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The Dynamical Model and the Slithering Controller of Continuous Snake-
like Robot on Smooth Surface
Koki Harada, Ryo Ariizumi* ■ , Toru Asai, and Shun-ichi Azuma

Abstract: This paper introduces a new dynamical model for a continuous snake-like robot and a controller yielding
slithering motion on a smooth curved surface. Smooth curve models are common tools in studies on snake-like
robots, however, the application of those models is limited to cases without sideslips. Our new model can deal
with locomotion with sideslips on curved surfaces. Moreover, the numerical simulation of climbing up the surface
of a cylinder based on our model reveals the important role of the tangential friction of the body, which was
underestimated by previous studies. The result illuminates the trade-off relation between the energy efficiency and
the reachability of the snake-like robots.
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NOMENCLATURE

t The time

σ The arc-length parameter

xxx(σ , t) The position of the body segment at (σ , t)

{eeer,eeep,eeey} The backbone frame along the curve xxx

{eeer,eeeb,eeen} The Darboux frame along the curve xxx

ωωωbc(σ , t) The angular velocity of the backbone
frame at (σ , t) with respect to itself

ωωωd(σ , t) The angular velocity of the backbone
frame at (σ , t) with respect to
{eeer(σ , t),eeeb(σ , t),eeen(σ , t)}

ω̃ωωd(σ , t) The angular velocity of the Darboux
frame at (σ , t) with respect to itselfωr(σ , t)

ωp(σ , t)
ωy(σ , t)

 The components of ωωωbc(σ , t)

ωr(σ , t)
ωb(σ , t)
ωn(σ , t)

 The components of ωωωd(σ , t)

ω̃r(σ , t)
ω̃b(σ , t)
ω̃n(σ , t)

 The components of ω̃ωωd(σ , t)

1. INTRODUCTION

Snakes have notable performance in locomotion. The
legless creatures can slither on various terrains such as
tree branches or rocky fields by fitting their bodies onto
the surfaces. The high mobility on various terrains and the
stability on the surfaces have induced research on snake-
like robots [1,2]. These robots are expected to be useful in
rescue missions, for example.

Typical snake-like robots consist of serially connected
joints to imitate living snakes. The numerous joints make
it valid to regard a snake-like robot as a smooth curve.
Expressing the body shape and orientation of a snake-like
robot as a smooth curve and a moving frame on it has been
popular in gait design research [2-5].

The smooth curve model approach is also used in the
mechanical analysis of snake-like robots. Yamada and Hi-
rose [6] studied the relationship between friction, internal
force, and input torque on a snake. They gave significant
insight into the slithering and sprinting gaits, also known
as the sinus-lifting gait. Date and Takita [7] worked on
an optimal control law for a snake-like robot based on a
smooth curve dynamic model. They also discretized the
proposed controller and examined its efficacy using a real
snake-like robot. Ha [8] focused on the compliance of the
continuous snake-like robots. He revealed that lateral un-
dulatory locomotion with simple tension control sponta-
neously yields various gaits presented in the previous stud-
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ies. Travers et al. [9] and Rollinson et al. [10] also took no-
tice of the compliance. Travers et al. proposed the adaptive
control technique to unknown terrains based on the com-
pliance of the parameters of the desired shape of the robot
written as a smooth curve. Rollinson et al. proposed the
gait that simultaneously achieves locomotion and adapta-
tion of the robot shape to 3D terrains including the human
body.

The smooth curve model is often employed in soft-
robotics. Mochiyama [11] proposed an approach for the
system theory of soft elastic rods. In his study, he utilized
the smooth curve theory closely related to the smooth
curve model of the snake-like robot. Xun et al. [12] mod-
eled complex dynamics of soft slender robots includ-
ing collision. In their framework, the Cosserat-rod model
plays the major role, where the smooth curve model forms
the foundation. Gazzola et al. [13] and Zhang et al. [14]
examined snake locomotion on a flat plane as a test prob-
lem of their dynamical models for a filament. They imple-
mented simple models for muscle of a snake and success-
fully generated lateral undulation of a snake by activating
its muscle.

One of the common assumptions on the models of
the snake-like robots of the previous studies was the ab-
sence of sideslips [6-8,15-17]. However, in many practi-
cal situations, the validity of this assumption is question-
able. Ma [18] exemplified that snake-like robots always
sideslipped when they slithered. From our past experi-
ments, a wheeled snake-like robot sideslipped even though
it was equipped with rubber wheels and slithered on a mat
to achieve a high friction coefficient. Thus, it is also a com-
mon assumption that a snake-like robot can sideslip and
assume viscous friction [19-22] when using a multilink
model.

Applying the viscous friction model to the smooth
curve model also seems to be a natural idea. However,
this change requires a completely different scheme to de-
termine the motion of the robot from the existing ones.
The difficulty lies in the determination of internal forces.
In the case of the multilink model, the internal forces can
be obtained and removed from the equation of motion by
a simple algebraic calculation. However, some of the lin-
ear equations in the case of a multilink model can cor-
respond to partial differential equations in the case of a
smooth curve model. Thus, such an algebraic technique
is sometimes not sufficient to remove or calculate the in-
ternal forces. Yamada and Hirose [6] handled the internal
force distribution in their work, and Date and Takita [7]
derived a method to eliminate the internal forces from the
equation of motion. Though, their methods are not directly
applicable under viscous friction; the assumption that the
robot does not sideslip is a critical factor for their meth-
ods. Our research focuses on the determination problem of
the internal force distribution and develops a new smooth
curve dynamic model that can describe much wider loco-

(a) The admissible velocity of the related studies
[6,7]. In [6], the body shape also needs to be pe-
riodic.

(b) The admissible velocity of this paper. In addition
to the admissible velocity of the previous studies,
the velocity is allowed in the normal direction of
the body axis.

Fig. 1. The difference of the admissible velocity (arrows)
between the related studies [6,7] and our study.

motion.
This paper consists of 7 sections. Section 2 describes

the difference between our study and the previous studies
in more detail. Section 3 introduces the kinematics of the
continuous snake-like robot. Section 4 describes the dy-
namical model and the determination problem of the in-
ternal force. In Section 5, we derive simple controllers for
the continuous robot as an application of our model. The
numerical simulation based on our model is illustrated in
Section 6, and the conclusions of this paper are given in
Section 7.

