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Abstract: This paper presents a complete system architecture for multi-robot coordination for unbalanced task
assignments, where a number of robots are supposed to visit and accomplish missions at different locations. The
proposed method first clusters tasks into clusters according to the number of robots, then the assignment is done
in the form of one-cluster-to-one-robot, followed by solving the traveling salesman problem (TSP) to determine
the visiting order of tasks within each cluster. A nonlinear model predictive controller (NMPC) is designed for
robots to navigate to their assigned tasks while avoiding colliding with other robots. Several simulations are con-
ducted to evaluate the feasibility of the proposed architecture. Video examples of the simulations can be viewed at
https://youtu.be/5C7zTnv2sfo and https://youtu.be/-JtSg5V2fTI?si=7PfzZbleOOsRdzRd. Besides, we compare the
cluster-based assignment with a simulated annealing (SA) algorithm, one of the typical solutions for the multiple
traveling salesman problem (mTSP), and the result reveals that with a similar optimization effect, the cluster-based
assignment demonstrates a notable reduction in computation time. This efficiency becomes increasingly pronounced
as the task-to-agent ratio grows.
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1. INTRODUCTION

Multi-robot systems play a pivotal role in industrial
automation, finding applications in surveillance [1], for-
mation control [2,3], search and rescue [4,5], and ware-
house pick-up and delivery [6]. An integral concern within
these systems is the task of assigning a set of tasks
distributed across various locations to multiple agents,
while concurrently ensuring collision-free paths for each
agent—referred to as Multi-robot task assignment and
path-finding (TAPF). Despite its significance, both multi-
agent path finding (MAPF) [7] and multi-robot task as-
signment (MRTA) [8]—representing relaxation variations
of TAPF—have been established as NP-hard problems.
While MRTA focuses on task allocation to agents un-
der the assumption of no collisions between them, MAPF
aims to determine collision-free paths for agents assigned
unique tasks. Consequently, the amalgamation of MRTA
and MAPF in TAPF renders it even more challenging.
This paper endeavors to address this challenge by propos-
ing a method tailored for real-world multi-robot applica-
tions.

1.1. Related works

A considerable amount of literature has been published
on MRTA and MAPF [9].

Multi-robot task assignment: A large amount of algo-
rithms for task assignment is based on the market mech-
anism, where individual robot bids for tasks in the auc-
tion by communicating with each other. There could be a
central auctioneer to assign tasks to agents or the agents
make decisions with local negotiation protocol distribu-
tively [10]. Besides, MRTA is always modeled as the mul-
tiple traveling salesman problem (mTSP), which can be
formulated as mixed integer linear programming to find a
deterministic solution, or approximate solution with meta-
heuristic methods such as simulated annealing [11], ant
colony optimization [12], etc.

Multi-agent path finding: The typical taxonomy of
MAPF includes two types of coupled path planning and
decoupled path planning.

In the matter of coupled method, complete path plan-
ning algorithms like A∗ leads to the exponential growth
of the configuration space as the number of agents rises.
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Conflict-based search (CBS) [13] introduces constrained
single path planning to scale down the search space: CBS
discovers conflicts and generates constraints to resolve the
conflicts at the high level, and at the low level, conducts
constrained A∗ for each agent in accordance to the gener-
ated constraints. Some sub-optimal variants of CBS, such
as enhanced conflict-based search (ECBS) [14], improved
conflict-based search [15] have been investigated as well.
M∗ algorithm [16] plans path for each agent separately
and only couples those that will collide, thus declining the
growth of configuration space. This approach is termed
sub-dimensioanl expansion.

As a comparison, decoupled path planning may sacri-
fice the optimality and completeness, but provides scala-
bility and robustness. Velocity obstacle (VO) method [17]
reactively resolves potential conflicts by choosing a veloc-
ity out of the velocity obstacle, which is the set of all ve-
locities of a robot that will result in a collision with other
robots. Reciprocal velocity obstacle [18] is an improve-
ment of VO that solves the oscillation problem of VO.
In [19], agents are considered as dynamic obstacles, the
dynamics of which are formulated as constraints and fed
to the nonlinear model predictive controller (NMPC) for
guaranteeing collision avoidance.

Integrated task assignment and path finding: To
date, the TAPF problem has been researched from dif-
ferent perspectives. while many algorithms are confined
to scenarios where the number of agents is the same as
the number of tasks, referred as balanced assignment. For
instance, concurrent assignment and planning of trajecto-
ries (CAPT) [20] solves assignment with the Hungarian
algorithm and guarantees collision-free trajectories if the
optimization objective is the sum of squared distances of
agents rather than the sum of distances. However, CAPT
assumes the environment is obstacle-free. CBS-TA [21]
finds optimal assignment and path in obstacle-ridden en-

vironment by constructing a conflict forest, but still only
for balanced assignment. Recent literature has emerged
that provides approaches for unbalanced task assignment
and path finding, that assign a set of tasks to each agent
and then determine the internal visiting order of the tasks
[22-25].

