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Compensated Motion and Position Estimation of a Cable-driven Parallel
Robot Based on Deep Reinforcement Learning
Huaishu Chen, Min-Cheol Kim, Yeongoh Ko, and Chang-Sei Kim* �

Abstract: Unlike conventional rigid-link parallel robots, cable-driven parallel robots (CDPRs) have distinct ad-
vantages, including lower inertia, higher payload-to-weight ratio, cost-efficiency, and larger workspaces. However,
because of the complexity of the cable configuration and redundant actuation, model-based forward kinematics and
motion control necessitate high effort and computation. This study overcomes these challenges by introducing deep
reinforcement learning (DRL) into the cable robot and achieves compensated motion control by estimating the ac-
tual position of the end-effector. We used a random behavior strategy on a CDPR to explore the environment, collect
data, and train neural networks. We then apply the trained network to the CDPR and verify its efficacy. We also ad-
dressed the problem of asynchronous state observation and action execution by delaying the action execution time
in one cycle and adding this action to be executed to match the motion control command. Finally, we implemented
the proposed control method to a high payload cable robot system and verified the feasibility through simulations
and experiments. The results demonstrate that the end-effector position estimation accuracy can be improved com-
pared with the numerical model-based forward kinematics solution and the position control error can be reduced
compared with the conventional open-loop control and the open-loop control with tension distribution form.

Keywords: Cable-driven parallel robot, deep reinforcement learning, motion control.

1. INTRODUCTION

A cable-driven parallel robot (CDPR) is a type of paral-
lel manipulator configured and actuated by several flexible
cables different from the conventional rigid links parallel
robots [1]. A CDPR is composed of multiple kinematic
chains connecting the base to the end-effector. These
chains are flexible and stretched cables whose length and
tension are controlled by motor-winches. Compared with
rigid-link parallel robots, these cables have less mass than
rigid bodies, and it is easy to change the cable length by
winding and unwinding the winch. Then, a cable robot
can achieve low inertia, high payload-to-weight ratio, and
larger workspaces [2,3].

Actuation redundancy is essential for the structure of
parallel robots which improves the kinematic and dynamic
properties of parallel robots and extends the workspace
size for a CDPR by enhancing stiffness and avoiding sin-
gularity [4]. Interestingly, because the limitation of the ca-
bles is that cables must remain in tension; cables can only
impose tensile forces, not compressive forces [5], more

cables than the required degree of freedom are used and
it causes a redundancy problem while computing forward
kinematics.

In addition, conventional motion control methods such
as the widely used proportional-integral-derivative (PID)
controller [6], a position correction method using cable
tension distribution by inverse dynamics [7,8], and an
adaptive controller [9] have been incorporated for a CDPR
control. Most conventional controllers are based on ideal
inverse kinematics and designed to compensate for the ca-
ble length obtained by the inverse kinematics with encoder
feedback at each motor [10]. However, because of the
higher material-dependent properties of a cable, the flex-
ibility of the cable and the uncertainties of the kinematic
model also have to be considered to improve control per-
formances. Especially, the tension distribution requires a
precise dynamic model of a CDPR with uncertain model
friction and cable elongation. It is almost impossible to
render an accurate numerical model and parameters with-
out any strong assumptions, even under well-established
experimental conditions. Alternatively, an adaptive con-
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troller could estimate several adapted parameters to re-
duce the effect of parametric uncertainties in the kinematic
and dynamic models. However, state feedback from the
forward kinematics requires additional sensors at an end-
effector with a complex kinetic model. The kinematic cal-
ibration method for CDPRs considering the pulley kine-
matics is also used to improve the accuracy of pose esti-
mation [11]. If the system is cost-independent, then, addi-
tional internal or external sensors such as IMU sensor [12]
and optical sensor [13] can be used to provide more exact
information of the end-effector to increase the accuracy
of position estimation. Upon this background, a network
algorithm along with model-based approaches was intro-
duced to improve the control performances [14].