2. DIFFERENCES FROM THE RELATED
STUDIES

Date and Takita [7] dealt with an optimal control law
for a continuous snake-like robot that does not sideslip on
a smooth surface. Exploiting the constraint on sideslips,
he derived a method to calculate the body acceleration
from the input torque distribution. Yamada and Hirose [6]
worked on the internal force distribution of a continuous
snake model with infinite length. Even though they did
not deal with the time development of the shape, they de-
rived the equations of equilibrium of forces and torques
of the infinitesimal segment of the body, and they gave
profound insights into serpentine locomotion and sinus-
lifting locomotion, which were common among various
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snake species.
Our model shares the basic structure with them. How-

ever, there exists a crucial difference that calls for a com-
pletely different handling of the internal force distribution
of the robot. Though Date and Takita [7] put a constraint
on sideslips (Fig. 1(a)), our model allows the segment to
do that (Fig. 1(b)). This mitigation originated in real-world
snake-like robots. The constraint is a common assumption
for wheeled snake-like robots. However, in the real world,
the wheels often slip in sideways, and the robots’ locomo-
tion fails to match the expectation.

The sideslip can easily be accounted for only by the
change in the friction model. However, the loss of the con-
straint results in a crucial difference. The method in [7]
for calculating the acceleration fully depends on the con-
straint. The constraint forces the acceleration in the tan-
gent direction of the body to be the same everywhere in
the body. Therefore, the internal forces of the robot are
easily eliminated from the equation of motion by integrat-
ing each of the equations of the infinitesimal segments.
Without the constraint on sideslips, the calculation of the
time development must deal with the internal force dis-
tribution. However, the previous study [6] on the internal
force distribution cannot be applied directly in our case.
Their study assumes the constant frictional force distribu-
tion throughout the robot, which is derived from the con-
straint on sideslips. In addition, the two kinds of locomo-
tion they examined consist of a periodic undulation of the
body, which leads to a periodic distribution of the internal
force. Their calculation method for the internal force re-
lies on both the constant frictional force distribution and
the periodicity, thus the method is not applicable to our
model which allows any smooth body shape.

The studies by Gazzola et al. [13] and Zhang et al. [14]
develop the dynamical models for filaments and, as a test
for the models, examine the snake locomotion on a flat
plane by regarding the snake as a filament. The study by
Xun et al. [12] does not directly examine snake locomo-
tion, however, they handle similar slender soft robots and
examine the dynamics including collision. The models
support sideslips, however, also require the elastic prop-
erties of the filaments. One of the purposes of the continu-
ous model for snake-like robots is to provide an abstracted
model for various snake-like robots including multi-link
ones. However, the requirement for the material informa-
tion restricts the application of the models. In addition,
in their numerical simulation, they regard the muscle of
the snake as the input. Most snake-like robots use revolu-
tionary motors as their input, thus, the muscle-based input
prevents direct application to ordinary snake-like robots.

As [2-8], our continuous model is intended to be an ab-
straction for snake-like robots including multi-link ones.
Thus, the model is constructed without information about
any elastic properties. At the same time, as [13,14], our
model describes locomotion with sideslips. In addition to

the above, the model needs to be applicable to even non-
flat terrain. In the following sections, we introduce the
novel dynamical model dealing with the problems above.

3. KINEMATICS OF CONTINUOUS
SNAKE-LIKE ROBOTS

Most snake-like robots have many joints, which let the
robots take various 3-dimensional postures. However, they
keep lying on the surface of the terrain during their mo-
tion. Therefore, we focus on the locomotion of the robot
on a smooth surface in R3.

3.1. Representation of robot posture
The shape of a curve is described by moving-frame with

some form-specifying function, e.g. curvature and torsion
for the Frenet-Serret frame. In the previous studies on
snake-like robots, they used the backbone frame (the back-
bone curve) [2-7] to describe both the robot shape and the
roll posture in the space. However, considering the con-
straint on the robot’s position, the Darboux frame is suit-
able to describe the transition of the robot’s shape along
the surface. The two frames are not identical, and both are
used throughout our paper. Therefore, making clear the
difference helps in understanding both frames and their
role in the paper.

The backbone frame is defined with a curve and a vector
field on it. Let the length of the robot be denoted by a
constant real positive number L. Then the body curve of
the robot is described by a smooth map

xxx : (σ , t) ∈ [0, L]×T 7→ xxx(σ , t) ∈ R3, (1)

where t is the time, and T is the time interval we con-
sider. The scalar σ is the arc-length parameter. To describe
real-world robots, the curve should have the concept of
the back side and the belly side. Defining a smooth vector
field eeey : [0, L]×T→ R3 on the curve meets the request.
More specifically, eeey(σ , t) needs to be a unit vector point-
ing to the direction of the back at xxx(σ , t). As shown in
Fig. 2, the body axis of the snake lies in between the belly
and the back, thus the vector eeey(σ , t) should be orthog-
onal to the body axis vector eeer(σ , t) := ∂σxxx(σ , t), where
∂σxxx(σ , t) means the partial derivative of xxx(σ , t) with re-
spect to σ . Similar notation is used for other variables and

Fig. 2. Belly-back line (eeey) and body axis (eeer).
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Fig. 3. Directional relationship between Darboux frame
and the backbone frame.

higher derivatives. Let us define a unit vector eeep(σ , t) by
eeep(σ , t)=eeey(σ , t)×eeer(σ , t). Then the triple (eeer,eeep,eeey) de-
fines a moving frame called the backbone frame along the
curve xxx.

On the one hand, the backbone frame is defined only
by the curve shape xxx and the back side indicator eeey with-
out any dependencies on the surrounding space. On the
other hand, the Darboux frame depends on xxx and the sur-
face where the curve lies. Let the two-dimensional smooth
surface in R3 be denoted by S and φ : S → R2 be a local
coordinate system of S. In this paper, for the sake of sim-
plicity, it is assumed that S is covered by a single local
coordinate chart. In other words, φ is a diffeomorphism
between S and R2. Let u, v be local coordinates of S and
define a unit vector eeen(u,v) as follows:

eeen(u,v) =
∂uφ−1([u,v]T )×∂vφ−1([u,v]T )
∥∂uφ−1([u,v]T )×∂vφ−1([u,v]T )∥

. (2)

This definition makes eeen(u,v) normal to the surface S
and also normal to the body axis vector eeer of the robot
lying on S. By defining a vector eeeb(σ , t) by eeeb(σ , t) =
eeen(φ(xxx(σ , t)))×eeer(σ , t), the triple (eeer,eeeb,eeen) becomes the
second moving frame on xxx called the Darboux frame.

As shown in Fig. 3, the two frames share eeer(σ , t) and
are different from each other by an angle θ(σ , t) around
eeer(σ , t). The vector field eeen is fixed on the space, thus
the angle θ(σ , t) tells the roll orientation of the robot on
the surface. The backbone frame tells us the robot’s pos-
ture on its own without any help from the Darboux frame.
However, the position and the velocity of each body seg-
ment belong to the tangent bundle T S of S, and the pair
(eeer(σ , t), eeeb(σ , t)) can be identified with a basis of each
Txxx(σ ,t)S. Therefore, the Darboux frame is better suited for
the description of the dynamics of the robot.

