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Augmented Proportional and Integral Observer Design for Fault Estima-
tion in Discrete-time Systems With Applications to Wind Turbine Systems
and Electro-mechanical Servo Systems
Zikang Li, Zhi-Wei Gao* ■ , and Yuanhong Liu

Abstract: In this paper, a fault estimation technique is addressed to simultaneously estimate system states, actuator,
and sensor faults for discrete-time dynamic systems. Specifically, an augmented system is constructed by defining
an extended state vector composed of original system states and actuator faults. For this augmented system, an
augmented proportional and integral observer is addressed to simultaneously estimate system states, actuator faults
as well sensor faults for a discrete-time linear system. A robust augmented proportional and integral observer is
designed for Lipschitz nonlinear systems subjected to unknown input uncertainties. The proposed approaches are
applied to wind turbine drive train system and electro-mechanical servo system for the validation, which have shown
satisfactory estimation performance.

Keywords: Augmented proportional and integral observer, augmented systems, electro-mechanical servo system,
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1. INTRODUCTION

In an industrial process or industrial automation system,
the system or component is prone to faults due to age or
unexpected reasons. A fault is defined as an unexpected
deviation from the normal system characteristics, which
could cause further damage or accidence if the fault was
not detected at early stages and no corresponding actions
were taken. Information redundancy-based fault diagno-
sis approaches can be categorized into model-based ap-
proach, signal-based method, and knowledge-based tech-
niques [1,2]. Fault diagnosis generally includes three tasks
such as fault detection, fault isolation and fault identi-
fication. The model-based approach has been a power-
ful tool if the system model is available to the designers,
and observer-based fault detection approach plays an im-
portant role for fault detection and diagnosis [3,4]. Fault
estimation has proven a powerful tool for fault diagno-
sis, which was initiated in 2000s, which can determine
the size and shape of the fault concerned [5,6]. In recent
years, there have been increasing solutions to fault esti-
mation problems [7-12]. Fault estimators include adap-
tive estimator [13-15], sliding-mode observer [10,16,17],
proportional-integral observer [5,18,19], augmented ob-

server [20,21] and descriptor observer [6,22,23].
Lipschitz nonlinear systems are an interesting topic

which has received much attention. For a class of unilat-
eral Lipschitz systems, a sensor fault observer was pre-
sented using linear matrix inequality approach [24]. A ro-
bust fault estimation approach was proposed in the work
by Kazemi et al. [25] for nonlinear Lipschitz systems
by maximizing Lipschitz constant and minimizing dis-
turbance attenuation level. In [26], two sliding-mode ob-
servers were designed to estimate actuator and sensor
faults respectively for uncertain Lipschitz nonlinear sys-
tems. By combining a generalized observer and an adap-
tive sliding mode observer, a fault reconstruction method
was addressed in [27] to reconstruct both sensor and actu-
ator faults where the effects of uncertainty and Lipschitz
nonlinearity were attenuated. In [28], a robust fault es-
timation technique was proposed to deal with Lipschitz
nonlinear systems subjected to process and sensor distur-
bances using unknown input observers for decoupling and
attenuating unknown input uncertainties.

It is noticed that most of the results above are fo-
cused on continuous systems, which are not applica-
ble to discrete-time systems. The discrete-time results
of fault and disturbance estimates can be found in the
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literature, e.g., in [18,29-32]. Specifically, discrete-time
proportional-integral observer designs were respectively
addressed by [18,29] for linear dynamic systems. For Lip-
schitz nonlinear systems, a descriptor augmented observer
approach was presented to simultaneously estimate sys-
tem states and unanticipated perturbations caused by un-
know sensor delays in [30]. In [31], descriptor augmented
system approach and unknow input proportional-integral
observer were combined to investigate fault estimation
problem for discrete-time nonlinear systems. In [32], an
augmented unknown input observer was designed to esti-
mate faults for both linear and Lipschitz nonlinear systems
and achieve robustness by decoupling unknown input un-
certainties.