Overall, the model-based control and estimation could
perform moderate results for a CDPR if the incorporated
kinematics and dynamic models are reasonable depend-
ing on the applications. However, it still needs to consider
uncertainties and frictions at various operating conditions
mainly related to cable elongations that hinder obtaining
exact forward kinematics solutions under less number of
sensors.

In contrast, reinforcement learning (RL) is a semi-
supervised data-driven machine learning method that
trains an agent to perform the desired control task without
prior knowledge of the robot’s kinematics and dynamics.
The agent is trained to interact with uncertain or unknown
parameters and learns to optimize its behavior by maxi-
mizing a predefined performance in sequential decision-
making problems [15]. RL-based compensation methods
use the actor-critic approach [16] to learn the correction
signal added to the existing nominal input to compensate
for aberrations [17].

Recent advances in deep RL (DRL) have emerged as a
promising approach for autonomously acquiring complex
behaviors from low-level sensor observation [18]. DRL
uses expressive function approximations (deep neural net-
works) and has achieved great success in solving complex
tasks such as games robotic control [19-23], and indus-
trial control scenarios [24]. An offline RL was developed
to advance the RL which collects experience iteratively
by interacting with the environment. The offline RL ad-
dresses the problem of learning effective policies entirely
from previously collected data without additional online
data collection [25].

On these backgrounds, we present a novel forward kine-
matic computation and control approach for a CDPR by
introducing DRL as shown in Fig. 1. Eventually, the DRL
can produce the updated trajectory to overcome the afore-
mentioned difficulties of CDPR control against inaccu-
rate kinematic and kinetic model including cable proper-
ties. The contribution of this study is a compensated mo-
tion control method with forward kinematics estimation
through the offline deep RL algorithm. We used a random
behavior strategy on a CDPR to explore the environment,

Fig. 1. Block diagram of proposed DRL-based CDPR
control and position estimation.

collect data, and train neural networks. We then applied
the trained neural network to the CDPR and verify its ef-
ficacy on the prototyped eight-cable CDPR. To encounter
a practical application, we also propose an approach to
avoid the latency between state measurement and action
execution that is effective for dynamic simulation. Finally,
we validated the proposed network to estimate the actual
position of the CDPR that can be used as an alternative to
forward kinematic computation for a CDPR.

2. SYSTEM OVERVIEW

2.1. The CDPR and measurements
The CDPR for data collection and policy evaluation is

shown in Fig. 2. This CDPR is fully constrained with eight
cables equipped with tension sensors (tecsis GmbH, Ger-
many) at the end of each cable [26]. Motor-winches are
connected to cables and controlled by servo drivers, where
the TwinCAT3 PLC and TwinCAT3 Engineering are used
[26]. This software provides an ST language programming
environment that can implement the real-time control al-
gorithm to the PLC.

Fig. 2. Overview of a high-payload CDPR.
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The Vicon camera measurement system is used to pro-
vide the position information of the CDPR, as depicted in
Fig. 2. This system is composed of eight cameras evenly
fixed on the base frame of the CDPR in pairs and mea-
sures the pose of the end-effector through six special re-
flective balls installed on the top of the end-effector. The
camera system provides measured data with less than 0.2
mm error. The Vicon system is used to obtain the pose
information of the end-effector that calculates the reward
and position error only, not for feedback control.

2.2. Kinematic of CDPRs
The CDPR is a closed kinematic chain mechanism in

that the end-effector is connected to the base frame by sev-
eral cables [5]. The kinematics notation of a CDPR with
eight cables is shown in Fig. 2. The large outer structure
represents the base frame of the CDPR and the inner black
frame represents the end-effector. The x, y, and z axes are
the base coordinate system of the CDPR and the x′, y′,
and z′ axes are the relative coordinate system of the end-
effector, aaai is the location vector of each endpoint of the
base of the CDPR, bbbi is the location vector of each end-
point of the end-effector of the CDPR, llli is the vector of
each cable connecting the base and the end-effector, and
PPP is the position vector of the end-effector.

We can then express the inverse kinematic of the eight-
cable CDPR as

li = |li|= |aaai−PPP−RRRbbbi|, (1)

where li is the length of each cable, and RRR is the rotation
matrix of the end-effector.