For the discussion in the following sections, we in-
troduce a property of the Darboux frame and some def-
initions. Let the vector eeen(φ(xxx(σ , t))) be abbreviated to
eeen(σ , t). It is known that differential equations like the
Frenet-Serret formulas hold in the case of the Darboux

frame

∂σeeer(σ , t) = κg(σ , t)eeeb(σ , t)+κn(σ , t)eeen(σ , t), (3)

∂σeeeb(σ , t) =−κg(σ , t)eeer(σ , t)+τg(σ , t)eeen(σ , t), (4)

∂σeeen(σ , t) =−κn(σ , t)eeer(σ , t)−τg(σ , t)eeeb(σ , t). (5)

The functions τg(σ , t), κg(σ , t), κn(σ , t) are called
geodesic torsion, geodesic curvature, and normal cur-
vature, respectively. Note that these functions depend on
the partial derivatives of eeer, eeeb, and eeen, and the deriva-
tions are defined in the open interval (0,L). Therefore,
let the values of the functions at σ = 0,L be defined by
the one-sided derivations of the vectors. Note also that,
in this paper, each component of the vectors eeer(σ , t),
eeep(σ , t), eeey(σ , t), eeeb(σ , t), eeen(σ , t) is represented in the
world frame.

3.2. The velocity constraint on the robot
The constraint that the robot slithers on the surface S

also restricts the possible velocity and angular velocity.
We introduce the explicit representations of these con-
straints in this section.

The constraint is described as the following proposition
(the definition of ωb(σ , t) is given later).

Proposition 1: On the surface S, there exist functions
vr(σ , t) and vb(σ , t) such that the following equations
hold:

∂txxx(σ , t) = vr(σ , t)eeer(σ , t)+ vb(σ , t)eeeb(σ , t), (6)

κn(σ , t)vr(σ , t)+ τg(σ , t)vb(σ , t)+ωb(σ , t) = 0. (7)

The existence of vr(σ , t) and vb(σ , t) and (6) are easy to
check. From the assumption, each body segment is bound
on the surface. Therefore, the velocity of the segment
∂txxx(σ , t) needs to be described by eeer(σ , t), eeeb(σ , t), and
some coefficient functions vr(σ , t) and vb(σ , t).

The proof of (7) is slightly complicated. Before deriving
the expressions, it is necessary to define the angular veloc-
ity of the segment. The dynamics of the robot is discussed
on the Darboux frame, however, the frame is independent
of the rotational movement of the robot. Instead, the angu-
lar velocity must be defined as that of the backbone frame
fixed to the segment. Let the angular velocity vector of the
backbone frame at (σ , t) with respect to itself be denoted
by

ωωωbc(σ , t) =
[
ωr(σ , t) ωp(σ , t) ωy(σ , t)

]T
. (8)

Let ωωωd(σ , t) be the Darboux frame representation of the
same vector. Thus, by the transformation of the vectors
between the frames, ωωωd(σ , t) can be described as follows:

ωωωd(σ , t) :=

ωr(σ , t)

ωb(σ , t)

ωn(σ , t)
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:= Rd(σ , t)T Rb(σ , t)ωωωbc(σ , t), (9)

where Rb(σ , t) and Rd(σ , t) ∈ SO(3) are defined as

Rb(σ , t) =
[
eeer(σ , t) eeep(σ , t) eeey(σ , t)

]
, (10)

Rd(σ , t) =
[
eeer(σ , t) eeeb(σ , t) eeen(σ , t)

]
. (11)

Equation (7) is derived from the smoothness of the
time-variant curve xxx as follows:

Proof: From (6),

eeen(σ , t)T
∂txxx(σ , t) = 0, (12)

∂σeeen(σ , t)T
∂txxx(σ , t)+eeen(σ , t)T

∂σtxxx(σ , t) = 0, (13)

hold. By the smoothness of xxx(σ , t), the partial derivative
of ∂txxx(σ , t) with respect to σ can be described as follows:

∂σtxxx(σ , t) = ∂teeer(σ , t)

= (Rb(σ , t)ωωωbc(σ , t))×eeer(σ , t)

= ωy(σ , t)eeep(σ , t)−ωp(σ , t)eeey(σ , t). (14)

Note that, from (9), ωp(σ , t), and ωy(σ , t) can be repre-
sented by ωωωd(σ , t) as follows:

ωp(σ , t) = ωb(σ , t)eeeb(σ , t)Teeep(σ , t)

+ωn(σ , t)eeen(σ , t)Teeep(σ , t), (15)

ωy(σ , t) = ωb(σ , t)eeeb(σ , t)Teeey(σ , t)

+ωn(σ , t)eeen(σ , t)Teeey(σ , t). (16)

By substituting (15) and (16) for ωp(σ , t) and ωy(σ , t) in
(14), ∂σtxxx(σ , t) can be written as follows (we omitted the
notation of the variables (σ , t)):

∂σtxxx = (ωbeeeT
b eeey+ωneeeT

n eeey)eeep − (ωbeeeT
b eeep+ωneeeT

n eeep)eeey

= ωb
((

eeeT
b eeey
)

eeep−
(
eeeT

b eeep
)

eeey
)

+ωn
((

eeeT
n eeey
)

eeep−
(
eeeT

n eeep
)

eeey
)

= ωbeeeb × (eeep ×eeey)+ωneeen × (eeep ×eeey)

=−ωbeeen +ωneeeb. (17)

By substituting (5), (6), and (17) into (13), we get the
angular velocity constraint:

κn(σ , t)vr(σ , t)+ τg(σ , t)vb(σ , t)+ωb(σ , t) = 0.
(18)

□

Equations (6) and (7) are the velocity constraints on the
robot, which tells the robot locomotion consists of two-
dimensional translation, rolling movement, and yawing on
the surface.

Let ω̃ωωd(σ , t) be the angular velocity vector of the Dar-
boux frame written in the Darboux frame, and ω̃r(σ , t),
ω̃b(σ , t), ω̃n(σ , t) be the components of ω̃ωωd(σ , t), i.e.,

ω̃ωωd(σ , t) = [ω̃r(σ , t), ω̃b(σ , t), ω̃n(σ , t)]T . (19)

Then, the proof of (7) yields the following corollary:

Corollary 1:

ω̃b(σ , t) = ωb(σ , t), (20)

ω̃n(σ , t) = ωn(σ , t). (21)

Proof: The Darboux frame and the backbone frame
share eeer(σ , t), therefore the time-derivative of eeer(σ , t) can
also be written as

∂teeer(σ , t) = ω̃n(σ , t)eeeb(σ , t)− ω̃b(σ , t)eeen(σ , t). (22)

By comparing this equation with (17), the corollary is
derived. □

From these equations, we can conclude that the only
difference between the angular velocity of the Darboux
frame and that of the backbone frame is in the rolling on
the surface.