1.2. Contributions

In this paper, we present a novel hybrid framework for
multi-robot task assignment and pathfinding that diverges
from traditional methodologies by prioritizing time effi-
ciency and online, reactive obstacle avoidance. This ap-
proach uniquely integrates task assignment with multi-
agent pathfinding, focusing not on achieving the mini-
mum total travel distance, but on enhancing the system’s
adaptability and responsiveness to dynamic environmental
changes.

Our framework (Fig. 1) employs a cluster-based Hun-
garian algorithm for distributing tasks among agents in
an offline phase, while a nonlinear model predictive con-
troller (NMPC) scheme enables dynamic collision avoid-
ance in an online phase during the mission runtime.
Leveraging the strengths of both phases, our framework
achieves time efficiency, while adeptly adapting to dy-
namic environments with disturbances.

The rest of the article is organized as follows: In Section
2 mathematical formulation of the assignment problem is
discussed. Section 3 proposes the integrated framework
for task assignment, path planning, and nonlinear model
predictive control for the multi-robot system. Section 4
demonstrates the experimental evaluation of the proposed
framework in Gazebo simulation, which proves the feasi-
bility and discusses the efficiency of the presented work.
Finally, Section 5 presents the conclusions and open prob-
lems for future work.

Fig. 1. A conceptual visualization of the cluster-based task assignment.
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2. PROBLEM DESCRIPTION

Typically, the number of available robots is less than
the number of tasks, thus we consider N ground robots
navigating from their N unique depots to M desired goals
(M ≥ N) in a known 2-dimensional environment. The ob-
jective is to plan paths for the agents so that every goal can
be visited and the total distance of the paths is minimized.

This problem can be generalized as the multiple de-
pot multiple traveling salesman problem (MDMTSP) [26].
We consider a graph G = (V,E), where V denotes vertices
and the set E is its arcs. Let D = {d1, d2, . . ., dn} represent
the set of depots and T = {t1, t2, . . ., tm} as the set of goal
positions. V = D∪T . We use an integer decision variable
xk

e to denote the number of times that robot k traverse edge
e in a feasible solution. e ∈ E, xk

e ∈ {0, 1, 2} and its not
allowed to have edge connecting depots. Another decision
variable yk

i , ∀i ∈ T , k ∈ D is defined, and yk
i = 1 if a tar-

get ti is assigned to tour originating from depot dk. The
objective function is as follows:

minimize
N

∑
k=1

∑
e∈E

cexk
e, (1)

s.t.

∑
e∈E

xk
e = 2yk

i , ∀e ∈ {(i, j) : i ∈ T, j ∈ D},

k ∈ {1, . . . , n}, (2)

∑
e∈E

xk
e ≥ 2yk

i ∀e ∈ {(i, j) : i ∈ S, S⊆ T, j ∈V \S},

k ∈ {1, . . . , n}, (3)
n

∑
k=1

yk
i = 1 ∀i ∈ T, (4)

xk
e ∈ {0, 1, 2} ∀e ∈ {(dk, j) : j ∈ T},

k ∈ {1, . . . , n}, (5)

xk
e ∈ {0, 1} ∀e ∈ {(i, j) : i ∈ T, j ∈ T},

k ∈ {1, . . . , n}, (6)

yk
i ∈ {0, 1} ∀i ∈ T, k ∈ {1, . . . , n}, (7)

where ce is the traversal cost for edge e, constraint (2)
guarantees that the number of edges of robot k incident
on a target i ∈ T is 2 if and only if target i is visited by
robot k, (3) is the sub-tour elimination and (4) indicates
any robot visits each target i. Equations (5)-(7) are deci-
sion variables.

3. METHODOLOGY

To address the previously mentioned TAPF problem,
we propose a feasible solution composed of clustering-
based task assignment, path planning, and model predic-
tive control modules, as shown in Fig. 2. Firstly, M goal
positions are clustered into N groups with the hierarchi-
cal clustering method, such that the Hungarian algorithm
is capable of assigning the N goal clusters to N agents.
Then, a TSP solver is deployed to determine the visiting
orders of goals in each cluster. During the process, D∗+ is
called multiple times to plan the path and calculate the
traversal cost of each path. Besides, we leverage NMPC
to ensure path following and collision avoidance among
robots. The rest of this section elaborates on each module
of this architecture.

3.1. Cluster-based assignment
Given M desired goal positions, we want to cluster

them into N groups (M ≥ N) so as to make a balanced
assignment for N agents. Thus, we introduce the con-
cept of hierarchical clustering [27], which is a cluster-

Fig. 2. Block diagram of the assignment-planning-control architecture for M ≥ N. The dashed part highlights the contri-
bution of the global planner, and the overall scheme demonstrates the integration of the global planner with the
NMPC control of each aerial platform.
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Algorithm 1: Hierarchical clustering (agglomerative).
Input :T : List of goal positions T = {T1, · · · , TM}

M : Number of goal positions
N : Number of clusters to find

Output:C : List of N clusters
1) Declare α , cost matrix of M by M doubles
2) for i = 1 to M do
3) for j = 1 to M do
4) if i = j then
5) α(i, j) = 0.00
6) else
7) α(i, j) = D∗+.ComputeCostT (i),T ( j))
8) end if
9) end for