Different from the inverse kinematics, there exists no
unique forward kinematics solution for a CDPR. There-
fore, various complicated computation algorithms are
studied for the forward kinematics solver.

The dynamic model of a fully constrained CDPR with
the cable tension distribution is derived as follows with
respect to the general coordinate

MMM (qqq)q̈qq = AT f and f = fM + fV, (2)

fM,i = (fmin + fmax)/2, (3)

AT fV =−wp−AT fM,

AT =

[
u1 ... um

b1×u1 ... bm×um

]
, (4)

ui =
li
‖li‖2

and wp =

[
fff p
τττ p

]
, (5)

where qqq is a generalized coordinate in wrench space, f is
a cable tension vector designed by a desired mean cable
tension, fM, and a control tension to cables, fV. The ex-
ternal wrench force vector is defined as wp. fmin and fmax

are a minimum and a maximum tension depending on the
motor-winch specification, respectively, and AT is a trans-
formation matrix of a parallel manipulator composed of
cable direction vectors and rotation transformations.

2.3. Reinforcement learning
The designed workflow of the network considering

physical hardware setups is depicted in Fig. 3. The goal
of RL in the proposed method is to address the problem
of learning to control an agent via policy π (actt | st) at-
tempting to maximize the expected sum of rewards [11].

We consider this problem as a Markov decision process
(MDP). The fully observed MDP can be defined as a tuple
M = (S, A, T , d0, r, γ), where S is the state space, A is the
action space, T is the dynamics of the system formatted
as T = (ssst+1 | ssst ,actactactt) where actactact is the action vector and
sss is a state vector, d0 is the initial state distribution, r is
the reward, and γ is the discount factor. The MDP can be
expressed with the following steps at every time step t

Step 1: Observe the current state ssst and sample an ac-
tion actactactt from its policy distribution π (actactactt | ssst).

Step 2: The agent performs the action, actactactt , and the
product of the state ssst+1 is calculated using the environ-
ment transition function T .

Step 3: Observe the resulting next state ssst+1 and reward
value rt = r(ssst ,actactactt).

Step 4: Use the reward value to evaluate and update the
policy.

Step 5: Obtain the sequence of states and actions of
length H given by τ = (sss0, actactact0, · · · , sssH , actactactH), and its
distribution as

pπ(τ) = d0(sss0)
H

∑
t=0

π(actactactt | ssst)T (ssst+1 | ssst ,actactactt), (6)

and the RL objective can then be written as

L(π) = Eτ∼pπ (τ)

[
H

∑
t=0

γ
tr(ssst ,actactactt)

]
. (7)

There are two stages to optimize this objective function.
The first is policy gradients. Assume that the policy is pa-

Fig. 3. Two-layer MLP and physical workflow of designed
network.
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rameterized by a parameters vector θθθ . We can then opti-
mize parameters as θθθ = argmaxθθθ L(π). The second is the
approximated dynamic programming to define the value
function which estimates the expected cumulative reward.
If the sequence τ starts from a state-action tuple (ssst ,actactactt),
the value function can be written as

Qφφφ (ssst ,actactactt) = Eτ∼pπ (τ|ssst ,actactactt )

[
H

∑
t ′=t

γ
t
′−tr(ssst ,actactactt)

]
. (8)

We then obtain the transformed expectile regression ob-
jective which is called the temporal different (TD) target
as follows:

L(Qφφφ ) = (Qφφφ (ssst ,actactactt)− r(ssst ,actactactt)

− γ max
actactactt+1

Qφφφ (ssst+1,actactactt+1))
2, (9)

where φφφ is the parameter vector of Qφφφ .
And then, the parameters can be optimized by φφφ =

argmaxφφφ L(Qφφφ ). Finally, the policy is transformed into a
specific action actactactt = argmaxat Qφφφ (ssst ,actactactt). In the offline
RL problem, the policy can be learned by affixed dataset
D = {(sssi

t ,actactact i
t ,sss

i
t+1,r

i
t)}n

i=0, which is collected using a be-
havior policy, π(actactactt | ssst).