Compared with the fruitful results of continuous sys-
tems, the results of fault estimation approaches for
discrete-time dynamic systems are relatively few. Mo-
tivated by the above, in this study, we will revisit the fault
estimate problem by using an alternative approach. This
paper aims to provide robust state and fault estimates for
discrete-time dynamic systems subjected to unknown in-
put perturbations and potential actuator and sensor faults.
Firstly, an augmented system is constructed by defining
an augmented state vector composed of system states and
actuator faults. Secondly, a proportional-integral observer
is applied to the augmented system for estimating sys-
tem sensor faults. The contributions of this paper are as
follows:

1) The estimator can accurately estimate the state, ac-
tuator fault, and sensor fault for linear discrete-time
systems.

2) The estimator can robustly estimate the state, actuator
fault, and sensor fault for discrete-time systems in the
presence of unknown input disturbance and Lipschitz
nonlinearity.

3) The gains of the robust estimator are obtained by
solving linear matrix inequality.

4) The upper limits of the unknown input uncertainties,
actuator and sensor faults do not need to be known for
the design.

5) Compared with the augmented discrete-time
unknown-input observer designed by [32], this esti-
mator in the proposed design does not need to satisfy
the disturbance decoupling condition, which may suit
a wider application of industrial systems.

6) The proposed fault estimation approaches are applied
to a wind turbine drive-train system and an electrome-
chanical servo system for the validation, which will
benefit predictive maintenance for improving the re-
liability, safety, and availability of the industrial sys-
tems.

This article is structured as follows: Section 2 addresses
a design approach for fault estimation for linear discrete-

time dynamic systems using augmented proportional-
integral observer. In Section 3, the fault estimator is ex-
tended to Lipschitz nonlinear discrete-time systems with
unknown input disturbances to estimate state, actuator,
and sensor faults. In Section 4, two engineering-oriented
systems (wind turbine drive train system and electrome-
chanical servo system) are used to verify the effectiveness
of the method. The paper is ended by the conclusion.

2. STATE AND FAULT ESTIMATOR FOR
LINEAR DISCRETE-TIME SYSTEMS

Consider the following discrete dynamic linear system

x(k+1) = Ax(k)+Bu(k)+Ea fa(k), (1)

y(k) =Cx(k)+Es fs(k), (2)

where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the con-
trol input vector, y(k) ∈ Rp is the measured output vector,
fa ∈ Rq is the actuator fault, fs ∈ Rr is the sensor fault.
A, B, C, Ea, and Es are known matrices with appropriate
dimensions, respectively. Clearly, x(k) is a simplified rep-
resentation of x(kTs), where Ts is the sampling interval.

Motivated by [18,29], we have Assumption 1.
Assumption 1: The sampling interval Ts is sufficiently

small such that the fault does not vary too much between
two consecutive sample instances. In this case, one can
have

fa(k+1)− fa(k) = ∆a(k), (3)

fs(k+1)− fs(k) = ∆s(k), (4)

which has a magnitude of the order O(T 2
s ) for all k.

Assumption 2 below is also useful for the observer de-
sign.

Assumption 2: The pair (A, C) is observable, and

rank
[

A− In Ea 0
C 0 Es

]
= n+q+ r. (5)

Let x̄(k) =
[
x(k)T fa(k)T

]T . We can establish an aug-
mentation system as follows:

x̄(k+1) = Āx̄(k)+ B̄u(k)+ Ē∆a(k), (6)

y(k) = C̄x̄(k)+Es fs(k), (7)

where

Ā =

[
A Ea

0 Iq

]
, B̄ =

[
B
0

]
, Ē =

[
0
Iq

]
, C̄ =

[
C 0

]
.

Based on the state space equations (6) and (7), the fol-
lowing forms of augmented observers can be designed

̂̄x(k+1) = Ā̂̄x(k)+ B̄u(k)+L [y(k)− ŷ(k)] , (8)

f̂s(k+1) = f̂s(k)+K [y(k)− ŷ(k)] , (9)
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ŷ(k) = C̄̂̄x(k)+Es f̂s(k), (10)

where ̂̄x ∈ Rn+q is the estimation of augmented state vec-
tor, f̂s ∈ Rr is the estimation of the sensor fault, L ∈
R(n+q)×p and K ∈ Rr×p are the proportional and integral
gains, respectively.