10) end for
11) for i=1 to M do
12) ci = {Ti}
13) end for
14) C = {c1, · · · ,cM}
15) while C.size()> N do
16) (cmin1,cmin2) = minimum cost(ci,c j) for all ci, c j in

C
17) remove ci and c j from C
18) add (cmin1,cmin2) to C
19) update α

20) end while

ing analysis method that allows different metrics to mea-
sure the dissimilarity between sets of observations, in-
cluding Euclidean distance, Manhattan distance, Maha-
lanobis distance, etc. Here, D∗+ (Subsection 3.3) cost is
used to express the dissimilarity between two positions.
We achieve an agglomerative-type clustering with scikit-
learn, an open-source library for clustering in Python. As
depicted in Algorithm 1, the agglomerative hierarchical
clustering starts by treating each data point as a separate
cluster. Then, it iteratively merges the two closest clusters
and updates the distance matrix between clusters until the
desired number of clusters is formed. We take the aver-
age linkage function to measure the distance between two
clusters

D(X ,Y ) =
1

NX ×NY

NX

∑
i=1

NY

∑
j=1

d (xi,y j) ,

xi ∈ X , yi ∈ Y, (8)

where Nx ∈ Z+ and NY ∈ Z+ are the numbers of objects
in clusters X and Y respectively, d (xi,y j) is the traversal
distance between objects x and y.

After the hierarchical clustering, the assignment prob-
lem is transformed into a linear balanced assignment, in
which the number of agents N is equal to the number
of task groups N. The Hungarian algorithm is capable of
solving this problem with the computational complexity

Algorithm 2: The Hungarian algorithm.
Input :A : List that store all start positions

T : List that store all goal positions
M : Number of goal positions
N : Number of agents
C : Clustering result

Output :λ : Assignment result
1) Declare β , cost matrix of N by N doubles
2) if M > N then
3) call Algorithm 1
4) for all i = 1 to N do
5) for all j = 1 to N do
6) β (i, j) = EuclideanDistance(A(i),C̄( j))
7) end for
8) end for
9) else if M = N then

10) for all i = 1 to N do
11) for all j = 1 to N do
12) β (i, j) = D∗+.ComputeCost(A(i),T ( j))
13) end for
14) end for
15) end if
16) λ = β

17) for all i = 1 to N do
18) λ (i, :) = λ (i, :)−min(λ (i, :)) {subtract row minima

for all elements in the row}
19) end for
20) for all i = 1 to N do
21) λ (:, j) = λ (:, j) − min(λ (:, j) {subtract column

minima for all elements in the column}
22) end for
23) Declare a integer σ = 0 that counts the marked zeros
24) Declare a list rm = [] that will store the marked rows

of λ

25) Declare a list cm = [] that will store the marked
columns λ

26) while σ < size(λ ,0) do
27) rm,cm = MarkMatrix(λ )
28) σ = len(rm)+ len(cm)
29) if σ < size(λ ,0) then
30) λ = Ad justMatrix(λ ,rm,cm)
31) end if
32) end while

O
(
n3
)

[28]. The pseudo-codes cost matrix generation and
the Hungarian algorithm are depicted in Algorithm 2.

Some matrix operation functions to be clarified are
the following ones. The D∗+.ComputeCost(A(i),T ( j)) is a
function of D∗+ that calculates the minimum traversal cost
from position Ai to position Tj; the MarkMatrix function
marks as few rows and columns as possible to cover all ze-
ros in the input matrix and returns two lists rm cm contain-
ing indices of marked rows and marked columns respec-
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tively; the Ad justMatrix function takes the current matrix
λ and rm, cm as input, subtracts the lowest unmarked el-
ement from every unmarked element and adds it to the
elements that are marked twice.

3.2. Traveling salesman problem
Some agents that are assigned multiple goals are re-

quired to visit all the goals at the minimum cost. This
can be modeled as a traveling salesman problem (TSP).
Assume an agent is required to visit each of n targets, in-
dexed by 1, · · · , n. In this case, the agent leaves from an
initial start position indexed by 0, visiting each of the n
other target positions exactly once in the shortest route.
This traveling salesman problem can be formulated as an
integer linear program [29], equivalent to

min
n

∑
i=0

n

∑
j 6=i, j=0

di jxi j (9)

over the set determined by the constraints

xi j ∈ {0,1} (i, j = 1, . . . , n),
n

∑
i=0
i6= j

xi j = 1 ( j = 1, · · · , n),

n

∑
j=0
j 6=i

xi j = 1 (i = 1, · · · , n),

ui−u j + pxi j ≤ p−1 (1≤ i 6= j ≤ n),

where di j (i 6= j = 0, 1, · · · , n).
The mathematical formulation is solved by the opti-

mizer CPLEX [30], which takes the cost matrix γ as input
and outputs the visiting order of the goal positions. γ is
constructed with D∗+ cost between any two of the agents’
positions and goals’ positions. As the agent is not required
to return to the start position at last, the cost from each
goal position to the starting one di,0 is set to zero.