2.4. Network determination
We incorporated the implicit Q-learning (IQL) which is

an offline RL algorithm that archives the state-of-the-art
performance on D4RL, a standard benchmark for offline
RL [27]. The IQL algorithm comprises expertise regres-
sion and advantage-weighted behavioral cloning to focus
on in-sample actions and avoid querying out-of-sample
actions. This approach is in the right place to address the
issue of distribution shift [28,29], one of the primary chal-
lenges in offline RL. Based on the structure of the IQL, we
defined values to determine the structure of our networks
as follows:

State space SSS: We divide the state into five parts: 1) the
encoder value of each motor when the previous action was
executed, with a dimension of 8 in our experiment, 2) the
current encoder value of each motor, also with a dimen-
sion of 8, 3) the desired position of the end-effector when
this action is completed with a position vector dimension
of 3, 4) tension feedback of each cable with dimension 8,
and 5) action to be performed with dimension 3. Thus, the
dimension of the state space is 30.

Action space AAA: As the output of the policy network,
actions are represented as motion compensation of the
CDPR based on the current state, with a dimension of
3. We set the output action as a three-dimensional Gaus-
sian distribution in the interval [−1, 1] and map all action
values collected into this interval with max(actactactt) < 0.3
mm. The Gaussian distribution is used to represent the ac-
tion to increase the exploration of the action space during
training, and the expected value of the distribution will

be used as the action during validation. The action is sam-
pled from this Gaussian distribution when training the net-
work. After training, the action is the estimated mean of
the Gaussian distribution. Thus, at any time, the compen-
sation value output by the policy network in any coordi-
nate axis direction is less than 0.3 mm.

Reward function rrr: The reward is a critical value in
network training that determines how good or bad the cur-
rent policy is. We define the reward function as

r(ssst ,actactactt) =−‖ppp− pppre f ‖2− cactactactT
t actactactt , (10)

where ppp is the actual position of the end-effector, pppre f is
the reference position of the end-effector, actactactt is the cur-
rently executing action, and c is a constant determining the
effect of action size on policy. Larger values of c prompt
the policy to learn to make an action smaller. We set c= 10
in our experiment.

3. DRL-CONTROLLER DESIGN

3.1. Action loop time determination
In theory, a shorter action loop time can produce high

performance. However, hardware-dependent conditions
such as computation time and sensor delay need to be
considered, so it is crucial to choose an appropriate loop
time according to the given experimental platform. In this
study, the TwinCAT3 software provides an integer time
greater than or equal to 1 msec as the control loop time.
We selected a 2 msec control loop time to allow the pro-
cessor sufficient computation time. For the Vicon camera
measurement system, we choose the fastest measurement
frequency of 100 Hz.

As a communication protocol of TwinCAT3, an au-
tomation device specification (ADS) API enabling users
to communicate with programs outside the TwinCAT3 is
available, in which an external program reading or writ-
ing takes time; TwinCAT3 consumes approximately 13-
17 msec. The TwinCAT3 measures an observation (state),
sends it to the external running policy network program,
and receives the result of the policy, which process re-
quires approximately 26-34 msec. Combining the above
timeline, we set the action loop time to 40 msec. The time
sequence of the CDPR running is depicted in Fig. 4, where
Tn is an action applied time sequence, and tn is the motor’s
command applied time sequence in one action cycle.

3.2. Action execution time adjustment
The MDP formulation assumes synchronous execution;

the observed state remains unchanged until the action is
applied [18]. Because the robot’s motion is continuous,
the observation must be performed simultaneously as the
action is to ensure the assumption of MDP formulation.
The specific observation and action time are depicted in
Fig. 5(a). Because of delays caused by factors such as
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Fig. 4. Time sequence design for DRL approach.

(a) Conventional observation and action time.

(b) Adjusted observation and action time.

Fig. 5. Proposed sequential adjustment of action execu-
tion time.

the communication described earlier, the CDPR controller
cannot obtain the corresponding required actions and ob-
servations simultaneously. This results in accumulated er-
rors at the end of the trajectory for the case of the open-
loop control scheme in this study. Therefore, we mitigated
the impact of this problem by delaying the execution of all
actions by one action loop time and adding the action, exe-
cuted at the current cycle time to the state. The rewards of
actions are also delayed. The new specific observation and
action time are depicted in Fig. 5(b), resulting in 40 msec
for the entire process from acquiring the state to acquiring
the executable action.