4. DYNAMICS OF CONTINUOUS SNAKE-LIKE
ROBOTS

As mentioned in the previous section, the essential mo-
tion of the robot segment is classified into three—two-
dimensional translation, rolling, and yawing on the sur-
face. Our goal is to derive the equations of motion for
these three movements and the method to deal with their
time development.

4.1. The forces on the infinitesimal segment
The forces on the segment are classified into gravity,

frictional forces, internal force, and constraint force to
keep the robot on the surface. As in the previous study [7],
let the segment have the length dσ and the density ρ . Then
we derive the force distribution on the infinitesimal seg-
ment by taking the limit as dσ → 0.

Let us denote the gravitational acceleration vector as ggg,
then the gravitational force on the segment is represented
as ρdσggg.

To allow the robot to sideslip, we chose the viscous fric-
tion model for the frictional forces. The friction force vec-
tor fff fric(σ , t) is defined as follows:

fff fric(σ , t) =−crdσvr(σ , t)eeer(σ , t)

− cbdσvb(σ , t)eeeb(σ , t). (23)

In the above definition, the constants crdσ and cbdσ

stand for the viscous coefficient in the tangential and
normal directions of the body, respectively. Directional
anisotropy of the friction is a critical factor for the slith-
ering locomotion of snake-like robots [19], and is a com-
mon assumption for slithering snake-like robots [19-22].
Therefore, we also assume the frictional anisotropy i.e.,
cr < cb in the present paper.

The internal forces act on both ends of the segment. Let
the internal force distribution be denoted by FFF : [0, L]×
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T→R3, where FFF(σ , t) is a vector in the world coordinate.
Then the net internal force on the segment is described as

FFF(σ +dσ , t)−FFF(σ , t)≃ ∂σFFF(σ , t)dσ . (24)

At both ends of the robot, the forces FFF(0, t) and FFF(L, t)
are equal to zero.

The forces described above can have the component
in the normal direction of the surface. Therefore, a con-
straint force distribution is necessary to keep the entire
robot body on the surface. Let the normal force distri-
bution be denoted by N(σ , t)eeen(σ , t), where N is a posi-
tive real-valued function from [0, L]×T to R. The vector
N(σ , t)dσeeen(σ , t) can be referred to as a normal reaction
from the surface.

As in the existing studies [6,7], we assume that there
exists an internal torque distribution TTT : [0, L]×T → R3

that can be used as the input of the robot.
The torques from the gravity, the friction, and the nor-

mal reaction are the second-order terms of dσ . By taking
dσ as a small number, these torques can be negligible. The
torque from the internal force remains as the first-order
term of dσ , as is shown in the study [6]. The torque term
from the internal force is written as eeer(σ , t)×FFF(σ , t)dσ .

From the discussion above, the forces acting on the
small segment can be taken together into

FFF seg(σ , t)dσ

= (ρggg+∂σFFF(σ , t)+N(σ , t)eeen(σ , t)

− crvr(σ , t)eeer(σ , t)− cbvb(σ , t)eeeb(σ , t))dσ , (25)

and the torques are going to be

TTT seg(σ , t)dσ = TTT (σ +dσ , t)−TTT (σ , t)

+eeer(σ , t)×FFF(σ , t)dσ

= (∂σTTT (σ , t)+eeer(σ , t)×FFF(σ , t))dσ ,
(26)

where FFF seg(σ , t) and TTT seg(σ , t) are the force and torque
distribution for the infinitesimal segment, respectively.

4.2. The equations of motion of the robot segment
As mentioned in Subsection 3.2, the essential vari-

ables of the robot locomotion are the translational veloc-
ity vr(σ , t), vb(σ , t), the rolling angular velocity ωr(σ , t)
and the yawing angular velocity ωn(σ , t). The goal of the
section is to derive the equations of motion for the four
variables.

We put two assumptions on the inertia of the segment
with length dσ . The shape of the segment is a cylinder of
dσ tall. The inertia matrix at the center of gravity is in the
form of

Idσ = diag(Ir, Ib, Ib)dσ , (27)

in the Darboux frame. Note that the backbone frame
shares eeer(σ , t) with the Darboux frame. Therefore the in-
ertia matrix is invariant with the transition between the two
frames.

The equations of motion of the infinitesimal segment
are described as follows:

ρ∂ttxxx(σ , t) =FFF seg(σ , t), (28)

I∂tωωωd(σ , t) =−ωωωd(σ , t)× Iωωωd(σ , t)+TTT seg(σ , t).
(29)

The first and third entries of (29) are the equations of
motion for ωr(σ , t) and ωn(σ , t), respectively. The inner
products of (28) and eeer(σ , t), eeeb(σ , t) give the equations
of motion of the translation motion of the segment.

By differentiating the velocity constraint (6), the fol-
lowing equation is derived:

∂ttxxx(σ , t)

= ∂tvr(σ , t)eeer(σ , t)+∂tvb(σ , t)eeeb(σ , t)

+ vr∂teeer(σ , t)+ vb∂teeeb(σ , t)

= (∂tvr(σ , t)− vb(σ , t)ω̃n(σ , t))eeer(σ , t)

+(∂tvb(σ , t)+ vr(σ , t)ω̃n(σ , t))eeeb(σ , t)

+(vb(σ , t)ω̃r(σ , t)− vr(σ , t)ωb(σ , t))eeen(σ , t),
(30)

where (20), (21), and

∂teeeb(σ , t) =−ω̃n(σ , t)eeer(σ , t)+ ω̃r(σ , t)eeen(σ , t)
(31)

are used. Calculating the inner products, the equations of
motion are described as

ρ∂tvr(σ , t) = vb(σ , t)ωn(σ , t)+eeer(σ , t)TFFF seg(σ , t),
(32)

ρ∂tvb(σ , t) =−vr(σ , t)ωn(σ , t)+eeeb(σ , t)TFFF seg(σ , t),
(33)

where ω̃n(σ , t) is replaced by ωn(σ , t) by using (21).
Equations (32) and (33) do not have the normal reac-

tion term N(σ , t)eeen(σ , t). However, the right-hand sides of
(32) and (33) still rely on the internal force normal to the
surface, which can be checked as follows: Let the internal
force be denoted as follows:Fr(σ , t)

Fb(σ , t)

Fn(σ , t)

= Rd(σ , t)TFFF(σ , t). (34)

Then, the net internal force term ∂σFFF(σ , t) in FFF seg(σ , t) is
written as

∂σFFF(σ , t)

= (∂σ Fr(σ , t)−κg(σ , t)Fb(σ , t)
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−κn(σ , t)Fn(σ , t))eeer(σ , t)

+(∂σ Fb(σ , t)+κg(σ , t)Fr(σ , t)

− τg(σ , t)Fn(σ , t))eeeb(σ , t)

+(∂σ Fn(σ , t)+κn(σ , t)Fr(σ , t)

+ τg(σ , t)Fb(σ , t))eeen(σ , t). (35)

The force terms of (32) and (33) contain eeer(σ , t)T ∂σFFF(σ , t)
and eeeb(σ , t)T ∂σFFF(σ , t), respectively. Thus, the right-
hand sides of (32) and (33) have the force terms
−κn(σ , t)Fn(σ , t) and −τg(σ , t)Fn(σ , t).