Theorem 1: Under Assumptions 1 and 2, for discrete
augmented state-space systems (6) and (7), there are ob-
servers in the form of (8)-(10), so that the state and fault
estimation errors are constrained within a small range of
O(T 2

s ).
Proof: Let ēx(k) = x̄(k)− ̂̄x(k) and e fs(k) = fs(k)−

f̂s(k). In terms of (6)-(9), we can have the estimation er-
rors as follows:

ēx(k+1) = x̄(k+1)− ̂̄x(k+1)

= (Ā−LC̄)ēx(k)−LEse fs(k)+ Ē∆a(k),
(11)

e fs(k+1) = fs(k+1)− f̂s(k+1)

= fs(k+1)− f̂s(k)−K[y(k)− ŷ(k)]

=−KC̄ēx(k)+(I −KEs)e fs(k)+∆s(k).
(12)

From (11) and (12), the error dynamic equation can be
obtained

ē(k+1) = Ãē(k)+E∆(k), (13)

where

ē(k) =
[

ēx(k)
e fs(k)

]
, Ã = A−KC, A =

[
Ā 0
0 Ir

]
,

K=

[
L
K

]
, C=

[
C̄ Es

]
, E=

[
Ē 0
0 Ir

]
, ∆(k)=

[
∆a(k)
∆s(k)

]
.

Observe that for any complex number z,

rank

[
zIn+q+r −A

C

]

= rank

zIn+q − Ā 0
0 zIr − Ir

C̄ Es



= rank


zIn −A −Ea 0

0 zIq − Iq 0
0 0 zIr − Ir

C 0 Es



=


rank

[
zIn −A

C

]
+q+ r, z ̸= 1,

rank
[

A− In Ea 0
C 0 Es

]
, z = 1.

(14)

If Assumption 2 is true, we can conclude that (A, C) is
observable according to (14). Therefore, a gain K can be

found to make A−KC stable. If ∆(k) in (13) is null, one
can find ēx(k)→ 0 and e fs(k)→ 0 when k → ∞. Accord-
ing to Assumption 1, ∆a(k) ∈ O(T 2

s ) and ∆s(k) ∈ O(T 2
s ),

which means that the estimation error can be limited to a
small region of O(T 2

s ). This completes the proof. □
Remark 1: An augmented proportional-integral ob-

server is addressed in Theorem 1, which is used to esti-
mate the system state, actuator fault and sensor fault at
the same time. In the papers [18,29], the input disturbance
and output disturbances are in the same forms, which can
be estimated by a proportional-integral discrete-time ob-
server. In Theorem 1, the actuator fault and sensor fault
are characterized by respective signals, which are esti-
mated by combining augmented system approach and a
proportional-integral observer.

3. STATE AND FAULT ESTIMATOR FOR
LIPSCHITZ SYSTEMS

Consider the following Lipschitz nonlinear system sub-
jected to process disturbances

x(k+1) = Ax(k)+Bu(k)+Ea fa(k)+Dd(k)

+ψ[x(k), u(k)], (15)

y(k) =Cx(k)+Es fs(k), (16)

where d(k) is the unknown input disturbance, and ψ[x(k),
u(k)] is a Lipschitz nonlinear function, and the other sym-
bols are defined as before.

Assumption 3: The nonlinear term ψ[x(k), u(k)] is lo-
cal Lipschitz relative to x in a region containing the origin,
and is consistent in u, that is

∥ψ[x(k), u(k)]−ψ[x̂(k), u(k)]∥ ≤ γ∥x(k)− x̂(k)∥.
(17)

Let x̄(k) =
[
x(k)T fa(k)T

]T , then one has

x̄(k+1) = Āx̄(k)+ B̄u(k)+ D̄d̄(k)

+Mψ[x(k), u(k)], (18)

y(k) = C̄x̄(k)+Es fs(k), (19)

where

M =

[
In

0

]
, Ā =

[
A Ea

0 Iq

]
, B̄ =

[
B
0

]
,

C̄ =
[
C 0

]
, D̄ =

[
D 0
0 Iq

]
, d̄(k) =

[
d(k)
∆a(k)

]
.