3.3. Timeline matching
The specific communication process timeline between

TwinCAT3 and the policy program is depicted in Fig.
6(a), t0 is the time when TwinCAT3 starts sending the
observation to the network program, ta is the time when
TwinCAT3 finishes receiving the action from the net-

(a) Communication process in the network.

(b) Timeline matching.

Fig. 6. Communication process timeline between Twin-
CAT3 and the policy program.

work program, and tc is the total time spent in commu-
nication and network forward calculation. Obviously, to
execute the correct action instructions for the robot, ta
should be less than T1 (40 msec). To ensure this condition
strongly, we designed the control sampling time after the
network program read the observation from TwinCAT3 as
t0 < (40− tc)/2. In detail, we send t0 and observation to-
gether to the network program, and then, apply the match-
ing method as shown in Fig. 6(b). Where “First” is intro-
duced to find if it is the first time entering the action loop
and tr is time spent reading observation. td1 is the time de-
lay for the first action cycle and td2 is the time delay for
the network program execution defined as

td1 = 40− (2∗ (to−1)+ tr),

td2 = 40− (2∗ (to−1)+ tc). (11)

For the first action cycle, we obtain action[0] and ob-
servation[0] before running the CDPR. Therefore, the first
t0 may not satisfy this condition and we use it to guaran-
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tee that the second t0 must satisfy this timeline. We en-
sure that the controller sends the observation that has been
completely modified by selecting the second motor con-
trol cycle as the start time for the observation sending. To
implement the timeline-matching method, all t0 values are
equal to 1 after the first action cycle.

3.4. Cost function and network implementation
To track the desired trajectory, the output state is de-

fined as the position in the environment. Here, the action is
the movement in that the agent regenerates an updated po-
sition from one state to another. The reward is given to in-
crease the Q-value in (8) for the corrected action taken by
the agent at the specific position. Therefore, during track-
ing control, the total cost of CDPR motion is related to
the tracking error; accumulated position error. Herein, the
ultimate goal of the control is simply defined to minimize
the total cost as a Euclidean norm of a tracking error as
follows that is considered to design the reward function in
(10).

cost = argmin∑‖pre f ,i− pactual,i‖. (12)

To achieve this goal, the DRL is applied to provide an up-
dated trajectory for improved control accuracy. Herein, for
the perspective of simple and effective application, we uti-
lized a policy extraction and parameter optimization avail-
able in the IQL explanation in Section 2. Where the final
algorithm is composed of fitting the value function and Q
by using gradient updates and performing stochastic gra-
dient descent on a modified TD learning procedure. While
implementing, we used the official PyTorch implemen-
tation of the IQL package as a basis for building train-
ing algorithms [27]. We build all networks with a two-
layer multilayer perceptron (MLP) with rectified linear
unit (ReLU) activations and 256 hidden layers, including
policy, two value functions, two target value functions,
and a state value function. After obtaining the network
trained with PyTorch, the LibTorch library is utilized to
rebuild the network in C++.

3.5. Validation in simulation
In this simulation study for algorithm verification,

the CDPR analysis and simulation platform for research
(CASPR) is used for dynamics simulation on MATLAB
[30]. The IPAnema2 type CDPR was selected from the
CASPR database for the simulation because it is the iden-
tical configuration CDPR of the actual experimental robot
in our study [31]. The training data consists of linear and
circular trajectories. And the circular trajectory is on the
OXY plane, the center is the origin, and the radius is

radius = 1.0−0.2k with k = 0, 1, 2, 3, 4. (13)

The final training and validation trajectories of the pol-
icy network are depicted in Fig. 7. The blue arrowed lines

Fig. 7. Training and validation trajectories for simulation.

are the trajectories used for training, and the red ones are
used for validation.