In the rest of this section, the goal is to get rid of Fn(σ , t)
from the right-hand sides of the equations of motion (32),
(33). By the notation (34), the right-hand side of the sec-
ond entry of (29) can be written as

lb(σ , t)+ub(σ , t)−Fn(σ , t), (36)

where lb(σ , t) and ub(σ , t) are defined aslr(σ , t)

lb(σ , t)

ln(σ , t)

=−ωωωd(σ , t)× Iωωωd(σ , t), (37)

ur(σ , t)

ub(σ , t)

un(σ , t)

= ∂σTTT (σ , t). (38)

The angular acceleration ∂tωb(σ , t) in (29) can be ex-
pressed by ∂tvr(σ , t) and ∂tvb(σ , t) using the constraint
(7)

Ib∂tωb(σ , t)

=−Ibκn(σ , t)∂tvr(σ , t)− Ibτg(σ , t)∂tvb(σ , t)

− Ib∂tκn(σ , t)vr(σ , t)− Ib∂tτg(σ , t)vb(σ , t). (39)

Therefore, by equating (36) and the right-hand side of
(39),

Fn(σ , t)

= Ibκn(σ , t)∂tvr(σ , t)+ Ibτg(σ , t)∂tvb(σ , t)

+ Ib∂tκn(σ , t)vr(σ , t)+ Ib∂tτg(σ , t)vb(σ , t)

+ lb(σ , t)+ub(σ , t) (40)

is obtained as an alternative expression for Fn(σ , t).
Under the notation (34), the right-hand sides of (32) and

(33) are rewritten as

ρ∂tvr(σ , t)

= vb(σ , t)ωn(σ , t)+ρeeer(σ , t)Tggg− crvr(σ , t)

+∂σ Fr(σ , t)−κg(σ , t)Fb(σ , t)−κn(σ , t)Fn(σ , t),
(41)

ρ∂tvb(σ , t)

=−vr(σ , t)ωn(σ , t)+ρeeeb(σ , t)Tggg− cbvb(σ , t)

+∂σ Fb(σ , t)+κg(σ , t)Fr(σ , t)− τg(σ , t)Fn(σ , t).
(42)

By substituting the result of (40) for Fn(σ , t) of (41) and
(42), we have the following equation:

M(σ , t)∂tvvv(σ , t) =

[
∂σ Fr(σ , t)

∂σ Fb(σ , t)

]
+K(σ , t)

[
Fr(σ , t)

Fb(σ , t)

]
+φφφ(σ , t), (43)

where the matrices M(σ , t), K(σ , t) and the vectors
vvv(σ , t), φφφ(σ , t) are defined as follows ((σ , t) is omitted):

M =

[
ρ + Ibκ2

n Ibτgκn

Ibτgκn ρ + Ibτ2
g

]
, (44)

K =

[
0 −κg

κg 0

]
, (45)

vvv =

[
vr

vb

]
, (46)

φφφ =−PPP−C

[
vr

vb

]
, (47)

C =

[
cr + Ibκn

∂κn
∂ t −ρωn + Ibκn

∂τg

∂ t

ρωn + Ibτg
∂κn
∂ t cb + Ibτg

∂τg

∂ t

]
, (48)

PPP = (lb +ub)

[
κn

τg

]
−ρ

[
eeeT

r

eeeT
b

]
ggg. (49)

The first and third entries of (29), i.e.,

Ir∂tωr(σ , t) = lr(σ , t)+ur(σ , t), (50)

Ib∂tωn(σ , t) = ln(σ , t)+un(σ , t)+Fb(σ , t), (51)

and (43) are the equations of motion on the surface and
fully describe the locomotion of the robot.

4.3. The internal force distribution
As mentioned in Section 2, the previous studies [6,7]

depend on the sideslip constraint or the periodicity of
the body shape to handle the internal force distribution.
Our model introduced in the previous section expresses
a wider class of locomotion free from these restrictions.
This difference calls for a new approach to the determina-
tion problem of the internal force.

We solve the problem as a boundary value problem for
Fr(σ , t) and Fb(σ , t). The main goal of this section is to
derive a second-order partial derivative equation from the
equations of motion (43), (50), and (51). Note that we
omit (σ , t) in this section, except when we introduce a
new mapping.

The partial derivative of (43) with respect to σ is

∂σ M∂tvvv+M∂σtvvv
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= ∂σφφφ +

[
∂σσ Fr

∂σσ Fb

]
+K

[
∂σ Fr

∂σ Fb

]
+∂σ K

[
Fr

Fb

]
. (52)

The acceleration vector ∂tvvv turns into the force terms
that contain Fr and Fb by substituting the equation of mo-
tion (43) for ∂tvvv.

From (17), the vector ∂σtxxx equals ωneeeb −ωbeeen. By dif-
ferentiating (6) with respect to σ , the vector ∂σtxxx can also
be described by using vr and vb as

∂σtxxx = (∂σ vr −κgvb)eeer

+(∂σ vb +κgvr)eeeb

+(κnvr + τgvb)eeen. (53)

By comparing the entries of each direction, the follow-
ing equation is derived

∂σvvv =−Kvvv+

[
0

ωn

]
, (54)

and its time-derivative is

∂σtvvv =−∂tKvvv−K∂tvvv+

[
0

∂tωn

]
. (55)

The acceleration terms ∂tvvv and ∂tωn are rewritten us-
ing the equations of motion (43) and (51). Therefore, ∂σtvvv
itself can be written using Fr and Fb.