3.3. Path planning
In terms of path planning, A∗ is a best-first search al-

gorithm that aims to find the smallest cost path based on
a heuristic function. D∗lite [31] is an incremental heuris-
tic search algorithm, which outperforms A∗ in terms of the
capability of re-planning when traversing unknown maps.
However, D∗lite ignores the physical shape of robots and
considers them as particles, which may lead to waypoints
adjustments to obstacles and potential collisions. D?

+ [32]
categorizes voxels into free voxels v f , occupied voxels vo

and a new type of voxels, unknown voxels vu, in light of
sensor imperfection and map sparsity. A risk layer that in-
creases the traversal cost for voxels in the proximity of oc-
cupied voxels is introduced to generate a moderate path,
as seen in Fig. 3.

More specifically, v f and vo has minimum and maxi-
mum traversal cost c f and co, respectively. The traversal

Fig. 3. The black zone is an impenetrable obstacle. The
grey zone indicates areas of risk, avoided by the D∗+
planner. The dashed line shows the shortest path,
while the solid line depicts the safer, risk-averse
route from point A to B.

cost cu for vu can be set in between c f and co. For voxels
that are within r distance around the occupied voxels, an
extra traversal cost Cr = Cu/(d + 1) will be added to its
cost C, where d is the distance to the vo counted in voxels.

In this case, the planner will generate a moderate path
with a safety margin next to obstacles. Thus, in this article
and without a loss of generality we have selected the D∗+
path planner.

3.4. Nonlinear model predictive control
With the proposed assignment-planning modules, each

robot has a predetermined path to reach the assigned goal
position. In the course of trajectory tracking, we use a non-
linear model predictive controller, which has the ability to
anticipate future events and take actions accordingly and
has been successfully used for multi-agent systems as [33]
and [34].

The nonlinear model [35] of the differential drive robot
can be formulated as

ṗx(t) = cosψ(t)uv(t),

ṗy(t) = sinψ(t)uv(t),

ψ̇(t) = uω(t),

where p = [px, py]
> and ψ are the global position and

heading angle of the robot, respectively. The states of the
robot are x = [px, py, ψ] and the control input is u = [uv,
uω ], where uv denotes a linear velocity command and uw

is an angular velocity command.
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As the control objective is to track reference waypoints
with a minimal actuation effort and actuation variation, an
objective function J(xxxk,uuuk;uk−1|k) is formed that penalizes
the state deviation from the references, inputs costs, devi-
ation in consecutive inputs.

J
(
xxxk,uuuk;uk−1|k

)
=

N−1

∑
j=0

(∥∥xref− xk+ j|k
∥∥Q2

x︸ ︷︷ ︸
position error

+
∥∥uk+ j|k

∥∥Q2
u︸ ︷︷ ︸

Input penalty

+
∥∥uk+ j|k−uk+ j−1|k

∥∥Q2
∆u︸ ︷︷ ︸

Input change penally

)
, (10)

where Qx ∈ R3×3, Qu, Q∆u ∈ R2×2 are positive definite
weight matrices that reflect the relative importance of each
term in the cost function.

Additionally, concerning the collision avoidance re-
quirements between robots, we consider other robots as
dynamic obstacles for the ego robot at p = [px, py], and
model the obstacle as a circular area with center pobs =
[pobs,x, pobs,y] and radius robs. Let

Ccircle(p, pobs,robs) = r2
obs− (px− pobs,x)

2

− (py− pobs,y)
2 . (11)

Collision avoidance between robots is guaranteed as
long as Ccircle (p, pobs,robs)≤ 0, that is other robots treated
as obstacles should always lie outside the circle around the
ego robot. Banding cost function, obstacle constraint, and
input bounds lead to the following nonlinear optimization
problem

Minimize
uuuk ,xxxk

J
(
xxxk,uuuk,uk−1|k

)
,

subject to xk+ j+1|k = f
(
xk+ j|k,uk+ j|k

)
, j ∈ N[0,N−1],

umin ≤ uk+ j|k ≤ umax, j ∈ N[0,N−1],

Ccircle
(

p, pi
obs,robs

)
≤ 0, j ∈ N[0,N],

i ∈ N[1,Nobs]. (12)

The NMPC problem can be solved with an embedded
solver generated by optimization engine (OpEn), where
proximal averaged Newton-type method for optimal con-
trol (PANOC) is used to compute collision-free trajecto-
ries [33].

3.5. Reactice collision avoidance
As shown in function (8), hierarchical clustering re-

quires a priori global map to get the travel distance be-
tween tasks to cluster. However, there might be some de-
viation from the priori map to reality or some dynamic
obstacles. Thus, robots need local avoidance scheme for
robustness. We propose an artificial potential field (APF)
that generates a continuous repulsive force with saturation

limits within the influence area of the potential field of ob-
stacles.