For the feasible verification of the algorithm, we de-
signed the behavior policy in simulation with respect to
the acceleration of the end-effector as follows:

πππsim = (1+η)maaa. (14)

The simulation policy is based on a dynamic model of the
CDPR in which the end-effector movement is dominated
by acceleration which is directly controlled by cable ten-
sion distribution. In (14), m is the coefficient sampled from
the truncated distribution [32] of [0, 1.2e− 4] for the lin-
ear trajectory and [0, 2e−5] for the circular (changed ev-
ery episode), η is the exploration noise sampled from the
truncated distribution of [−0.03, 0.03] and changed every
action cycle, and aaa is the acceleration vector.

For the linear trajectory, the simulation interval was set
at 10 msec, and the action execution interval was 10 msec.
For the circular trajectory, the dynamics simulation in-
terval was 2 msec, and the action execution interval was
10 msec. Each trajectory was repeated with noise distur-
bance 50 times for the 16 linear trajectories and 80 times
for the 10 circular trajectories to collect data; a total of
800 datasets for each linear and circular trajectory were
obtained with 300 steps per episode. The actions were
transformed to [−1, 1], and the reward was transformed
to [0, 1]. The learning rate for the policy was 1× 10−5,
the learning rate for the value function was 2×10−5, and
the discount for the reward was 0.99. The policy weights
update was delayed by three cycles. We prepared datasets
into three categories; linear dataset, circular dataset, and a
combination of the linear datasets and the circular datasets
to train three policy networks separately. And we ended up
deriving three different policy networks; a linear policy, a
circular policy, and a combined policy. We validate these
three policy networks in linear trajectories with different
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(a) Results on the linear trajectory by linear, circular, and combined policy; (LEFT) output actions on each direction, (RIGHT) position
errors.

(b) Results on the circular trajectory by linear, circular, and combined policy; (LEFT) output actions on each direction, (RIGHT) position
errors.

Fig. 8. Dynamic simulation results of proposed DRL-based control approach.

endpoints with the same starting point and circular trajec-
tories with different radii for preliminary validation.

Fig. 8 illustrates the outputs (actions) of the three poli-
cies under the validated linear and circular trajectory and
their effects on the robot motion error. The picture on the
right shows the motion position error of the end-effector
after applying the three strategy networks respectively.
The blue line is the circular policy, the red line is the linear
policy, and the green line is the combined policy. The lin-
ear policy performs well on validated linear trajectories.
The tracking error of the robot is significantly reduced in
the x, y, and z directions, but this policy performs poorly
on circular trajectories, and its output is disordered. The
simulation results of circular policy are the opposite, per-
forming well on circular trajectories and poorly on linear

trajectories. Obviously, the performance of a policy de-
pends on the composition of its training data. Therefore,
training data containing the corresponding type of trajec-
tory data is a necessary condition for an excellent policy.
For the combined policy, the simulation results show that
the tracking performance is slightly worse than the linear
policy on linear trajectory and circular policy on circular
trajectory, but still exhibits very high performance. There-
fore, we could confirm that it is feasible to first combine
the data of all required motion trajectories, and then use
this data to train a policy network that can be applied to
all these trajectories. This is reasonable inference for a
real CDPR control where the tension distribution and ca-
ble length of the CDPR are desired at each position in the
workspace as shown in (1)-(5).
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4. EXPERIMENTAL RESULTS

4.1. Data collection and practical behavior policy de-
sign

We conducted experiments by using an actual CDPR sys-
tem as shown in Fig. 2. By considering the practically
available measurements of the actual CDPR system; e.g.,
acceleration of the end-effector is not measurable, we de-
fined a new behavior policy and implemented the DRL
approach. Here, we assumed that the position error of the
CDPR is proportional to the moving distance.

πππexp = m j∆x j +ηηη j and j = x, y, z, (15)

where ∆x j is the moving distance of the end-effector, m j is
the linear coefficient sampled from the truncated distribu-
tion of [−0.02, 0.02] and changed every episode, and ηηη j

is the exploration noise sampled from the truncated dis-
tribution of [−0.1m∆x, 0.1m∆x] and changed every action
cycle.