The substitutions for ∂σtvvv, ∂tvvv, and ∂tωn in (52) result
in [

∂σσ Fr

∂σσ Fb

]
+ D̄

[
∂σ Fr

∂σ Fb

]
+ K̄

[
Fr

Fb

]
= fff , (56)

where the matrices D̄(σ , t), K̄(σ , t), and the vector fff (σ , t)
are defined as follows:

D̄ = K − (∂σ M−MK) , (57)

K̄ = ∂σ K − (∂σ M−MK)M−1K −M

[
0 0

0 I−1
b

]
,

(58)

fff = (∂σ M−MK)M−1
φφφ

+M

(
−∂tKvvv+

[
0

I−1
b (ln +un)

])
−∂σφφφ . (59)

Solving (56) under the condition Fr(0, t) = Fr(L, t) =
0, Fb(0, t) = Fb(L, t) = 0, the distribution of the internal
forces can be obtained, and the time development of the
locomotion can be calculated by the equations of motion
(43), (50), and (51). Note that the geodesic torsion and cur-
vature tell the change in the orientation of the body seg-
ment along the body curve. In the case of a multilink robot,
the change in the orientation is expressed by the joint an-
gles. In the sense that both tell the directional change, τg

Fig. 4. The surface S (blue) and the desired curve (yellow).

and κg correspond to the angle of the joints of a multilink
snake-like robot, and ∂tτg and ∂tκg are the joint angular
velocities. Therefore, the vector fff and the coefficient ma-
trices D̄, K̄ are determined by the current robot state and
the input.

5. CONTROLLER

As an application of our model, we developed simple
controllers for the continuous snake-like robot based on
the model. The control objectives are

1) to generate lateral undulation, and

2) to keep the belly touching the surface.

The first objective is a common method for generating
thrust forces and forms the foundation for position con-
trols on the surface. The second objective aims at creating
another application for the robot; by letting the back away
from the surface, the robot can carry luggage on the back.

The controller for the first objective is developed based
on PD control. The actual input and the reference trajec-
tory are shown in Subsection 5.1. The shape of the ref-
erence trajectory is environment specific. We restrict the
surface to a cylinder as a simple example in this paper.
However, the flow of the discussion remains the same for
any smooth surface S.

Fig. 4 illustrates the shape of the cylinder, where β

stands for the inclined angle against the gravitaty. Let the
cylinder have a radius of R and its axis be the z-axis of
R3. Denote a coordinate of a point in R3 by cylindrical
coordinate system (R,θs,z) in which θs stands for the di-
rection of the point and z is the height from the x-y plane.
Then, one of the coordinate chart systems of the surface
(denoted as S) of the cylinder is given as follows:

φ([R, θs, z]T ) = [z, Rθs]
T . (60)

This map corresponds to opening up the cylinder, thus
the local coordinate chart of φ covers the entire cylinder
up.

We put an assumption on the internal torque TTT (σ , t).
As the internal force distribution, the torque distribution
TTT (σ , t) needs to equal zero at σ = 0, L. In this paper, we
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remove the boundary condition to simplify the construc-
tion of the controller and take [ur,ub,un]

T as the input of
the system. A similar assumption was made in [7].

5.1. Serpentine locomotion generation
To generate lateral undulation, we follow the conven-

tion of a controller for multilink snake-like robots. The
shift control [2] is one of the common methods to make the
robot follow a smooth desired path. The method is based
on the shape approximation of a curve by the links of the
robot. When given a desired path as a curve in R3, the
joint angles of the robot is determined to fit the body to a
part of the curve. Then, by shifting the approximated part
along the curve from moment to moment, the robot gener-
ates a motion that looks like the robot slithering along the
curve. The shift control does not always ensure the strict
path following of the robot because of the approximation.
However, it is still useful to generate desired locomotion
and is a popular method in gait design research [2,4,5].

When fitting the robot body to a curve in R3, there ex-
ists a degree of freedom of rolling. Thus, the desired curve
is often given with the desired backbone frame on it. The
way to determine the joint angles is as follows. Let the de-
sired curve be denoted by ĉ : s ∈ R 7→ ĉ(s) ∈ R3, s be the
arc-length parameter and {êeer(σ , t), êeep(σ , t), êeey(σ , t)} be
the desired backbone frame. We consider the case where
the robot moves along ĉ at reference speed v̂ and the de-
sired backbone frame meets the following equation:

dĉ
ds

(σ + v̂t) = êeer(σ , t). (61)

Then, the second derivative of ĉ is written using some
real-valued functions κ̂p(σ , t) and κ̂y(σ , t) as

d2ĉ
ds2 (σ + v̂t) = κ̂y(σ , t)êeep(σ , t)− κ̂p(σ , t)êeey(σ , t).

(62)

Regarding s as time, κ̂p(σ , t) and κ̂y(σ , t) correspond
the angular velocities around the pitch axis and the yaw
axis, respectively. In the geometrical sense, these func-
tions tell how the direction of the body axis changes along
the arc length. Thus, discretizing κ̂y(σ , t) along σ gives
the reference angles for the yaw joints (same for the pitch
joints).

In the case of a flat plane, it is known that lateral undu-
lation is generated by defining ĉ such that

κ̂p(σ , t) = 0 (∀(σ , t)) , (63)

κ̂y(σ , t) =
2π

T
α sin

(
2π

T
(σ + v̂t)

)
, (64)

where α and T are constant parameters [6]. The curve that
satisfies (63) and (64) is often called the serpenoid curve.

A continuous snake-like robot can be regarded as a mul-
tilink snake-like robot consisting of links with infinites-
imal length. Hence, κ̂p(σ , t) and κ̂y(σ , t) themselves can

be seen as the reference joint angles. From the second con-
trol objective at the beginning of Section 5, the reference
backbone frame is given as the one such that êeey(σ , t) =
êeen(σ , t) for all (σ , t), where {êeer(σ , t), êeeb(σ , t), êeen(σ , t)}
be the Darboux frame on the desired curve. Thus, the main
concern is how to give a concrete definition to ĉ corre-
sponding to “lateral undulation on a cylinder.” We exploit
the local coordinate chart to solve the problem.

The inverse of the local coordinate chart φ is a map
from a plane to the surface of the cylinder. Therefore, φ−1

can paste the serpenoid curve on R2 to the surface S. Let
the serpenoid curve on the plane be denoted by ĉp(s) and
satisfy the following conditions:

ĉp(0) = [0, 0]T , (65)
dĉp

ds
(0) = [cosα, sinα]T . (66)

Under the conditions, ĉp(s) becomes an undulating
curve centering its axis on the x-axis of R2. The map φ−1

is a smooth map, therefore, the mapped curve φ−1(ĉp(s))
remains smooth. The shape of φ−1(ĉp(s)) is shown as a
yellow curve in Fig. 4. It does represent a lateral undula-
tion on a cylinder. Hence, we take φ−1(ĉp(s)) as ĉ(s) and
end the definition of the reference curve.

