
International Journal of Control, Automation, and Systems 22(8) (2024) 2483-2493
http://dx.doi.org/10.1007/s12555-023-0610-5

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Stability Analysis of Asynchronous Impulsive Switched T-S Fuzzy Systems
Based on the Admissible Edge-dependent Scheme
Yufang Xie, Mengjie Li, and Lijun Gao* ■

Abstract: The main purpose of this paper is to study the stability of discrete-time impulsive switched T-S fuzzy
systems with two kinds of asynchronous behaviors, including asynchronous behavior between impulse and switching,
and asynchronous switching between controllers and subsystems. We divide the subsystems into stable and unstable
subsystems, which respectively adopt slow switching and fast switching methods. Then, based on multiple Lyapunov
functions, admissible edge-dependent average dwell time (AED-ADT) and admissible edge-dependent average
impulsive interval (AED-AII) methods, sufficient conditions for global uniform exponential stability (GUES) of the
closed-loop system are established, and the results are less conservative than that based on mode-dependent average
dwell time (MDADT) and mode-dependent average impulsive interval (MDAII) methods. In addition, we provide
the solvability conditions for the state feedback controller. Finally, several numerical examples are provided to verify
the effectiveness of the results in this paper.

Keywords: Admissible edge-dependent scheme, asynchronous switching, impulsive switched systems, T-S fuzzy
model.

1. INTRODUCTION

As a special kind of hybrid systems, switched systems
are composed of several subsystems and switching rules
that used to coordinate the switching between subsystems
[1]. Switched systems are extensively applied in the re-
search of complex systems in control field, such as trans-
portation systems [2], network control systems [3], automo-
tive steering systems [4] and robot control systems [5]. On
the other hand, switched systems may be affected by some
sudden changes during switching. Thus, uniting impulse
with switched systems gives rise to impulsive switched sys-
tems [6]. Impulsive switched systems are popularly used
in control, computer, communication and other fields. At
present, many scholars are committed to this research and
have achieved great fruits [7-9].

Stability analysis [10,11] is the primary issue in the ex-
ploration of impulsive switched systems. Literatures [12]
and [13] both investigate the related stability problems of
impulsive switched systems. However, these studies are
conducted under the condition that the impulse and switch-
ing are synchronous, causing great limitations. In fact, due
to the inevitable delay phenomenon in the system operation,
impulse and switching often occur asynchronously. From
another perspective, when the system switches, the switch-
ing of matching controller will lag behind the switching of
subsystem mode, which is called asynchronous switching

phenomenon. Asynchronous switching often leads to sys-
tem performance degradation and even system instability.
For this reason, it is of great significance to investigate
asynchronous switching. For example, both [14] and [15]
research other problems in view of asynchronous switching
of switched systems. So far, the research on asynchronous
switched systems is still limited, and further exploration is
needed in the future.

How to constrain switching signals and impulsive sig-
nals is also a significant issue for analyzing impulsive
switched systems. The commonly used methods for con-
straining switching signals mainly include average dwell
time (ADT) [16] and mode-dependent average dwell time
(MDADT) [17]. But both ADT switching and MDADT
switching have a certain degree of conservation. Hence, a
new concept named admissible edge-dependent average
dwell time (AED-ADT) is proposed in [18], which makes
switching parameters not only depend on the subsystems
after switching, but also on the subsystems before switch-
ing. Relatively speaking, it has higher flexibility and less
conservatism. Additionally, in consideration of the im-
pact of impulse on system stability, average impulsive
interval (AII) [19] and mode-dependent average impul-
sive interval (MDAII) [20] have been posed one after
another, which are also conservative. Therefore, based
on AED-ADT, the concept of admissible edge-dependent
average impulsive interval (AED-AII) is constructed to
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improve this issue in [21].
In recent years, fuzzy control theory has become a hot

topic in the field of control research, attracting more and
more scholars’ attention. The commonly used T-S fuzzy
model [22] refers to describing nonlinear process as sev-
eral locally linear input-output relations through several
IF-THEN rules. When all subsystems are described by
T-S fuzzy model, such systems are called switched T-S
fuzzy systems, which have become a powerful tool for deal-
ing with complex nonlinear systems [23,24]. Literatures
[25,26] study the stability problem of continuous switched
T-S fuzzy systems, while literatures [27,28] concern the
stability analysis of discrete T-S fuzzy systems. But we
find that these studies are all focused on switched systems.
For all practical purposes, we can analyze a more complex
situation where the presence of impulse will be considered
in switched systems. Currently, there are few relevant pa-
pers on impulsive switched T-S fuzzy systems, which has
aroused our interest. Affected by the above discussion, it is
necessary to study the stability of impulsive switched T-S
fuzzy systems based on AED-ADT and AED-AII methods.

The main contributions of this paper are as follows:

1) For nonlinear impulsive switched systems, we intro-
duce the T-S fuzzy model. Compared with the com-
plexity of dealing with nonlinear systems in [10], us-
ing T-S fuzzy model can transform complex nonlinear
problem into easily solvable linear problem, simplify-
ing the analysis process of the system.

