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A Path Planning Method for Unmanned Surface Vessels in Dynamic En-
vironment
Jiabin Yu* ■ , Zhihao Chen, Zhiyao Zhao, Jiping Xu, and Yang Lu

Abstract: A path planning method for unmanned surface vessels (USV) in dynamic environment is proposed to
address the impact of dynamic environments on path planning results and the lack of dynamic obstacle avoidance
capabilities. First, the considering ocean current rapidly exploring random tree (RRT*) (COC-RRT*) algorithm
was proposed for global path planning. The RRT* algorithm has been enhanced with the integration of the virtual
field sampling algorithm and ocean current constraint algorithm. The COC-RRT* algorithm optimizes the global
planning path by adjusting the path between the parent nodes and child nodes. Second, according to the limita-
tions of the International Regulations for Preventing Collisions at Sea (COLREGs), the improved dynamic window
approach (DWA) is applied for local path planning. To enhance the ability of avoid dynamic obstacles, the dist
function in the DWA algorithm has been improved. Simulation experiments were conducted in three scenarios to
validate the proposed algorithm. The experimental results demonstrate that, in comparison with other algorithms,
the proposed algorithm effectively avoids dynamic obstacles and mitigates the influence of the space-varying ocean
current environment on the path-planning outcome. Additionally, the proposed algorithm exhibits high efficiency
and robustness. The results verified the effectiveness of the proposed algorithm in dynamic environments.

Keywords: COLREGs, DWA algorithm, path planning, RRT algorithm, space-varying ocean current.

1. INTRODUCTION

In recent years, unmanned surface vessels (USVs) have
seen widespread application in conducting water quality
sampling in public water bodies. The presence of ocean
currents and dynamic obstacles in the dynamic environ-
ment has a negative impact on the safety of USV navi-
gation. Therefore, scholars have done much research on
USV navigation technology in the dynamic environment,
and path planning is an active research area of USV navi-
gation technology [1].

Currently, there are diverse path planning methods,
broadly categorized into global path planning methods
and local path planning methods [2]. The global path
planning method involves searching for the optimal path
within a pre-constructed environmental model. Therefore,
the global path planning method is commonly employed
for solving path planning problems in spatially chang-
ing ocean current environments. The global path plan-
ning methods primarily include A* algorithm [3], Dijk-
stra algorithm [4], rapidly-exploring random trees (RRT)

[5], and deep reinforcement learning (DRL)-based algo-
rithms [6]. The local path planning method can use sen-
sors to obtain information about the surrounding environ-
ment and autonomously plan collision free paths in par-
tially unknown environments, making it ideal for dynamic
unknown environments. The commonly used local path
planning methods are divided into two categories. The
first type refers to path planning methods based on vir-
tual potential fields, such as the artificial potential field
(APF) method [7]. This method features a simple struc-
ture and high efficiency. The second category encom-
passes sampling-based path planning methods, such as
the dynamic window approach (DWA) [8]. These methods
are characterized by their fast sampling speed, and these
methods are often used to solve local path planning prob-
lems [9].

In global path planning algorithms, RRT algorithm has
the dominance of fast sampling speed, and is widely uti-
lized for solving multi-objective path planning problems
in spatially changing ocean current environments. How-
ever, the path generated by this algorithm has longer
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Table 1. Global performance of path planning algorithm.