In the case of a smooth snake-like robot on a curved
surface S, the geometric curvature κg(σ , t) represents the
shape in the “lateral direction” of the surface, and un mat-
ters for the posture changing. Moreover, when the second
control objective is achieved, i.e., when êeep(σ , t) = êeeb(σ , t)
holds, the following equations hold

κ̂y(σ , t) = êeep(σ , t)T d2c
ds2 (σ + vt)

= êeeb(σ , t)T ∂ êeer

∂σ
(σ , t)

= κ̂g(σ , t). (67)

Thus, we take κ̂y as the reference geometric curvature
for the robot and construct the controller as

un(σ , t) = kp (κ̂y(σ , t)−κy(σ , t))

+ kd (∂t κ̂y(σ , t)−∂tκy(σ , t)) , (68)

where kp and kd are positive constants.

5.2. Back side controller
As shown in Fig. 3, the rolling angle on the surface is

given as θ(σ , t). The control objective 2 stands for achiev-
ing θ(σ , t) → 0 as t to ∞ for all σ . By looking θ(σ , t)
as a function of σ parameterized by t, the objective is
also interpreted as the convergence of the function into the
zero function 0(σ). We introduce a backstepping-like con-
troller and show the convergence of θ(σ , t) in the space of
functions of σ . First, let us explain the time development
of θ(σ , t) and some information that the controller uses.
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The time derivative of θ(σ , t) equals the difference in
the rolling speed between the segment and the Darboux
frame on it. Thus the time-derivative of θ(σ , t) can be ex-
pressed as

∂tθ(σ , t) = ω̃r(σ , t)−ωr(σ , t). (69)

Note that the rolling speed ω̃r(σ , t) can be acquired
from the equation

ω̃r(σ , t) = eeeb(σ , t)T
∂teeen(σ , t). (70)

In the known surface, the value of ∂teeen(σ , t) is avail-
able by differentiating the definition of eeen (2). Therefore,
the value can be used to calculate the control input. More-
over, the equations of motion for the translational move-
ment (43) and the rolling (50) are independent of each
other, which enables us to calculate the time-derivative of
ω̃r(σ , t) from the state of the system of the robot.

From the notation above, let us introduce a controller
using the information of ω̃r(σ , t) and ∂tω̃r(σ , t). First, let
us assume that ωr(σ , t) can be used as an input for (69).
Then, setting ωr(σ , t) as

ωr(σ , t) = ω̃r(σ , t)+ k1θ(σ , t) (k1 > 0), (71)

achieves the convergence of θ(σ , t) to 0 for a fixed σ . As
an ordinary construction of a backstepping controller, ap-
ply the following transformation to (69) and the equation
of motion of rolling (50)

ζ (σ , t) = ωr(σ , t)− (ω̃r(σ , t)+ k1θ(σ , t)). (72)

That yields the transformed system

∂tθ(σ , t) = ω̃r(σ , t)−ωr(σ , t),

∂tζ (σ , t) = J−1
r (lr(σ , t)+ur(σ , t))

− (∂tω̃r(σ , t)+ k1∂tθ(σ , t)). (73)

Then, the following proposition holds.

Proposition 2: Setting the control input ur(σ , t) as

ur(σ , t) = Jr(θ(σ , t)− k2ζ (σ , t))− lr(σ , t)

+∂t(ω̃r(σ , t)+ k1θ(σ , t)), (74)

makes θ(σ , t) converge to 0 for all σ .

Proof: Applying the controller (74) to the system (73)
yields the following closed-loop system:

∂tθ(σ , t) =−k1θ(σ , t)−ζ (σ , t), (75)

∂tζ (σ , t) = θ(σ , t)− k2ζ (σ , t). (76)

Let a non-negative-valued function V be defined as

V (t) =
∫ L

0

1
2
(
θ(σ , t)2 +ζ (σ , t)2)dσ . (77)

This gives the square of the distance between the vec-
tor value function [θ(σ , t), ζ (σ , t)]T and the zero function
[0(σ), 0(σ)]T . Note that, when θ(σ , t), ζ (σ , t) ̸= 0(σ),
the time derivation of V always takes a negative value as

V̇ (t) =
d
dt

(∫ L

0

1
2
(
θ(σ , t)2 +ζ (σ , t)2)dσ

)
=
∫ L

0

∂

∂ t

(
1
2
(
θ(σ , t)2 +ζ (σ , t)2))dσ

=
∫ L

0
(θ(σ , t)∂tθ(σ , t)+ζ (σ , t)∂tζ (σ , t))dσ

=
∫ L

0

(
−k1θ(σ , t)2 − k2ζ (σ , t)2)dσ < 0. (78)

Therefore, we now know that there exists a non-
negative value V ∗ such that V (t)→V ∗ as t → ∞.

Our remaining concern is whether V ∗ = 0 or not. Note
that, if V̇ (t)→ 0 holds, we can conclude that V ∗ = 0. From
(75) and (76), ∂tθ and ∂tζ are the zero function if and
only if θ and ζ are the zero function. Therefore, under the
assumption V̇ (t)→ 0, V ∗ cannot be non-zero.

From the above discussion, showing the conversion of
V̇ (t) to zero ends this proof. We have already proven
that V (t) converges to some value. Thus, from Barbalat’s
lemma, showing the boundedness of V̈ (t) concludes that
V̇ (t)→ 0.

Define k̄ as max{k1, k2}. The absolute value of V̈ (t)
satisfies the following inequation (we omitted (σ , t). All
θ and ζ in (79) must be considered as θ(σ , t) and ζ (σ , t),
respectively):

∥V̈ (t)∥

=

∥∥∥∥∫ L

0

(
2k2

1θ
2 +2k2

2ζ
2 +2(k1 − k2)θζ

)
dσ

∥∥∥∥
≤
∥∥∥∥∫ L

0
(2k2

1θ
2 +2k2

2ζ
2 +(k1 − k2)(θ

2 +ζ
2))dσ

∥∥∥∥
≤
∥∥∥∥∫ L

0
(2k̄2

θ
2 +2k̄ζ

2 + k̄(θ 2 +ζ
2))dσ

∥∥∥∥
=
∥∥2(2k̄2 + k̄)V (t)

∥∥
≤
∥∥2(2k̄2 + k̄)V (0)

∥∥= const. (79)

From (79), it is shown that V̈ (t) is bounded. Therefore,
we conclude that V ∗ = 0 and θ(σ , t) and ζ (σ , t) converge
to the zero function. □

5.3. The remaining input
The remaining input ub(σ , t) affects the internal force

Fn(σ , t) and the normal reaction N(σ , t). Proper ub(σ , t)
can restrain the internal force or enhance the reaction from
the surface.