We denote the local point recognized by the 2D laser as
{P}, where each point is described by a relative Cartesian
(x,y) format position to the laser frame as p = [px, py]

>,
converted from a Polar coordination format p= [r, θ ]. The
subset of such points within the rF range of the robot ρF ∈
{P} are the points that we use to generate linear repulsive
force, which is expressed as

F r,lin =
NρF

∑
i=1

Lr

(
1−

∥∥ρ i
F

∥∥
rF

)2
−ρ i

F∥∥ρ i
F

∥∥ , (13)

where rF is the influence radius of the potential field, Lr =
diag(Lr

x, Lr
y) is the diagonal matrix of repulsive gains.

Besides, a critical repulsive force is also imposed to the
points ρc ∈ {P}where

∥∥ρ i
c

∥∥≤ rc and i= 0, 1, . . ., Nρc . The
idea of introducing such critical repulsive force is to guar-
antee the avoidance from smaller obstacles whose linear
force response would not be sufficiently large to result in
a proper avoidance maneuver.

F r,c =
Nρc

∑
i=1

Lc −ρ i
c

‖ρ i
c‖
, (14)

with diagonal matrix Lc as the critical static force-per-
point inside rc.

With only linear repulsive force and critical repulsive
force can robots be pushed away from but not around the
obstacles. Thus, we add a weak rotational component in
the xy-directions to make the robot move around obsta-
cles, with the magnitude being the maximum of a fraction
of the linear force in the other direction (x-y) and f , in case
smaller obstacles only generate linear repulsive force in
one direction, and the sign of the rotational force is deter-
mined by the sign of the linear force in the same direction.

F r,rot
x = max

(
Lrot sgn

(
F r, lin

x

)∥∥F r, lin
y

∥∥ , f
)
,

F r,rot
y = max

(
Lrot sgn

(
F r, lin

y

)∥∥F r, lin
x

∥∥ , f
)
. (15)

The resulting repulsive force is the sum of all these
components

F r = F r,lin +F r,c +F r,rot . (16)

Subsequently, the reactive control input for the robot is
formulated as

u′v = uv +F r
x ,

u′ω = uω + sgn(F r
x ) ·F r

y , (17)

where uv, uω denote the primary control inputs, which are
derived from an optimization function (12). This function
is designed to direct the robot towards its subsequent way-
point, functioning analogously to an attractive force. Con-
currently, F r represents the repulsive force, introduced
to mitigate collision risks by dynamically adjusting the
robot’s trajectory in response to proximate obstacles.
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Table 1. Cost matrix α for clustering based on D∗+ traversal cost between goal positions.

Target

Cost Target
T1 T2 T3 T4 T5 T6 T7 T8

T1 0.00 140.00 68.28 76.57 169.70 154.57 229.70 217.40
T2 140.00 0.00 208.28 204.85 128.28 237.16 188.28 240.59
T3 68.28 208.28 0.00 49.46 221.42 127.46 246.27 223.42
T4 76.57 204.85 49.46 0.00 184.85 78.00 209.71 173.97
T5 169.70 128.28 221.42 184.85 0.00 167.46 60.00 124.02
T6 154.57 237.16 127.46 78.00 167.46 0.00 177.40 107.68
T7 229.70 188.28 246.27 209.71 60.00 177.40 0.00 86.28
T8 217.40 240.59 223.42 173.97 124.02 107.68 86.28 0.00

4. EXPERIMENTAL ANALYSIS

4.1. Gazebo simulation
4.1.1 Static environment

We implement cluster-based assignment and NMPC
framework in ROS python and conduct several sets of
simulations in a custom Gazebo world. Turtlebot3 Burger
(https://emanual.robotis.com/docs/en/platform/turtlebot3/
overview/) is used as the experimental ground robot. As
seen in Fig. 4, twenty 1 m× 1 m× 0.5 m boxes are evenly
distributed in a 16 m× 16 m square area. The correspond-
ing 2D occupancy map is considered as a known priori
map. All computations of path planner, clustering, and
assignment are done on a single Lenovo ThinkPad P14s
with an AMD Ryzen 7 pro 5850u CPU, and controllers
for turtlebot are run as ROS nodes.

In the first scenario, three turtlebot depart at A1 = [−2.0,
−5.0], A2 = [0.0, 0.0], A3 = [5.0, 4.0], respectively. We
randomly click eight points as goal positions on the map:
T1 = [−4.93, −2.03], T2 = [−4.93, 4.98], T3 = [−3.97,
−5.03], T4 = [−1.99,−4.01], T5 = [1.05, 3.99], T6 = [1.98,

Fig. 4. Top view of the customized Gazebo world.

Table 2. Cost matrix β for assignment using the Hungar-
ian algorithm.

Agent
Cost Cluster center G1 G2 G3

A1 1.46 12.91 13.04
A2 6.00 9.91 6.04
A3 15.00 10.91 2.96

−4.01], T7 = [4.04, 3.97], T8 = [5.01, 0.01].
The D∗+ planner takes the generated occupancy map of

the Gazebo world as input and the safety distance is set to
r = 1 voxel. Then, we enumerate combinations of the goal
positions and publish them to the D∗+ planner and the paths
and traversal costs are obtained. As shown in Table 1, a
cost matrix is built with the costs between the goal posi-
tions for clustering. As there are three agents, ten tasks are
grouped into three clusters by means of hierarchical clus-
tering: G1 = {T1, T3, T4, T6}, G2 = {T2}, G3 = {T5, T7,
T8}.