2) Compared with the MDADT method in [17], we
adopt AED-ADT and AED-AII methods to constrain
switching and impulsive signals. The switching signals
in this paper not only depend on the subsystem after
switching, but also on the subsystem before switching.
It follows that the results we obtain based on AED-
ADT and AED-AII methods are less conservative and
more flexible than those in [17].

3) This paper concerns the existence of asynchronous
behavior. In [12], the switching and impulse are syn-
chronous. In [28], the synchronous case of subsystem
and controller is investigated. Compared with above
results, this paper considers two asynchronous behav-
iors: impulsive instant and switching instant are asyn-
chronous; subsystem mode and controller mode are
asynchronous, making the results more general and
less conservative.

4) We divide the subsystems into stable and unsta-
ble subsystems, which apply slow switching and fast
switching methods, respectively. Different from [27],
we not only consider the case where only includes
stable subsystems or unstable subsystems, but also
consider the case where there are both stable subsys-
tems and unstable subsystems. Thus, we attain the
sufficient conditions for less conservatism.

The rest of this paper is organized as follows: In Section
2, the expressions of the studied systems and some defi-
nitions are given. In Section 3, we discuss the sufficient
conditions for GUES of impulsive switched T-S fuzzy sys-
tems. Section 4 gives several numerical examples. Finally,
the paper is summarized in Section 5.

Notations: Rn and Rm denote the n-dimensional and
m-dimensional Euclidean spaces, respectively. The trans-
pose of a matrix is typically expressed by ‘T ’. λmax(P)
and λmin(P) represent the maximum and minimum eigen-
value of matrix P, respectively. The notation ∥ · ∥ indicates
Euclidean vector norm. Denote x(k+s ) = lim∆→0+ x(ks +∆)
and x(ks) = x(k−s ) = lim∆→0− x(ks +∆).

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider the following discrete-time nonlinear impul-
sive switched system

x(k+1) = fσ(k)(x(k),u(k)), k ∈ [ks, ks+1)/ϒ,

∆x(k) = gσ(k)(x(k)), k ∈ ϒ,

x(k0) = x0,

(1)

where x(k)∈Rn is the system state with initial state x(k0)=
x0, u(k) ∈ Rm is control input. ∆x(ks) = x(k+s )− x(k−s ) =
x(k+s )− x(ks). Switching signal σ(k): N = {1, 2, · · · , N}
is a piecewise constant function, where N is the number of
whole subsystems. Assume that N =Ns

⋃
Nu. If i ∈Ns =

{1, 2, · · · , n}, then the ith subsystem is stable; if i ∈Nu =
{n+1, n+2, · · · , N}, then the ith subsystem is unstable.
We suppose that ϒ = {ks,p, p = 1, 2, · · · , ms + hs} is the
impulsive time sequence on [ks, ks+1), where ms and hs

respectively denote the number of impulse on mismatching
interval [ks, ∆ks) and matching [∆ks, ks+1). For any i ∈N ,
the ith subsystem is activated when σ(ks) = i.

Each subsystem of system (1) can be described by T-S
fuzzy model in the following form

Rule l for subsystem i:

IF θil(k) is Ml
i1 and · · · and θiv(k) is Ml

iv, THEN{
x(k+1) = Ailx(k)+Bilu(k),
∆x(k) =Cilx(k),

where Ml
i1 · · ·Ml

iv is fuzzy set, i ∈ N , l ∈ R = {1, 2, · · · ,
r}, r is the number of the IF-THEN rules. θi(k) = [θi1(k),
θi2(k), · · · , θiv(k)]T is the premise variable vector. Ail , Bil ,
Cil are constant matrices with appropriate dimensions. So
the fuzzy model of the ith subsystem is{

x(k+1) = ∑
r
l=1 hil(θi(k))[Ailx(k)+Bilu(k)],

∆x(k) = ∑
r
l=1 hil(θi(k))Cilx(k),

where hil(θi(k)) is normalized membership function with

hil(θi(k)) =
∏

v
n=1 Ml

in(θin(k))
∑

r
l=1 ∏

v
n=1 Ml

in(θin(k))
≥ 0,
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r

∑
l=1

hil(θi(k)) = 1,

where Ml
in(θin(k)) represents the membership function of

premise variable θin(k) with respect to fuzzy set Ml
in.

Owing to the existence of asynchronous switching, the
running time interval [ks, ks+1) can be divided into three
parts: T↑(ks+1,ks), T↓(ks+1,ks) and k = ∆ks. T↑(ks+1,ks),
namely, k ∈ [ks, ∆ks), and T↓(ks+1,ks), namely, k ∈ [∆ks,
ks+1), represent the running time when controller and sub-
system mismatch or match, respectively. k = ∆ks represents
the matching instant of the system. The constant TM here
represents the maximum delay of asynchronous switching
system. Then, the following controllers are constructed

u(k) =

{
Kσ(ks−1)x(k), k ∈ [ks, ∆ks),

Kσ(ks)x(k), k ∈ [∆ks, ks+1).
(2)

Let σ(ks−1) = j, σ(ks) = i. Similarly, the fuzzy model
of the controller is given as

u(k) =

{
∑

r
m=1 him(θi(k))K jmx(k), k ∈ [ks, ∆ks),

∑
r
m=1 him(θi(k))Kimx(k), k ∈ [∆ks, ks+1).