In this paper, we use ub(σ , t) to force Fn(σ , t) to be zero.
Real-world snake-like robots often suffer from fastening
failure of links due to the forces between them. Under this
control, a reduction in the failure rate of the robots can be
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expected. In addition, the reduction of the internal forces
helps to enhance the calculation stability.

The force control is achieved by the following input:

ub(σ , t) =−lb(σ , t)+Fnr(σ , t)

− Jb∂tκn(σ , t)vr(σ , t)− Jbkn(σ , t)∂tvr(σ , t)

− Jb∂tτg(σ , t)vb(σ , t)− Jbτg(σ , t)∂tvb(σ , t),
(80)

where Fnr(σ , t) is a reference distribution of Fn(σ , t) satis-
fying Fnr(0, t) = Fnr(L, t) = 0. The controller needs infor-
mation on translational acceleration. In practical cases, a
snake-like robot often equips an IMU or an AHRS sensor
for observation of the orientation of the robot. These sen-
sors give real-time acceleration data, therefore the accel-
eration feedback is feasible. We set Fnr(σ , t) as a constant
value function zero.

6. SIMULATION

We carried out numerical simulation for the continuous
snake-like robot based on the dynamical model developed
in Section 4. As mentioned in Section 5, the terrain was
the surface of the cylinder shown in Fig. 4. The inclined
angle β was 30◦, and the radius was 1 m. The parame-
ters of the robot and the controller are shown in Table 1.
We examined our model in the two cases with different
frictional coefficients. In the first simulation (Simulation
1), cr is set as 0.1 N/s. In the second simulation (Sim-
ulation 2), cr is 0.01 N/s. Note that we added the term
−10ωn(σ , t) to un(σ , t) of (68). The term was introduced
to enhance the computational stability of numerical sim-
ulation. By the existence of this term, the amplitude of
the undulation may get smaller than the one without the
term. However, as shown in the results in this section, the
proportional term and the derivative term of the PD con-
troller were strong enough that the robot could ascend an
inclined cylinder. Therefore, the term is negligible on the
thrust generation.

Table 1. The parameters of the robot and the controller.
◦: used in Simulation 1. ∗: used in Simulation 2.

Robot Controller
L 1 m kp 1
ρ 1 kg/m kd 2
Jr 0.32 kg ·m2 k1 5
Jb 0.16 kg ·m2 k2 5
cr 0.1 N/s ◦ 2πα/T 4.93

0.01 N/s ∗ 2π/T 6.28
cb 40 N/s v 1.5

6.1. Simulation 1
Fig. 5 shows the movement of the robot at t = 0, 5, 10

s. The initial position of the tail end was located at z = 0.
At t = 10, the position was at about z = 1. Therefore, the
robot achieved a one-meter displacement on the inclined
cylinder.

Fig. 6 is the view from the top of the cylinder at the
corresponding time. The orange arrows represent eeey(σ , t)
and are normal to the surface of the cylinder, which means
the back side controller worked well.

Figs. 7(a) and 7(b) illustrate the distribution of Fr(σ , t)
and Fb(σ , t). In each of the graphs, the blue line shows
the distribution at t = 0 s, the orange + chain line, and the
yellow dotted line show the ones at t = 5 s and t = 10 s,
respectively. From Fig. 7(b), it can be seen that the dis-
tribution of Fb forms a curve like a trigonometric func-
tion, which agrees with the analysis in Yamada and Hi-
rose [6]. However, their analysis also expects trigonomet-
ric function-like distribution for Fr, which is not observed
in our case, especially at t = 5 and 10 s. The possible
cause of the disagreement is the inclination of the cylinder.
The lower body (small σ side) needed to support the up-
per body during the locomotion, thus the lower segments

Fig. 5. The result of Simulation 1.

(a) t = 0 s. (b) t = 5 s. (c) t = 10 s.

Fig. 6. The direction of the back of the robot.
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(a) The distribution of Fr.

(b) The distribution of Fb.

Fig. 7. The internal forces at t = 0, 5, 10 s.

might tend to be more stressed than the upper ones. In fact,
the peaks of the Fr(σ , t) in Fig. 7(a) are on the smaller side
of σ . The analysis in [6] depended on the infinite length
of the robot and the periodic shape of the body curve. We
conclude that our distribution is more likely in the case of
this situation.

6.2. Simulation 2

Fig. 8 is the result when the tangential friction coeffi-
cient cr is 0.01 N/s. As the figure shows, the robot slides
down the cylinder due to the lack of frictional force. Note
that, with the assumption of no sideslip, the robot slides
down only when it takes the same shape as a geodesic
of the surface, and the curvature and the torsion of the
geodesic are constant in the neighborhood of the robot.
In our simulation environment, slips can be observed only
when the robot takes a straight line shape or a helix shape.
Thus, using the previous models, even this simple phe-
nomenon cannot be examined.

Fig. 8. The result of Simulation 2

In addition, the result gives important insight into the
construction of snake-like robots. The tangential friction
is considered as a nuisance and sometimes is ignored to
simplify kinematic models [7]. However, the result reveals
that the tangential friction has a crucial role to prevent the
robots from sliding down curved surfaces.

Therefore, snake-like robots face the trade-off between
energy efficiency and anti-slide performance. The lower
tangential friction reduces the battery consumption and
extends the uptime of the robots. However, greater friction
extends the reachable area of the robots. Moreover, in the
case of wheeled snake-like robots, using low-quality bear-
ings for the wheels will achieve both high friction and a
reduction of the cost of the robots at the same time. There-
fore, tuning the tangential friction up will influence even
the production of the snake-like robots.

7. CONCLUSION

In this paper, we introduced the new dynamical model
and the controllers for a continuous snake-like robot. By
using our model, the locomotion of the continuous snake-
like robot can be examined even when it sideslips and even
when it is on a curved surface. Our contribution serves to
design controllers for locomotion in practically important
environments, such as a slippery rock.

Furthermore, the simulation results revealed the impor-
tant role of tangential friction which is underestimated in
the previous studies. The tangential friction serves to pre-
vent the robot from sliding down the surface, which is not
trivial from models on horizontal plane terrain and from
ones that ignore the sideslips of the robot. Moreover, the
result yielded a notion of the trade-off relation between the
energy efficiency and the reachability of the robot. The
greater tangential drag will impact the battery consump-
tion, however, in the case of snake-like robots, the drag
expands the area where the robot can reach. The notion
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will even illuminate using low-quality parts and can guide
the production strategy of the snake-like robots.

We set the control of a real-world snake-like robot
based on our model as our future work. The control input
conversion from the smooth curve model into a multilink
robot will also be handled.
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