According to (18) and (19), the observer is designed as
follows:

̂̄x(k+1) = Ā̂̄x(k)+ B̄u(k)+Mψ[x̂(k), u(k)]

+L[y(k)− ŷ(k)], (20)

f̂s(k+1) = f̂s(k)+K[y(k)− ŷ(k)], (21)
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ŷ(k) = C̄̂̄x(k)+Es f̂s(k). (22)

Using (18)-(20), the estimation error equations are
given as follows:

ēx(k+1) = (Ā−LC̄)ēx(k)−LEse fs(k)+ D̄d̄(k)

+MΨ(k), (23)

e fs(k+1) =−KC̄ēx(k)+(I −KEs)e fs(k)+∆s(k),
(24)

where

Ψ(k) = ψ[x(k), u(k)]−ψ[x̂(k), u(k)]. (25)

The error dynamic equation can be obtained from (23)
and (24)

ē(k+1) = Ãē(k)+Dd(k)+ M̄Ψ(k), (26)

where

ē(k) =
[

ēx(k)
e fs(k)

]
, Ã = A−KC, A =

[
Ā 0
0 Ir

]
,

K =

[
L
K

]
, C =

[
C̄ Es

]
, D =

[
D̄ 0
0 Ir

]
,

d(k) =
[

d̄(k)
∆s(k)

]
, M̄ =

[
M
0

]
.

Lemma 1 [25]: Let X ∈ Rs×t , Y ∈ Rt×s, and F ∈ Rt×t ,
where F satisfies FT F ≤ I; x ∈ Rs and y ∈ Rs. For any
scalar α > 0, the following inequality holds

2xT XFY y ≤ 1
α

xT XXT x+αyTY TY y. (27)

The design goal here is to ensure system (26) to be ro-
bustly stable against the effect from the disturbance d(k),
that is,

ē(k)2 < µd(k)2, (28)

where
ē(k)2 =

(
∞

∑
k=0

ēT (k)ē(k)

) 1
2

,

d(k)2 =

(
∞

∑
k=0

d
T
(k)d(k)

) 1
2

.

(29)

For realizing this goal, the following theorem is given.
Theorem 2: If there is a symmetric positive definite

matrix P ∈ R(n+q+r)×(n+q+r), the appropriate matrix U ∈
R(n+q+r)×(q+r) and a scalar µ > 0, so that the following
linear matrix inequalities (LMI) hold

Ω 0 A
T

P−C
T
UT ÃT P 0

∗ −µI D
T

P 0 D
T

P
∗ ∗ −P 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

< 0, (30)

the error dynamic system (26) is robustly stable, which
means the observer (20)-(22) can simultaneously estimate
the state vector, actuator fault, and sensor fault in Lips-
chitz nonlinear system systems (15) and (16). In (30), Ω=

−P+2M
T

M+M
T

PM+ 1
µ

I, M =
[
γM̄ 0n+q+r,q 0n+q+r,r

]
,

and the observer gain can be calculated by K = P−1U .
Proof: Let the Lyapunov function

V (k) = ēT (k)Pē(k). (31)

Then we have

∆V (k)

=V (k+1)−V (k)

= ēT (k+1)Pē(k+1)− ēT (k)Pē(k)

= ēT (k)ÃT PÃē(k)+d
T
(k)D

T
PDd(k)

+Ψ
T (k)M̄T PM̄Ψ(k)+2ēT (k)ÃT PDd(k)

+2ēT (k)ÃT PM̄Ψ(k)+2d
T
(k)D

T
PM̄Ψ(k)

− ēT (k)Pē(k). (32)

Using (27) and (17), we can obtain

2ēT (k)ÃT PM̄Ψ(k)≤ ēT (k)ÃT PPÃē(k)

+Ψ(k)T M̄T M̄Ψ(k), (33)

2d
T
(k)D

T
PM̄Ψ(k)≤ d

T
(k)D

T
PPDd(k)

+Ψ(k)T M̄T M̄Ψ(k), (34)

Ψ
T (k)M̄T PM̄Ψ(k)≤ γ

2ex
T (k)M̄T PM̄ex(k), (35)

where ex(k) = x(k)− x̂(k).
Substituting (33)-(35) in to (32), we have

∆V (k)

≤ ēT (k)ÃT PÃē(k)+d
T
(k)D

T
PDd(k)

+2ēT (k)ÃT PDd(k)+ γ
2ex

T (k)M̄T PM̄ex(k)

+ ēT (k)ÃT PPÃē(k)+d
T
(k)D

T
PPDd(k)

+2Ψ(k)T M̄T M̄Ψ(k)− ēT (k)Pē(k)

= ēT (k)
(
ÃT PÃ+ ÃT PPÃ−P

)
ē(k)

+d
T
(k)
(

D
T

PD+D
T

PPD
)

d(k)