As a result, we obtain the following discrete-time closed-
loop impulsive switched T-S fuzzy system

x(k+1) = HilHim(Ail +BilK jm)x(k),
k ∈ [ks, ∆ks)/ϒ,

x(k+1) = HilHim(Ail +BilKim)x(k),
k ∈ [∆ks, ks+1)/ϒ,

∆x(k) = HilCilx(k), k ∈ ϒ,

(3)

where Hil = ∑
r
l=1 hil(θi(k)), Him = ∑

r
m=1 him(θi(k)).

And we make clear that the relationship among switch-
ing instants, impulsive instants and matching instants
satisfies k0 < k1 < k1,1 < · · · < k1,m1 < ∆k1 < k1,m1+1 <
· · ·< k1,m1+h1 < k2 < · · ·< ks < ks,1 < · · ·< ks,ms < ∆ks <
ks,m+1 < · · ·< ks,ms+hs < ks+1. An example is given in Fig.
1.

Here are some definitions and lemmas involved in this
paper.

Definition 1 [29]: Under a certain switching signal σ(k),
if there exist constants α > 0, 0 < ε < 1, such that the
solution of system (3) satisfies

∥ x(k) ∥≤ αε
k−k0 ∥ x(k0) ∥, ∀k ≥ k0, (4)

Fig. 1. The relationship of switching instants, impulsive
instants, and matching instants.

then system (3) is globally uniformly exponentially stable
(GUES) when control input u(k) = 0.

Definition 2 [30]: For a switching signal σ(k) and any
j, i ∈N , let Nσ

j,i(k0,k) denote the switching number from j
to i over the range [k0, k), and Tj,i(k0,k) express the entire
duration of subsystem i in the range [k0, k), where j is the
previous activated subsystem. We define τσ

j,i as a slow or
fast admissible edge-dependent average dwell time (AED-
ADT) of σ(k), respectively, if there exist positive numbers
Nσ ,0

j,i and τσ
j,i respectively satisfy

Nσ

j,i(k0,k)≤ Nσ ,0
j,i +

Tj,i(k0,k)
τσ

j,i
, ∀k ≥ k0 ≥ 0, (5)

Nσ

j,i(k0,k)≥ Nσ ,0
j,i +

Tj,i(k0,k)
τσ

j,i
, ∀k ≥ k0 ≥ 0, (6)

where Nσ ,0
j,i is called as the admissible edge-dependent

chatter bound.
Definition 3 [31]: Consider a hybrid system with impul-

sive and switching signals, for a switching signal σ(k) and
any j, i ∈ N , let Nδ

j,i(k0,k) denote the impulsive number
from j to i over the range [k0, k), and Tj,i(k0,k) express the
entire duration of subsystem j in the range [k0, k), where j
is the previous activated subsystem. We define τδ

j,i as a slow
or fast admissible edge-dependent average impulsive inter-
val (AED-AII), respectively, if there exist positive numbers
Nδ ,0

j,i and τδ
j,i respectively satisfy

Nδ

j,i(k0,k)≤ Nδ ,0
j,i +

Tj,i(k0,k)
τδ

j,i
, ∀k ≥ k0 ≥ 0, (7)

Nδ

j,i(k0,k)≥ Nδ ,0
j,i +

Tj,i(k0,k)
τδ

j,i
, ∀k ≥ k0 ≥ 0, (8)

where Nδ ,0
j,i is called as the admissible edge-dependent elas-

ticity number.
Lemma 1 [31]: As we all know, Pi ∈ Rn×n as a symmet-

ric positive definite matrix, the multiple Lyapunov func-
tions Vi(k) = xT (k)Pix(k) can be bounded as

min
i∈N

(λmin(Pi))∥x(k)∥2 ≤Vi(k)

≤ max
i∈N

(λmax(Pi))∥x(k)∥2.

Lemma 2 [32]: For any given symmetric matrix S =[
S11 S12

S21 S22

]
, where S11 is r× r dimensional, the following

three inequalities are equivalent.

1) S < 0,
2) S11 < 0,S22 −ST

12S−1
11 S12 < 0,

3) S22 < 0,S11 −S12S−1
22 ST

12 < 0.

Remark 1: In this paper, slow switching and fast switch-
ing methods are introduced. When the subsystem is stable,
slow switching method is applied, while when the subsys-
tem is unstable, fast switching method is applied.
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3. MAIN RESULTS

In this section, we mainly propose some sufficient con-
ditions for GUES of system (3).

The following theorem gives the stability criteria for
system (3) with both stable and unstable subsystems.