Then the cost matrix β Table 2, constructed with the
Euclidean distance between each agent and each cluster’s
mean center, is fed into the Hungarian algorithm for the
task assignment. the first group G1 is assigned to agent
A1, G2 is allocated to A2, and G3 is allocated to A3.

After assigning the goal clusters to the agents, the vis-
iting order of the goals in each cluster needs to be de-
termined. Table 3 shows the cost matrix γ for G1-to-A1

assignment as an example, and the TSP solver result in-
dicates the optimal visiting order: A1-T3-T1-T4-T6. Simi-
larly, we can obtain visiting sequences of the other two
agents: A2-T2 and A3-T7-T5-T8. During the process of cal-
culating costs with the D∗+ planner between different po-
sitions, the corresponding paths containing waypoints are
preserved. By merging the corresponding paths sequen-
tially, the paths of visiting all the assigned goals in order
for each agent are obtained. Fig. 5 shows the trajectories
of three turtlebot visiting their assigned tasks.

The second scenario shows five turtlebot, starting from
A1 = [−5.91, 6.69], A2 = [−2.14, −0.12], A3 = [1.25,

https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
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Table 3. Cost matrix γ of TSP problem for G1-to-A1 as-
signment.

Start
Target A1 T1 T3 T4 T6

A1 0.00 84.02 45.80 20.83 88.28
T1 0.00 0.00 68.28 76.57 154.57
T3 0.00 68.28 0.00 49.46 127.46
T4 0.00 76.57 49.46 0.00 78.00
T6 0.00 154.57 127.46 78.00 0.00

Fig. 5. Trajectory of three turtlebot visiting their assigned
tasks.

2.61], A4 = [1.26, −5.25], A5 = [6.21, 3.19], respec-
tively, be off to twenty tasks: T1 = [−6.25, 3.63], T2 =
[−6.94, −0.08], T3 = [−4.24, 4.95], T4 = [−4.52, 2.44],
T5 = [−4.64, −1.43], T6 = [−5.22, −3.29], T7 = [−4.51,
−5.45], T8 = [−2.82, −6.64], T9 = [−0.98, 6.24], T10 =
[−0.90, 3.95], T11 = [−0.41, 0.67], T12 = [−0.30, −3.44],
T13 = [1.73, 3.32], T14 = [2.01, 0.13], T15 = [2.33, −6.41],
T16 = [4.08, 6.83]], T17 = [4.70, 2.66], T18 = [4.78,−1.01],
T19 = [4.65, −3.05], T20 = [4.70, −5.53]. Cost matrices of
the Hungarian algorithm and TSP are omitted for brevity,
and the results are shown as follows: the clustering re-
sult is G1 = {T1, T3, T4}, G2 = {T9, T10, T13, T16, T17},
G3 = {T2, T5, T6, T7, T8}, G4 = {T11, T12, T14}, G5 = {T15,
T18, T19, T20}, the assignment result indicates G1-to-A1,
G2-to-A5, G3-to-A2, G4-to-A3, and G5-to-A4. With TSP
solvers, the visiting order of each turtlebot is regulated
as: A1-T3-T4-T1, A2-T2-T5-T6-T7-T8, A3-T14-T11-T12, A4-T15-
T20-T19-T18, A5-T17-T13-T10-T9-T16. Fig. 6 shows the trajec-
tories of five turtlebot visiting their assigned tasks.

A video demonstration of two scenarios is provided at
https://youtu.be/5C7zTnv2sfo.

Fig. 6. Trajectory of five turtlebot visiting their assigned
tasks.

4.1.2 Dynamic environment
To enhance the validation of our framework’s dynamic

obstacle avoidance capabilities, we designed a simulated
warehouse environment measuring 40 m × 40 m, as de-
picted in Fig. 7. Within this environment, Gazebo anima-
tion model actors equipped with collision elements de-
tectable by robots’ lasers serve as dynamic obstacles, fol-
lowing predefined trajectories.