+2ēT (k)ÃT PDd(k)+ γ
2eT

x M̄T PM̄ex

+2Ψ(k)T M̄T M̄Ψ(k). (36)

Noticing that M =
[
γM̄ 0n+q+r,q 0n+q+r,r

]
we can get

γ2eT
x M̄T PM̄ex = ēT (k)M

T
PMē(k). Therefore, we can have

∆V (k)

≤ ēT (k)
(

Ω1 −P+M
T

PM
)

ē(k)
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+d
T
(k)
(

D
T

PD+D
T

PPD
)

d(k)

+2ēT (k)ÃT PDd(k)+2γ
2eT

x (k)M̄
T M̄ex(k)

= ēT (k)(Ω1 +Ω) ē(k)

+d
T
(k)
(

D
T

PD+D
T

PPD
)

d(k)

+2ēT (k)ÃT PDd(k)− 1
µ

ēT (k)ē(k)+µd
T
(k)d(k)

=

[
ēT (k)

d
T
(k)

]T [
Ω1 +Ω ÃT PD

∗ Ω2

][
ē(k)
d(k)

]
, (37)

where Ω1 = ÃT PÃ + ÃT PPÃ, and Ω2 = D
T

PD +

D
T

PPD−µI.
Let us discuss the condition to ensure the following in-

equality to hold[
Ω1 +Ω ÃT PD

∗ Ω2

]
< 0, (38)

which is equivalent to the following[
Ω+ ÃT PPÃ 0

∗ D
T

PPD−µI

]

−

[
ÃT P

D
T

P

]
(−P)−1

[
PÃ PD

]
< 0.

Using the well-known Schur complement theorem, the
equation above can be transformed intoÃT PPÃ+Ω 0 A

T
P−C

T
UT

∗ D
T

PPD−µI D
T

P
∗ ∗ −P

< 0,

(39)

where

Ã = A−KC, (40)

ÃT PT =
(

A−KC
)T

P

= A
T

P−C
T

K
T

P = A
T

P−C
T
UT . (41)

The left-hand of (39) can be rewritten asΩ 0 A
T

P−C
T
UT

∗ −µI D
T

P
∗ ∗ −P


−

ÃT P 0

0 D
T

P
0 0

[−I 0
0 −I

]−1 [PÃ 0 0
0 PD 0

]
< 0.

(42a)

Applying the Schur complement theorem to (42a), the
inequality (39) becomes

Ω 0 A
T

P−C
T
UT ÃT P 0

∗ −µI D
T

P 0 D
T

P
∗ ∗ −P 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ −I

< 0. (42b)

It is noticed that (42b) is the same as (30). Therefore,
under the condition (30) or (42b), we have (38) holds.
Therefore, in terms of (37) and (38), we can have

∆V (k)≤− 1
µ

ēT (k)ē(k)+µd
T
(k)d(k), (43)

j

∑
k=0

∆V (k)≤− 1
µ

j

∑
k=0

ēT (k)ē(k)

+µ

j

∑
k=0

d
T
(k)d(k), ∀ j > 0. (44)

Under zero initial conditions, it is followed from (44)

V ( j+1)≤− 1
µ

j

∑
k=0

ēT (k)ē(k)+µ

j

∑
k=0

d
T
(k)d(k).

(45)

Therefore, we have

1
µ

j

∑
k=0

ēT (k)ē(k)≤ µ

j

∑
k=0

d
T
(k)d(k)

−V ( j+1)≤ µ

j

∑
k=0

d
T
(k)d(k),

(46)

which means ē(k)2 < µd(k)2 immediately. □
Remark 2: In the literature [28,32], augmented systems

approach and unknow input observers were combined to
achieve a robust fault estimation by decoupling unknown
input uncertainties. Specifically, the paper [28] handled a
dynamic system with partially decoupled unknown input
uncertainties, which is technique for continuous dynamic
system. The paper [32] was developed for discrete-time
dynamic systems, which required the unknown input dis-
turbance to meet decoupling condition. In the technique
in Theorem 2 of this study, the unknow input disturbance
does not need to meet the decoupling condition, where the
disturbance is attenuated by using linear matrix inequality
technique. More specifically, µ can be minimised by solv-
ing the matrix inequality (30) to reduce the effect of the
external disturbance on the fault estimation and achieve a
robust estimation of actuator faults and sensor faults.
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4. SIMULATION STUDY