Theorem 1: Let λ j,i > 0; 0 < αi < βi < 1, µ j,i > 1,
i ∈ Ns; βi > αi > 1, 0 < u j,i < 1, i ∈ Nu, if there exist
symmetric definite matrices Pi > 0, for any j, i ∈N , such
that

(I +Cil)
T Pi(I +Cil)−λ j,iPi < 0, (9)

(Ail +BilK jm)
T Pi(Ail +BilK jm)−βiPi < 0, (10)

(Ail +BilKim)
T Pi(Ail +BilKim)−αiPi < 0, (11)

Pi −µ j,iPj ≤ 0, (12)

and for any switching and impulsive signals satisfy

lnαi +
ln µ j,i +TM(lnβi − lnαi)

τσ
j,i

+
lnλ j,i

τδ
j,i

< 0, (13)

then, system (3) is GUES. And TM = max{Tj,i↑(ks,ks−1)},
∀s ≥ 1.

Proof: Construct the multiple Lyapunov functions

Vi(k) = xT (k)Pix(k).

At the impulsive instant ks,p, we know that

Vi(k+s,p) = [x(ks,p)+∆x(ks,p)]
T Pi[x(ks,p)+∆x(ks,p)]

= [x(ks,p)+HilCilx(ks,p)]
T Pi[x(ks,p)

+HiqCiqx(ks,p)]

≤ HilxT (ks,p)[(I +Cil)
T Pi(I +Cil)

−λ j,iPi]x(ks,p)+λ j,iVi(ks,p).

Based on (9), it gains

Vi(k+s,p)≤ λ j,iVi(ks,p). (14)

When k ∈ [ks, ∆ks), one has

Vi(k+1) = xT (k+1)Pix(k+1)

= xT (k)[HilHim(Ail +BilK jm)
T PiHigHiu

∗ (Aig +BigK ju)]x(k)

≤ HilHimxT (k)[(Ail +BilK jm)
T Pi

∗ (Ail +BilK jm)−βiPi]x(k)+βiVi(k).
(15)

By (10), it can be deduced that

Vi(k+1)≤ βiVi(k). (16)

When k ∈ [∆ks, ks+1), similar to (15), we summarize that

Vi(k+1)≤ HilHimxT (k)[(Ail +BilKim)
T Pi

∗ (Ail +BilKim)−αiPi]x(k)+αiVi(k).

According to (11), it indicates

Vi(k+1)≤ αiVi(k). (17)

Considering σ(ks) = i, σ(ks−1) = j, i ̸= j, we obtain

Vi(ks)−µ j,iVj(ks)

= xT (ks)Pix(ks)−µ j,ixT (ks)Pjx(ks)

= xT (ks)(Pi −µ j,iPj)x(ks).

On the basis of (12), one can attain

Vi(ks)≤ µ j,iVj(ks). (18)

Then, by combining (14), (16), (17), (18), when k ∈ [ks,
ks+1), we conclude that

Vσ(k)(k)≤ α
k−ks,ms+hs
σ(ks,ms+hs )

Vσ(ks,ms+hs )
(k+s,ms+hs

)

≤ λδ (ks,ms+hs−1),δ (ks,ms+hs )
α

k−ks,ms+hs
σ(ks,ms+hs )

∗Vσ(ks,ms+hs )
(ks,ms+hs)

≤ ·· · ≤ π1Vσ(ks)(ks),

where π1 = λδ (ks,ms+hs−1),δ (ks,ms+hs )
· · ·λδ (ks,0),δ (ks,1)α

k−ks,ms+hs
σ(ks,ms+hs )

· · ·αks,m+1−∆ks

σ(∆ks)
β

∆ks−ks,ms
σ(ks,ms )

· · ·β ks,1−ks

σ(ks)
. Then

Vσ(k)(k)≤ π1µσ(ks−1),σ(ks)Vσ(ks−1)(ks)

≤ ·· · ≤ N1N2N3N4Vσ(k0)(k0),

where

N1 =
s

∏
l=1

µσ(kl−1),σ(kl),

N2 =
ms+hs

∏
g=1

λδ (ks,g−1),δ (ks,g)

s

∏
l=1

ml+hl

∏
g=1

λδ (kl−1,g−1),δ (kl−1,g),

N3 = α
k−ks,ms+hs
σ(ks,ms+hs )

α
ks,ms+1−∆ks

σ(∆ks)

ms+hs

∏
g=ms+1

α
ks,g−ks,g−1

σ(ks,g−1)

×
s

∏
l=1

ml+hl

∏
g=ml+1

α
kl−1,g−kl−1,g−1

σ(kl−1,g−1)

×
s

∏
l=1

α
kl−kl−1,ml+hl
σ(kl−1,ml+hl )

α
kl−1,ml+1−∆kl−1

σ(∆kl−1)
,

N4 = β
∆ks−ks,ms
σ(ks,ms )

β
ks,1−ks

σ(ks)

ms

∏
g=2

β
ks,g−ks,g−1

σ(ks,g−1)

s

∏
l=1

ml

∏
g=2

β
kl−1,g−kl−1,g−1

σ(kl−1,g−1)

×
s

∏
l=1

β
∆kl−1−kl−1,ml
σ(kl−1,ml )

β
kl−1,1−kl−1

σ(kl−1)
.