We arrange the following five motion paths (unit: me-
ter) with the fifth-order trajectory planning and the end-
effector stop for one second between any two parts. Each
path is repeatedly tested 50 times, totaling 250 episodes.
In Fig. 10(b), blue arrowed lines illustrate the approxi-
mate form of these trajectories. The last part of the path
is homing the cable robot, so the behavior policy does not
apply in this part. All data is transformed into reply buff
D= {(sssi

t ,actactact i
t ,sss

i
t+1,r

i
t ,T

i
t )}250

i=0, where T i
t is whether the i-th

episode is finished.
The TwinCAT3 control program runs 20 times in one

action cycle. We ensure the smooth movement of the robot
by dividing an action into 20 segments for execution ac-
cording to the trajectory planning. The action performed
in each segment is as

act i
t j =

di
j

d20
j

actt j and j = x, y, z, (16)

where di
j is the distance from the i-th segment to the first

segment. Therefore, the updated actual position input to
the CDPR is obtained as follows:

pppa = pppr +actactactcum +actactact i
t , (17)

where pppa is the adjusted position value, pppr is the reference
position value, and actactactcum is the cumulative actions.

4.2. Data matching for training data
The CDPR and the Vicon camera measurement sys-

tem were implemented on different control computers;
the CDPR system records the reference position data and
the camera processor measures the actual position data of
the end-effector. This brought a practical issue mentioned
above and we need to match the data from both to cal-
culate the reward while training. We designed a two-step

method to address this problem as mentioned in Subsec-
tion 3.3. We use the motion start point in the data on the
CDPR system based on a reference trajectory and search
the motion start point of the data in the camera measure-
ment system to match the data. Firstly, we set a move-
ment threshold equal to 0.15 mm, and then, the time point
when the CDPR movement exceeds this threshold is used
as the starting point, c1. Secondly, the method traverses
each point in the interval [c1− 700 msec, c1 + 300 msec]
based on c1 and search the time of minimum error between
the two trajectories in 1 sec after the respective starting
point. We then successfully take the point with the small-
est error as the starting point of the motion recorded by the
camera.

4.3. Training networks

After the buffer was fully and properly constructed, the
network was trained by its datasets. The parameters for the
network training are summarized in Table 1. Our model
is trained on Google CoLab which provides some GPUs
with limited usage time but was sufficient to achieve high
performance. The typical computation time on Tesla T4
is about 5.4 s/epoch. The average return predicted by two
value functions in the training process is depicted in Fig.
9. The prediction of both two value functions increases
rapidly and becomes stable after 100 epochs.

Table 1. Parameters of network training.

Learning rate for policy 3e-5
Learning for value function 1e-5

Batch size 512
Learning epoch 300

Gradient steps per epoch 600
Discount γ 0.99

Beta 5.0
Quantile 0.85

Reward transform 0.04x+2.8
Policy class Gaussian policy

Fig. 9. Average prediction return.
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4.4. Tracking control performance evaluation
We validated the trained policy network and our policy

controller by conducting an experiment on CDPR shown
in Fig. 2 and evaluated the tracking performance for the
desired linear trajectory from (0 m, 0 m, 0 m) to (0.5
m, 1 m, 1 m) presented in Fig. 10(b) with red arrowed
line. The policy operation when the policy is valid is de-
picted in Fig. 10(a). Simultaneously, we utilized two other
controllers to compare the performance while moving on
the same path; a conventional open-loop controller and a
modified open-loop controller with the tension distribu-
tion form. Herein, we didn’t use the external sensor (i.e.,
Vicon Camera) as the end-effector position feedback for
control, then, a PID controller is limited to a cable-length
control at each motor-winch side.

The PID control algorithm in the open-loop control em-
ploys the encoder value of the motor converted from cable
length to adjust the position of the end-effector as

uuu(k) =KKKpppeee(k)+KKKiii ∑eee(k)+KKKdddδδδeee(k). (18)

In addition, the modified open-loop controller with the
tension distribution in (3)-(5) from the parallel robot’s
closed form is implemented to the conventional open-loop
controller for the performance comparison.