4.1. Simulation study on the drive train subsystem in
a 4.8 MW wind turbine

In this section, the schematic figure of the 4.8 MW wind
turbine system is shown by Fig. 1, from which one can see
the wind turbine consists of four subsystems: blade and
pitch system, drive train system, generator and converter,
and controller. The parameter definition is as follows: vw is
the wind speed acting on the blade; τr is the rotor torque;
τg is the generator torque; ωr is the rotor speed; ωg is the
generator speed; βr is the pitch position reference; βm is
the measured pitch position; ωr,m is the measured rota-
tional speed of the rotor; ωg,m is the measured speed of
the generator; τg,m is the measured generator torque; τg,r

is the generator torque reference; Pr is the power refer-
ence; and Pg is the power generated by the generator. The
wind turbine controller works in two modes [33,34]: (a)
Control mode 1: set βr = 0 so that the wind turbine works
in power optimization region. (b) Control mode 2: set the
controller as a PI controller so that the wind turbine works
in power reference following region.

In this study, the drive train system of the 4.8 MW wind
turbine is considered to demonstrate the effectiveness of
the proposed method. The state space equation of the drive
train system can be represented by [33]

Jrω̇r(t) = τr(t)−Kdtθ∆(t)− (Bdt +Br)ωr(t)

+
Bdt

Ng
ωg(t), (47)

Jgω̇g(t) =
ηdtKdt

Ng
θ∆(t)+

ηdtBdt

Ng
ωr(t)

−
(

ηdtBdt

Ng
2 +Bg

)
ωg(t)− τg(t), (48)

θ̇∆(t) = ωr(t)−
1

Ng
ωg(t), (49)

where Jr is the moment of inertia of the low-speed shaft,
Jg is the moment of inertia of the high-speed shaft, Bg and
Br are the friction coefficients of the high-speed and low-
speed shafts, respectively, Bdt is the torsional damping co-
efficient, Kdt is the torsional stiffness, Ng is the gear ratio,
ηdt is the efficiency of the drive train, θ∆(t) is the torque

Fig. 1. Block-diagram of the wind turbine benchmark
model from [34], redrawn by the authors.

Table 1. Values of the drive train system parameters.

Parameter Value
Jr 55×106 kg·m2

Br 7.11 Nms
rad

Bdt 775.49 Nms
rad

Ng 95
Jg 390 kg·m2

Bg 45.6 Nms
rad

Kdt 2.7×109 Nms
rad

ηdt 0.97

angle of the drive train. The system parameter values of
the drive train system used in this paper are taken from
the paper [33], as shown in Table 1.

Substituting the parameters in Table 1 into the wind tur-
bine drive train system (47)-(49) and discretizing them,
the parameter matrix of the linear discrete system in the
form of (1) can be obtained as follows:

A =

0.9976 0.0000 −0.4844
3.5099 0.9619 697.1662
0.0099 −0.0001 0.9606

 ,
B = 10−4 ×

0.0000 −0.0000
0.0000 −0.2531
0.0000 0.0000

 , C =

[
1 0 0
0 1 0

]
,

Ea = 10−4 ×

−0.0000
−0.2531
0.0000

 , Es =

[
1
0

]
,

and the state vector is x =
[
ωg ωr θ∆

]T .
The second actuator has 1% effectiveness loss from

2500 seconds to 3500 seconds. The first sensor has sinu-
soidal disruption after 1000 seconds, that is,

fs(t) =

{
0.1sin(0.008t), t ≥ 1000,

0, else.
(50)

We use the proposed discrete-time observer in the form
of (8)-(10) with the sample time 0.01 seconds. The ob-
server gain below is chosen so that the estimation error
dynamics is stable

L =


−0.0000 −0.0001
−0.0003 1.9861
−0.0000 0.0014
0.0082 −43.5509

 , K =
[
1.0000 −0.0006

]
.

(51)

The simulation is run for 4900 seconds. Figs. 2 and 3
show the states ωg and ωr (blue solid lines) of the wind
turbine drive train system and their estimates (red dotted
lines) under faulty conditions. The results reveal that the
estimates obtained by this algorithm can accurately track
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Fig. 2. Rotor speed and its estimate.

Fig. 3. Generator speed and its estimate.

Fig. 4. Second actuator fault and its estimation.