In the light of Definitions 2 and 3, it holds

N1 = exp
{ n

∑
i=1

n

∑
j=1, j ̸=i

Nσ

j,i(k0,k) ln µ j,i

}
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∗ exp
{ N

∑
i=n+1

N

∑
j=n+1, j ̸=i

Nσ

j,i(k0,k) ln µ j,i

}
,

N4 = exp
{ n

∑
i=1

n

∑
j=1, j ̸=i

Tj,i↑(k0,k) lnβi

}
∗ exp

{ N

∑
i=n+1

N

∑
j=n+1, j ̸=i

Tj,i↑(k0,k) lnβi

}
,

N3 = exp
{ n

∑
i=1

n

∑
j=1, j ̸=i

Tj,i↓(k0,k) lnαi

}
∗ exp

{ N

∑
i=n+1

N

∑
j=n+1, j ̸=i

Tj,i↓(k0,k) lnαi

}
,

N2 = exp
{ n

∑
i=1

n

∑
j=1, j ̸=i

Nδ

j,i(k0,k) lnλ j,i

}
∗ exp

{ N

∑
i=n+1

N

∑
j=n+1, j ̸=i

Nδ

j,i(k0,k) lnλ j,i

}
.

Through above discussion, it can be launched that

Vσ(k)(k)≤ exp
{ n

∑
i=1

n

∑
j=1, j ̸=i

[Nδ

j,i(k0,k) lnλ j,i

+Tj,i↑(k0,k) lnβi +Tj,i↓(k0,k) lnαi

+Nσ

j,i(k0,k) ln µ j,i]
}

∗ exp
{ N

∑
i=n+1

N

∑
j=n+1, j ̸=i

[Nδ

j,i(k0,k) lnλ j,i

+Tj,i↑(k0,k) lnβi +Tj,i↓(k0,k) lnαi

+Nσ

j,i(k0,k) ln µ j,i]
}

Vσ(k0)(k0).

Owing to Tj,i(k0,k) = Tj,i↓(k0,k)+Tj,i↑(k0,k), it gives

Vσ(k)(k)≤ exp
{ n

∑
i=1

n

∑
j=1, j ̸=i

[Nδ

j,i(k0,k) lnλ j,i

+Nσ

j,i(k0,k)(ln µ j,i +TM(lnβi − lnαi))

+Tj,i(k0,k) lnαi]
}

∗ exp
{ N

∑
i=n+1

N

∑
j=n+1, j ̸=i

[Nδ

j,i(k0,k) lnλ j,i

+Nσ

j,i(k0,k)(ln µ j,i +TM(lnβi − lnαi))

+Tj,i(k0,k) lnαi]
}

Vσ(k0)(k0).

Combining Definitions 2 and 3, one can finally attain

Vσ(k)(k)≤ g0 exp
{ n

∑
i=1

n

∑
j=1, j ̸=i

g j,iTj,i(k0,k)
}

∗ exp
{ N

∑
i=n+1

N

∑
j=n+1, j ̸=i

g j,iTj,i(k0,k)
}

×Vσ(k0)(k0), (19)

where g j,i = lnαi +
ln µ j,i+TM(lnβi−lnαi)

τσ
j,i

+
lnλ j,i

τδ
j,i

, g0 =

exp
{

∑
n
i=1 ∑

n
j=1, j ̸=i[N

σ ,0
j,i (ln µ j,i + TM(lnβi − lnαi)) +

Nδ ,0
j,i lnλ j,i]

}
exp

{
∑

N
i=n+1 ∑

N
j=n+1, j ̸=i[N

σ ,0
j,i (ln µ j,i+TM(lnβi

− lnαi))+Nδ ,0
j,i lnλ j,i]

}
. Through Lemma 1, it can be sum-

marized that

∥x(k)∥ ≤ αeβ (k−k0)∥x(k0)∥, (20)

where α =

√
g0 ×

max
i∈N

(λmax(Pi))

min
i∈N

(λmin(Pi))
, β = max

j,i∈N
( 1

2 g j,i). United

with condition (13), one has β < 0. Then, on the basis
of Definition 1, we deduce that system (3) is GUES. This
proof is completed. □

Remark 2: In Theorem 1, βi and αi represent the
growth or decay rate of Lyapunov function when subsys-
tem and controller mismatch or match, respectively. And
βi >αi > 1 indicates that the Lyapunov function is growing,
namely, the subsystem is unstable, while 0 < αi < βi < 1
denotes that the Lyapunov function is decaying, namely, the
subsystem is stable. Besides, µ j,i and λ j,i represent switch-
ing parameters and impulsive parameters respectively,
where µ j,i and λ j,i are both admissible edge-dependent.
µ j,i < 1 and µ j,i > 1 respectively indicate the switching
is stable or unstable. And λ j,i > 0 means that the impulse
may be stable or unstable. So we can choose appropriate
values within the corresponding parameter range according
to actual needs.

Next, consider the case where all subsystems are stable,
and i ∈ N means i ∈ Ns, that is, only a slow switching
strategy needs to be designed.

