are con-
structed as

dzk,1 = (zk,2 +β1L(yk − zk,1))dt,

dzk,2 =
(
uk +β2L2(yk − zk,1)

)
dt. (32)

Fig. 1 represents the communication topology of the
agents, where the index 0 represents the leader and the oth-
ers represent the followers. From Fig. 1, the correspond-
ing Laplacian matrix and connection weight matrix can be
determined as follows:

L̄=


2 −1 0 −1
−1 2 −1 0
0 −1 1 0
−1 0 0 1

 , B = diag{1, 0, 0, 0}.

Let α1 = 6, α2 = 6, β1 = 0.6, β2 = 0.8, c1 = c2 = 0.1. By
directly computation, one has δ ∗ = 0.8, γ = 0.2. The ini-
tial values of the system states and the designed observers
are list in Table 1.

It can be seen that in [22], the nonlinear functions Q1(·)
and Q2(·) are selected as Q1(·) = 0.03χk,1 and Q2(·) =
−0.25χk,2(δ ), which do not consider randomness. There-
fore, the control algorithm designed in [22] is not appli-
cable to this paper. The simulation results are shown in
Figs. 2-6, which further verify that the control algorithm
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Fig. 2. Response curves of the output yk of system (30).
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Fig. 3. Response curves of the state variables χk,2 of sys-
tem (30).

designed for stochastic system in this paper is effective.
Figs. 2 and 3 show the signal response curves of the sys-
tem (30). It can be observed from these that the outputs
of the subsystems can track the desired trajectory under
the constructed controllers. The control input curves are
shown in Fig. 4. The observer states are shown in Figs. 5
and 6. Based on these, one can conclude that the validity
of Theorem 1 is well-illustrated by the simulation exam-
ple.

5. CONCLUSION

This paper achieves leader-following consensus track-
ing control for a class of stochastic multi-agent systems
with unknown time delays. As existing methods suitable
for high-order nonlinear deterministic multi-agent sys-
tems do not apply to the control systems addressed in this
paper, a distributed controller combined with a dynamic-
gained observer is designed. Additionally, it is shown that
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Fig. 4. Response curves of the control input uk of system
(30).
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Fig. 5. Response curves of the output of the observer zk,1

of system (30).
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Fig. 6. Response curves of the output of the observer zk,2

of system (30).

the proposed protocol guarantees 1st moment exponential
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leader-following consensus through state transformation.
Finally, the simulation results demonstrate that each sub-
system can track the leader with a 1st moment exponential
rate, indicating the effectiveness of the designed control
scheme.
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