Fig. 5. First sensor fault and its estimation.

the actual states. The actuator and sensor fault and their es-
timates are depicted by Figs. 4 and 5, from which one can
see the fault signals are successfully reconstructed. By ob-
serving the estimated fault signals, we can clearly identify
the time when the faults occur and determine the size and
shape of the faults. Although the occurring time-interval
of the two faults have overlapped, and the types of the two

faults are different, the tracking performance of the pro-
posed estimator is excellent.

4.2. Simulation study on an electromechanical servo
system

In this section, an electromechanical servo system is con-
sidered to demonstrate the effectiveness of the proposed
algorithm. The model can be described by the Lipschitz
nonlinear system [35]

x(k+1) =
[

0.0468 0.1564
0.2083 0.8154

]
︸ ︷︷ ︸

A

[
x1(k)
x2(k)

]

+

[
39.2076
11.5299

]
︸ ︷︷ ︸

B

u(k)+ψ(x(k),u(k))

+Ea fa(k)+Dd(k), (52)

y(k) =
[

1 0
0 1

]
︸ ︷︷ ︸

C

[
x1(k)
x2(k)

]
+Es fs(k). (53)

x1(k) and x2(k) are the load angular position and the
shaft speed, respectively. The input voltage u(k) = 2.5,
ψ(x(k),u(k)) = [0, −0.005sin(x1(k))]T , and the sampling
time is 0.1 seconds.

The distribution matrices are considered as follows:

D =

[
0.1
0

]
, Ea = B,Es =

[
1
0

]
. (54)

Choosing γ = 0.005, and µ = 180, one can solve (30)
in Theorem 2 to yield

L =

1.0637 0.2894
0.4916 0.9194
0.0260 0.0030

 , K =
[
0.0739 −0.3372

]
.

(55)

The actuator fault is the discrete-time signal given as
follows:

fa(k) =



0.5sin(0.2πk), 5 ≤ k < 10,

−0.125k+0.5sin(0.2πk), 10 ≤ k < 12,

−0.1(k−12)2 +0.5sin(0.2πk),

12 ≤ k < 15,

0, else.
(56)

The input disturbance signal is assumed to be

d(k) = 0.1sin(50πk). (57)

In the discrete-time signals above, k means kT actually
where T is the sampling time and k is an integer.

The first sensor is assumed to have 25% effectiveness
loss in the measurement after 25 seconds.
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Fig. 6. The load angular position and its estimate.

Fig. 7. The shaft speed and its estimate.

Fig. 8. Actuator fault and its estimate.

Fig. 9. Sensor fault and its estimation.

Figs. 6 and 7 show the system states and their estimates,
from which one can see the tracking performance is satis-
factory. The effects from the actuator fault on the system
states are significant which are clearly visible. The sensor
faults occurring at 25 seconds make the estimated curves
have dips, but the estimated curves recover shortly, achiev-
ing a robust state estimate. The actuator and sensor faults
and their estimates are shown in Figs. 8 and 9. It is noted

that the sensor faults occurring at 25 seconds make the es-
timated curve of the actuator fault has an instant drop but
the estimated curve recovers tracking within 2.5 seconds,
which is excellent. The effect of the actuator fault on the
estimate of sensor fault is negligible, therefore, the esti-
mation performance of the sensor fault is satisfactory.

5. CONCLUSION

A technique for simultaneous estimation of state and
multiple faults has been addressed which can be used
for both linear and Lipschitz nonlinear discrete systems
corrupted by unknown input disturbances. Based on Lya-
punov stability theorem, the condition of estimation er-
ror stability has been analyzed, the unknown input distur-
bance can be attenuated by using LMI technology to seek
an optimal observer gain to ensure the estimation robust-
ness. Simultaneous state and fault estimation can be real-
ized by combining augmented system approach and pro-
portional integral observer technique. Two engineering-
oriented systems (wind turbine drive system and elec-
tromechanical servo system) have been used to verify
the feasibility of the proposed design. The techniques of
this study are developed for discrete-time systems, which
more suit real-time applications of various engineering
systems including wind turbine systems and electrome-
chanical servo systems.

The proposed simultaneous state and fault estimation
technique would be applied to the fault diagnosis for elec-
tric vehicles [36] and extended to engineering systems
with high nonlinearities such as complex robotic systems
[37] and offshore energy systems [38], which could be po-
tential topics for further research.
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