Theorem 2: Given λ j,i > 0, 0 < αi < βi < 1, µ j,i > 1,
i ∈N , if there exist symmetric definite matrices Pi > 0, for
any j, i ∈N , such that the inequalities (9)-(12) hold, and
for any slow switching signal and impulsive signal satisfy
condition (13), system (3) is GUES.

Proof: The front proof is similar to (14)-(18) in Theo-
rem 1. Next we combine Definitions 2 and 3 yields

N1 = exp{
N

∑
i=1

N

∑
j=1, j ̸=i

Nσ

j,i(k0,k) ln µ j,i},

N4 = exp{
N

∑
i=1

N

∑
j=1, j ̸=i

Tj,i↑(k0,k) lnβi},

N3 = exp{
N

∑
i=1

N

∑
j=1, j ̸=i

Tj,i↓(k0,k) lnαi},

N2 = exp{
N

∑
i=1

N

∑
j=1, j ̸=i

Nδ

j,i(k0,k) lnλ j,i}.

Further, we will gain

Vσ(k)(k)≤ exp
{ N

∑
i=1

N

∑
j=1, j ̸=i

[Nδ

j,i(k0,k) lnλ j,i
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+Tj,i↑(k0,k) lnβi +Tj,i↓(k0,k) lnαi

+Nσ

j,i(k0,k) ln µ j,i]
}

Vσ(k0)(k0).

The following proof is similar to Theorem 1, and we
ultimately obtain

Vσ(k)(k)≤ ε0 exp
{ N

∑
i=1

N

∑
j=1, j ̸=i

ε j,iTj,i(k0,k)
}

Vσ(k0)(k0),

where ε0 = exp
{

∑
N
i=1 ∑

N
j=1, j ̸=i[N

σ ,0
j,i (ln µ j,i + TM(lnβi −

lnαi)) + Nδ ,0
j,i lnλ j,i]

}
, ε j,i = lnαi +

ln µ j,i+TM(lnβi−lnαi)
τσ

j,i
+

lnλ j,i

τδ
j,i

. Through Lemma 1, one eventually deduce that

∥x(k)∥ ≤ αeβ (k−k0)∥x(k0)∥, (21)

where α =

√
ε0 ×

max
i∈N

(λmax(Pi))

min
i∈N

(λmin(Pi))
, β = max

j,i∈N
( 1

2 ε j,i). Combin-

ing with condition (13), β < 0 will be obtained. Then,
according to Definition 1, system (3) is GUES. This com-
pletes the proof. □

Then, consider the other case where all subsystems are
unstable. In this case, i ∈N means i ∈Nu, so we only need
to design fast switching method for system (3).

Theorem 3: Let λ j,i > 0, βi > αi > 1, 0 < µ j,i < 1,
i ∈N , if there exist symmetric definite matrices Pi > 0, for
any j, i ∈N , such that the inequalities (9)-(12) hold, and
for any fast switching signal and impulsive signal satisfy
condition (13), system (3) is GUES.

This proof, same as Theorem 2, also infers that system
(3) is GUES. And we have omitted it here.

According to Theorems 1-3, an AED-ADT-based state
feedback controller is designed in the following result for
system (3).

Corollary 1: ∀ j, i ∈ N , if exist matrices Sim, S jm ∈
Rm×n, positive definite symmetric matrix Xi ∈ Rn×n, the
following inequalities holds[

−Xi AilXi +BilSim

∗ −αiXi

]
< 0, (22)[

−Xi AilXi +BilS jm

∗ −βiXi

]
< 0, (23)

X j ≤ µ j,iXi, (24)

then system (3) is GUES. And the controller gain matrix is
Kim = SimX−1

i .

Proof: Let Xi = P−1
i , Sim =KimP−1

i , S jm =K jmP−1
i , sub-

stituting them into (22) and (23), and it gives[
−P−1

i AilP−1
i +BilKimP−1

i
∗ −αiP−1

i

]
< 0, (25)[

−P−1
i AilP−1

i +BilK jmP−1
i

∗ −βiP−1
i

]
< 0. (26)

Multiply diag{Pi,Pi} on both sides of (25) and (26) at
the same time, we will attain[

−Pi Pi(Ail +BilKim)
∗ −αiPi

]
< 0,[

−Pi Pi(Ail +BilK jm)
∗ −βiPi

]
< 0.

Through Lemma 2, we deduce that (Ail +BilKim)
T Pi(Ail

+BilKim)−αiPi < 0 and (Ail +BilK jm)
T Pi(Ail +BilK jm)−

βiPi < 0. And uniting other conditions in Theorem 1, it
can be deduced that system (3) is GUES. The proof is
completed. □

In order to highlight the advantages of AED-ADT and
AED-AII methods than MDADT and MDAII methods,
we present the following theorem based on MDADT and
MDAII methods.