We positioned three robots at designated locations:
A1 = [−2.0,−5.0], A2 = [0.0, 0.0], A3 = [5.0, 4.0], respec-

Fig. 7. Top view of the warehouse Gazebo world.

https://youtu.be/5C7zTnv2sfo
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(a) (b)

(c) (d)

Fig. 8. Robot trajectory adaptation in response to a moving obstacle. Panels (a) and (b) depict initial task locations and
robot trajectories at 0 s and 9 s. Panels (c) reflect the robot’s actual trajectory (thick line) diverging from its planned
path (thin line) at 15 s to avoid an actor. Panel (d) illustrates the trajectories of all robots at 75 s.

tively. Two animated actor are employed as dynamic ob-
stacles within the Gazebo framework. The first actor starts
at [−6.0, −4.0] and moves towards [7.0, −4.0], looping
back to its starting position, with specific orientations at
each waypoint to mimic a person pacing back and forth.
The second actor executes a mirrored movement pattern
on the opposite side of the simulation space, starting at
[7.0, 4.0] and moving to [−6.0, 4.0], also in a looped
trajectory, but with a different speed. Ten tasks are ran-
domly selected as T1 = [−7.27, −10.36], T2 = [−3.97,
−9.08], T3 = [5.71, −9.69], T4 = [10.39, −8.12], T5 =
[−6.43, −2.96], T6 = [7.42, 3.83], T7 = [−0.27, 5.07],

T8 = [−11.18, 8.37], T9 = [−4.80, 8.50], T10 = [11.41,
8.67].

A 10× 10 cost matrix was constructed to cluster these
tasks into three groups: G1 = {T1, T2, T3, T4, T5}, G2 = {T7,
T8, T9}, G3 = {T6, T10}, which were then assigned to the
robots using the Hungarian algorithm. G1-to-A1, G2-to-A2,
G3-to-A3. The assigned task sequences for each robot were
determined through TSP, resulting in specified visiting or-
ders for each group A1-T5-T1-T2-T3-T4, A2-T7-T9-T8, A3-T6-
T10.

Fig. 8 presents a screenshot captured in Rviz, delineat-
ing the trajectories of three agents at different timesteps.
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(a) (b) (c)

(d) (e) (f)

Fig. 9. Sequential demonstration of dynamic obstacle avoidance in a warehouse simulation. Panels (a-c) show the Gazebo
environment, and panels (d-f) display the Rviz visualization, capturing robot 3’s (blue line) strategic maneuver to
evade actor2 (grey sphere) at 22 s and its return to the original position at 40 s. Red dots represent laser detections.

Panels (a), (b), and (d) of the figure sequentially depict the
initiation, intermediate stages, and completion of the pro-
cess wherein each robot navigates towards its designated
tasks. The real-time positions of the robots are represented
by the red-green axes, while the states of two dynamic ob-
stacles (referred as Actor 1 and Actor 2) are illustrated
using grey spheres. The trajectories of these actors are de-
lineated by grey dashed lines. A detailed examination, as
shown in Panel (c), elucidates a notable deviation in robot
2’s trajectory from its initially planned path, occurring be-
tween the timestamps of 10 s and 15 s. This deviation ex-
emplifies an adaptive maneuver executed by robot 2 to cir-
cumvent an unexpected encounter with an actor.

To further demonstrate the proficiency of the robots in
evading dynamic impediments, a zero-task scenario was
established wherein one robot was deliberately positioned
along the trajectory of an actor. This intentional setup in-
duced a condition where the robot was required to main-
tain its stationary position while concurrently circumvent-
ing the actor whenever proximity was breached. As de-
picted in Fig. 9, panels (a), (b), and (c) sequentially rep-
resent the states of the Gazebo simulation environment,
and panels (d), (e), and (f) correspond to their respec-
tive Rviz visualizations, illustrating the odometry of the

three robots and the trajectories of two actors (denoted
by grey spheres). In panels (a) and (d), the robots are ob-
served to be stationary at their designated coordinates. In
panels (b) and (e), one actor enters the repulsive bound-
ary of robot 3, which is evidenced by the laser detection
(red dots), prompting robot 3 to retreat to avert a colli-
sion. Throughout this maneuver, the robot endeavors to
return to its initial position while simultaneously sidestep-
ping the actor. Notably, this iterative process of avoid-
ance and goal reorientation leads to non-smooth move-
ments of the robot. Panels (c) and (f) capture the moment
post-encounter, where the actor has vacated the robot’s re-
pulsive radius, thereby permitting the robot to reoccupy
its original location. The blue line delineates the robot’s
trajectory, encompassing both its collision avoidance path
and its subsequent return.

A video demonstration of inclusion of dynamic ob-
stacles is provided at https://youtu.be/-JtSg5V2fTI?si=
7PfzZbleOOsRdzRd. Notably, in the second simulation,
the robot is seen deviating from its position to avoid an ap-
proaching obstacle and then resuming its course towards
the goal once it exits the obstacle’s potential field. Never-
theless, the robot re-enters the obstacle’s influence range
due to its motion, resulting in further deviations. This iter-

https://youtu.be/-JtSg5V2fTI?si=7PfzZbleOOsRdzRd
https://youtu.be/-JtSg5V2fTI?si=7PfzZbleOOsRdzRd
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ative process of avoidance and goal reorientation leads to
the observed non-smooth movements of the robot.

Importantly, the dynamic obstacle avoidance maneu-
vers showcased do not compromise the results of the task
assignment, underscoring the robustness of our proposed
framework.