In the experiments, we computed position tracking er-
rors and used them as a control performance comparison
metric among three controllers; the open-loop controller,
the modified open-loop controller, and the proposed DRL
control. The results show that our policy controller per-
forms the best results in all three directions as can be seen
in Figs. 10 and 11.

Throughout the motion control, the tracking error of the
proposed DRL method is significantly smaller in the x-
and z-directions than that of the other two methods, and
similar performance in the y-direction. The dynamic re-
sponse of the DRL method achieved the best result, where
the position error at the final point is 8.12 mm, 16.26
mm, and 12.33 mm for the proposed method, the open-
loop control, and the modified open-loop controller, re-
spectively.

For the error of the end effector position, the DRL
method performs even better. Compared with the open-
loop method, the position error at the end position is re-
duced along the x-, y-, and z-directions by 33.3%, 54.2%,
and 59%, respectively. Furthermore, compared with the
open-loop controller with the tension form method, the
position error is reduced to 20.7%, 35%, and 62.8% in
each direction. The results can validate that the proposed
method outperforms the others in both motion process and
endpoint position error.

4.5. Position estimation performance as an alternative
to forward kinematics

The estimated position error comparison of the command
value of motors, DRL estimates position, and forward

(a) Training and testing trajectory in experiments.

(b) Policy operation.

(c) Tracking error comparison.

Fig. 10. Line trajectory experimental results.
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Fig. 11. End-effector position estimation performance
comparisons in experiments; Command (Black
line) is the reference, DRL (Red line) is the pro-
posed method, and FK (Green line) is the conven-
tional forward kinematics.

kinematic estimates position is depicted in Fig. 11.
Because of the expensive long-distance position and

posture measuring sensor, we may not be able to obtain
the location information of the robot end-effector directly,
especially the large workspace application of a CDPR. We
typically estimate the position of the end-effector based on
the forward kinematic of the robot. However, the numeri-
cal solution of a CDPR’s forward kinematic is more com-
plex and not necessarily accurate [33]. We assume that the
actions produced by the DRL network are partly a pre-
diction of future moving errors, so we can use this infor-
mation in conjunction with the reference trajectory to es-
timate the position of the end-effector [34]. We used the
motion trajectories and experimental data from the exper-
iments in the previous section to compare the errors of the
estimated position of the end-effector.

The results indicate that the position esimtation error
of the proposed DRL shows smaller than the conventional
forward kinematics in the y- and z- directions and simi-
lar results in the x- direction. We confirmed that the pro-
posed method is slightly better and comparable to the con-
ventionally used forward kinematics when estimating the
end-effector position.

5. CONCLUSION

In this study, a compensatory motion control method
based on DRL is proposed and its feasibility is verified by
experiments. To address the practical implementation; 1)
The problem of asynchronous state observation and action
execution, we put delaying the action execution time by

one action applied cycle and add the action to be executed
to the appropriate state. 2) The policy loop program is also
programmed to delay to an appropriate time decided by
the measured time to match the motion control program in
TwinCAT3 caused by the difference between policy loop
time and motion control loop time. 3) The reference tra-
jectory of the first second of the robot’s motion is used to
traverse all the time points near the approximate starting
point calculated by the threshold to obtain the correspond-
ing camera-recorded start time of the robot movement. 4)
Finally, the policy trained with the measured motion data
of the desired trajectory can reduce the tracking error on
testing trajectories.

Under the condition of no available position feedback
sensor, the proposed method shows a better performance
than a conventional open-loop control and a modified
open-loop control with tension distribution. Moreover, the
end-effector position estimation capability of the proposed
method could show improved performance than the con-
ventional forward kinematic solution in terms of end-
effector position estimation.

The simulation and the experimental results in this
study could demonstrate the feasibility of the proposed
DRL method to the CDPR application for position track-
ing control and as an alternative method of forward kine-
matics. However, it has limitations in that we could not
test the proposed method in other various trajectories and
different payload conditions. Also, for the more complex
trajectory application, the learning should be enhanced by
using more training datasets with a high computation ca-
pability GPU. Ultimately, we will validate the proposed
method under multiple trajectories and varying payloads
for practical implementation based on the proposed ap-
proach in this paper.
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