Theorem 4: Let λi > 0; 0 < αi < βi < 1, µi > 1, i ∈Ns;
βi > αi > 1, 0 < ui < 1, i ∈ Nu, if there exist symmetric
definite matrices Pi > 0, for any j, i ∈N , j ̸= i, such that

(I +Cil)
T Pi(I +Cil)−λiPi < 0, (27)

(Ail +BilK jm)
T Pi(Ail +BilK jm)−βiPi < 0, (28)

(Ail +BilKim)
T Pi(Ail +BilKim)−αiPi < 0, (29)

Pi −µiPj ≤ 0, (30)

and for any switching and impulsive signals satisfy

lnαi +
ln µi +TM(lnβi − lnαi)

τσ
i

+
lnλi

τδ
i

< 0, (31)

then system (3) is GUES. And TM = max{Ti↑(ks,ks−1)},
∀s ≥ 1.

The proof of Theorem 4 will not be described here.

Remark 3: The main differences between Theorems 1
and 4 are as follows: 1) In Theorem 4, the switching param-
eters µi and impulsive parameters λi, regardless of which
subsystem they are switched from, are only related to the
switched subsystem. The contribution of other subsystems
is ignored, which has some conservatism; In Theorem 1,
the corresponding switching parameters µ j,i and impulsive
parameters λ j,i depend not only on the subsystem after
switching, but also on the subsystem before switching. 2)
In Theorem 4, τσ

i and τδ
i from any subsystem to subsys-

tem i are constant, while τσ
j,i and τδ

j,i in Theorem 1 may
be different. Therefore, we conclude that AED-method is
more adaptive and flexible than MD-method. And we will
further validate this conclusion by comparing parameters
and simulation results in Section 4.

4. NUMERICAL EXAMPLES

To show the main consequences, we provide several
examples in this section. For convenience, the premise
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variable vectors and normalised membership functions
of system (3) are given as θi(k) = x1(k) and hi1(θi(k)) =
sin2(x1(k)), hi2(θi(k)) = cos2(x1(k)), respectively.

Example 1: Consider system (3) including three subsys-
tems. The parameters are shown as follows:

A11 =

[
1 0.3

−0.49 0.1

]
, A12 =

[
1 0.3

−0.42 0.1

]
,

B11 =

[
−1
−0.8

]
, B12 =

[
−1.5
−0.9

]
,

C11 =

[
−3 0
0 −2

]
, C12 =

[
−2 0
1 −3

]
,

A21 =

[
1 0.3

−0.85 0.85

]
, A22 =

[
1 0.3

−0.74 0.85

]
,

B21 =

[
−2.2
−1.3

]
, B22 =

[
−2.5
−1.6

]
,

C21 =

[
−0.5 0.1

1 0

]
, C22 =

[
−1 0.1
1 0

]
,

A31 =

[
1 0.3

−0.49 0.2

]
, A32 =

[
1 0.3

−0.42 0.2

]
,

B31 =

[
−10

9

]
, B32 =

[
−8
4

]
,

C31 =

[
0.5 0.5
0 0.5

]
, C32 =

[
0.5 0
0.5 0

]
.

It can be seen that the first subsystem and the third sub-
system are stable, which should apply slow switching strat-
egy. The second subsystem is unstable, which should de-
sign fast switching strategy. The switching path in this
example is 1 → 2 → 3 → 1 → 2 → 3 · · · .

For Theorem 1, we assume TM = 0.3, α1 = 0.5, α2 = 1.1,
α3 = 0.3, β1 = 0.6, β2 = 1.2, β3 = 0.8. For Theorem 4, we
assume TM = 0.3, α1 = 0.5, α2 = 1.01, α3 = 0.3, β1 =
0.7, β2 = 1.02, β3 = 0.9. The comparison results of the
remaining relevant parameters for AED-method and MD-
method are shown in Table 1. Besides, we choose τσ

3,1 = 1.5,
τσ

1,2 = 2, τσ
2,3 = 1.5, τδ

3,1 = 2, τδ
1,2 = 2.5, τδ

2,3 = 2.4. τσ
1 = 2,

τσ
2 = 2.5, τσ

3 = 2, τδ
1 = 2.5, τδ

2 = 3, τδ
3 = 2.5.

From the parameter comparison results in Table 1, it
shows that the ADT and AII under MD-method are greater
than those under AED-method, which implies that using
AED-method can obtain a larger range of switching signals
and impulsive signals, further relaxing the conditions of
MD-method. Hence, we validate that AED-method is more
flexible and less conservative than MD-method.

Given the initial state x0 = [0; −1], and the simulation
results based on AED-method and MD-method are shown
in Figs. 2-5, respectively. From the comparison between
Figs. 3 and 5, it shows that the convergence time of the
system state trajectory under AED-method is significantly
shorter than that under MD-method, which once again
indicates that AED-method is more flexible and effective
than MD-method.

Table 1. The comparison between MD-method and AED-
method in Example 1.