4.2. Computation efficiency

Apart from verifying the feasibility of cluster-based as-
signments in Gazebo simulations, we also want to evalu-
ate the computation efficiency of the proposed algorithm.
As determining a set of routes for N robots starting at dif-
ferent locations to visit M tasks so as to minimize the to-
tal travel distance is a typical multi-depot mTSP (multi-
ple traveling salesman problem), solvers for mTSP also
fit the problem described in Section 2. Here, we measure
the execution time and total travel cost of cluster-based as-
signment and compare them against that of the simulated
annealing (SA) algorithm, a modern solution of mTSP, to
compare their computational efficiency and optimization
effect. To simplify the problem, test instances are con-
ducted in a 100 m × 100 m free space with a combina-
tion of N ∈ {5, 10, 20} and M ∈ {10, 20, 30, 40}. Each
instance is run 30 times to collect statistics. As seen in
Fig 10, although experiencing slight growth as the num-
ber of agents and the number of task rise, the computa-
tion time of cluster-based assignment remain at low values
from 0.05 s to 0.2 s. While for SA, the computation time
rises rapidly from 0.3 s with 5 agents, 10 tasks to nearly 6
s with 20 agents and 40 tasks. As both TSP and mTSP is
NP-hard problem, One defect of cluster-based assignment
is that it requires more or at least the same number of tasks
as agents, thus the data of cluster-based assignment with
N = 20, M = 10 is missing.

In order to analyze the optimized routing result of the
cluster-based algorithm, we introduce the cost ratio γ that
takes SA as a benchmark

Fig. 10. Run time statistics of the cluster-based assign-
ment (dark blue) and simulated annealing (light
blue).

Fig. 11. Cost ratio of the cluster-based assignment com-
pared to simulated annealing.

δ =
∑CCluster−∑CSA

∑CSA
, (18)

where CCluster and CSA denote the total travel cost of each
robot in the cluster-based assignment and SA, respec-
tively.

Conceivably, δ = 0 indicates the total travel cost of
each robot of the two algorithms is the same. Positive δ

signifies the outperformance of SA and otherwise cluster-
based assignment is better. Fig. 11 depicts the cost ratio of
the cluster-based assignment over the simulated annealing
algorithm. As aforementioned, M = 10, N = 20 data is
missing. In general, cluster-based assignment finds better
routes for robots when the M−N ratio is large. While the
total cost of each robot given by SA is much smaller than
the cluster-based algorithm when there is the same number
of robots and tasks. This is reasonable as the cluster-based
assignment distributes one cluster to each robot, resulting
in every robot being assigned at least one task regardless
of the positions of the robots. However, SA allows not as-
signing tasks to one robot if it’s too far away from all the
tasks.

The multi-robot task assignment and path-finding
(TAPF) problem investigated in this study is inherently
NP-hard, attributed to the extensive array of potential
task assignments among robots and the need to mitigate
inter-collisions. Both the MRTA and the MAPF problems,
which are sub-components of TAPF, are all recognized
as NP-hard. Achieving an optimal solution for TAPF is
prohibitively time-consuming due to these complexities.
The objective within this article is not to attain an optimal
solution for TAPF. Instead, our focus is on identifying a
near-optimal solution expediently. Our proposed frame-
work addresses the TAPF challenge with a cluster-based
assignment algorithm coupled with a TSP solver and the
NMPC. Subsequent Figs. 10 and 11 demonstrate that this
methodology achieves a solution comparable in cost but
with greater efficiency. NMPC offers the advantages of
online computation and adaptability, facilitating real-time
responses to delays and dynamic changes in the environ-
ment.
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5. CONCLUSIONS AND FUTURE WORK

In this article, we proposed a novel and complete
assignment, planning, and control architecture for a
multiple-goal-multiple-robots system, which integrates
D∗+ algorithm, hierarchical clustering, the Hungarian al-
gorithm, traveling salesman problem, and nonlinear model
predictive controller.

Tailored for unbalanced assignments where tasks out-
number agents, our experimental results substantiate the
architecture’s ability to optimize task assignments, min-
imizing total traversal costs, with all the robots success-
fully navigating to their goal positions. A comparative
analysis with the simulated annealing (SA) algorithm re-
veals our cluster-based assignment’s superior performance
in computation time, though it is noted that our approach
is specifically designed for scenarios with fewer robots
than tasks.

Additionally, we enhanced our system’s dynamic ob-
stacle avoidance capabilities by integrating an artificial
potential field method as a reactive component. This in-
clusion ensures that robots can adeptly maneuver around
dynamically detected obstacles, validated through precise
laser detection. The implementation of this artificial po-
tential field (APF) substantially augments our architec-
ture’s robustness, enabling real-time, responsive naviga-
tion in complex environments.

Future work will focus on two primary enhancements.
Firstly, we aim to integrate predictions of dynamic obsta-
cle trajectories into the model predictive control (MPC)
framework to achieve smoother robot trajectories. This
improvement is designed to refine collision avoidance
strategies, facilitating more fluid navigation in dynamic
environments with moving obstacles. Secondly, we plan
to extend the current assignment scheme to accommo-
date online assignments. This will enable the continuous
addition of new tasks and allow for dynamic reassign-
ments based on real-time cost evaluations between unvis-
ited tasks and available agents.
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