Method MD-method AED-method
Criteria Theorem 4 Theorem 1

Parameters

µ1 = 1.4,
µ2 = 0.7,
µ3 = 1.9,
λ1 = 2.7,

λ2 = 1.53,
λ3 = 4.5

µ2,1 = 1.3µ3,1 = 1.2,
µ1,2 = 0.65µ3,2 = 0.6,
µ1,3 = 1.7µ2,3 = 3.6,
λ2,1 = 2.4λ3,1 = 2.5,
λ1,2 = 1.3λ3,2 = 1.5,
λ1,3 = 3.5λ2,3 = 3.6

Switching
signals

τσ∗
1 = 1.9,

τσ∗
2 = 2.55,
τσ∗

3 = 1.8

τσ∗
2,1 = 1.25τσ∗

3,1 = 1.3,
τσ∗

1,2 = 2.2τσ∗
3,2 = 2.1,

τσ∗
1,3 = 1.3τσ∗

2,3 = 1.4

Impulsive
signals

τδ∗
1 = 2.15,

τδ∗
2 = 3.29,

τδ∗
3 = 2.26

τδ∗
2,1 = 1.79τδ∗

3,1 = 1.8,
τδ∗

1,2 = 2.94τδ∗
3,2 = 2.98,

τδ∗
1,3 = 2.2τδ∗

2,3 = 2.23

Fig. 2. Switching signals of AED-method for Example 1.

Fig. 3. Impulsive signals and state response of AED-
method for Example 1.
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Fig. 4. Switching signals of MD-method for Example 1.

Fig. 5. Impulsive signals and state response of MD-method
for Example 1.

Example 2: Consider system (3) including two stable
subsystems. And

A11 =

[
0.9 −0.5
0.5 −0.3

]
, A12 =

[
0.9 −0.5
0.6 −0.32

]
,

B11 =

[
0.3
0.2

]
, B12 =

[
0.3
0.3

]
,

C11 =

[
1.6 0.4
0.3 0.1

]
, C12 =

[
1.4 −0.3
0.2 −0.4

]
,

A21 =

[
0.9 0.32
−1 0.45

]
, A22 =

[
0.85 0.32
−1 0.44

]
,

B21 =

[
0.2
0.3

]
, B22 =

[
0.4
0.3

]
,

C21 =

[
1.2 −0.5
0.3 −0.3

]
, C22 =

[
1.3 0.2
−0.3 −0.5

]
.

Fig. 6. Switching signals for Example 2.

Fig. 7. Impulsive signals and state response for Example 2.

For these two stable subsystems, slow switching strategy
is applied. Let TM = 0.3, α1 = 0.6, α2 = 0.6, β1 = 0.7,
β2 = 0.8, µ1,2 = 2.1, µ2,1 = 2.2, λ2,1 = 1.15, λ1,2 = 1.9,
τσ ∗

2,1 = 1.8, τσ ∗

1,2 = 2.6. By Theorem 2, one will obtain τδ ∗

2,1 =

2.97, τδ ∗

1,2 = 3.34, and we select τσ
2,1 = 2, τσ

1,2 = 3, τδ
2,1 = 3,

τδ
1,2 = 3.5. Then, the simulation results are shown in Figs.

6 and 7. It is evident that system (3) is GUES under AED-
method.

Example 3: Consider system (3) including two unstable
subsystems. And

A11 =

[
1.2 0.1
−0.1 0.2

]
, A12 =

[
1.1 0.2
−0.1 0.2

]
,

B11 = B12 =

[
0
1

]
,

C11 =

[
−1.71 0.62
−0.93 0.46

]
, C12 =

[
2.41 0.82
−0.93 0.46

]
,
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Fig. 8. Switching signals for Example 3.

Fig. 9. Impulsive signals and state response for Example 3.

A21 =

[
0.4 0.2
0.5 1.1

]
, A22 =

[
0.4 0.2
0.1 1.2

]
,

B21 = B22 =

[
0
1

]
,

C21 =

[
0.52 −0.84
1.26 2.42

]
, C22 =

[
0.32 −0.61
0.91 −1.8

]
.

For these two unstable subsystems, we apply fast switch-
ing methods. Given TM = 0.3, α1 = 1.1, α2 = 1.3, β1 = 1.5,
β2 = 1.8, µ1,2 = 0.5, µ2,1 = 0.7, λ2,1 = 1.06, λ1,2 = 0.86,
τσ ∗

2,1 = 1.8, τσ ∗

1,2 = 2.6. Based on Theorem 3, it gains
τδ ∗

2,1 = 2.33, τδ ∗

1,2 = 4.57, and we choose τσ
2,1 = 2, τσ

1,2 = 2.5,
τδ

2,1 = 2, τδ
1,2 = 4.2. The simulation results are shown in

Figs. 8 and 9. It also infers that system (3) is GUES under
AED-method.

5. CONCLUSION

This paper investigates the stability of discrete-time
impulsive switched T-S fuzzy systems under two asyn-
chronous behaviors. We divide the subsystems into stable
subsystems and unstable subsystems, which adopt slow
switching and fast switching strategies, respectively. Then,
combining multiple Lyapunov functions, AED-ADT and
AED-AII methods, three cases of the system including sta-
ble and unstable subsystems, only stable subsystems and
only unstable subsystems are analyzed, and the criteria for
GUES of the closed-loop system are established. Besides,
the state feedback controller is designed. Finally, several
examples are given to verify the effectiveness of the results
in this paper.
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