Algorithm Reduced the cost Ocean current Obstacles and current
combination

RRT [5] / / /
A boundary-RRT* [10] Yes / /
A dynamic-RRT* [11] Yes / /

Energy optimized D* [12] Yes Yes /
FLFF-controller [13] Yes Yes /

OCI-RRT [14] Yes Yes /

length. To address this issue, Park et al. [10] proposed a
boundary RRT * algorithm that improves real-time per-
formance by simply calculating and configuring spatial
boundaries. The cost of path planning is reduced using this
algorithm. In addition, a decentralized iterative algorithm
has been proposed by Verbari et al. [11] based on a single
agent dynamic RRT star, which introduces a decentral-
ized strategy that compares the allocation process based
on iterative plans to reduce the length of planned paths.
While the algorithm mentioned above does decrease the
path length of the RRT algorithm, it fails to account for
the ocean current issue in real water environments and
is also not practical in complex environments. To address
this issue, Sun et al. [12] believe that the energy consump-
tion of AUVs is significantly influenced by ocean currents.
Then, they developed a cost model to quantify the influ-
ence of ocean currents on AUV energy consumption and
integrated this model into the D* path planning algorithm,
enabling AUVs to utilize ocean currents to achieve en-
ergy consumption reduction. Peng et al. [13] considered
ocean current disturbances and used neural networks com-
bined with adaptive filtering methods to extract model un-
certainty and low-frequency components of ocean distur-
bances, achieving collaborative control of multiple USVs
in ocean current environments. An enhanced ocean cur-
rent based RRT (IOC-RRT) algorithm was proposed by
Lan et al. [14] to sort out path planning problems encoun-
tered in practical applications. Although the above algo-
rithm takes into account the path planning and collabora-
tive control of multiple unmanned submersibles in the cur-
rent environment, it does not take into account the multi-
objective task allocation problem of multiple unmanned
submersibles. Furthermore, although it considers the im-
pact of ocean currents, it does not consider obstacles and
currents together. Therefore, this algorithm is ineffective
in complex marine environments. Table 1 presents the per-
formance evaluation of the aforementioned algorithms.

In the local path planning algorithm, the DWA algo-
rithm sets a speed preselection window based on the cur-
rent speed and acceleration of the USV, and an evaluation
function was used to select the optimal speed on the basis
of heading angle, obstacle avoidance, and speed. It takes
into account the physical and environmental constraints

of the USV, ensuring good global and real-time path plan-
ning performance. Therefore, the DWA algorithm has a
wide application in local path planning. In order to im-
prove the path planning capabilities of the DWA algo-
rithm, Yang et al. [15] introduced fuzzy control. Bai et
al. [16] defined the safety threshold of the objective func-
tion to use the DWA algorithm to reduce path length.
The above methods can improve the path planning ca-
pability of the DWA algorithm. However, they lack stan-
dards for obstacle avoidance in the presence of ships. The
Convention on International Regulations for Preventing
Collisions at Sea (COLREGs) clarifies the general rules
for navigation decision-making in the event of a ship en-
countering a collision, constrains the navigation decision-
making of ships, and improves maritime traffic safety [17].
Some studies have combined the DWA algorithm with
COLREGs to enable USVs to avoid dynamic obstacles
based on COLREGs constraints [18,19]. The speed of ob-
stacles should also be considered when avoiding obsta-
cles. Chen et al. [20] combined the mutual speed between
USV and dynamic obstacles, the sampling ability and the
obstacle avoidance ability was improved. Liang et al. [21]
combined these samples with the width of the robot and
integrated the combined results into the DWA algorithm to
enhance its dynamic obstacle avoidance ability in narrow
spaces. However, it’s worth considering that this algorithm
may exhibit complexity and inefficiency. The performance
comparison of the mentioned algorithms is detailed in Ta-
ble 2.

Sampling based motion planning methods perform
sampling to cover map space, and path planning algo-
rithms such as RRT* and DWA require a large amount of
sampling to obtain the optimal solution in the current situ-
ation. Due to the complex water environment and collision
constraints, the sampling based motion planning methods
will increase the computational burden during the path
sampling process. To reduce computational burden, we
improved the RRT * algorithm by establishing a virtual
field. The main contribution of this article is not only to
find low-cost paths that meet constraints, but also to im-
prove the efficiency of sampling.

To overcome the abovementioned drawbacks, first, the
considering ocean current RRT* (COC-RRT*) algorithm



1326 Jiabin Yu, Zhihao Chen, Zhiyao Zhao, Jiping Xu, and Yang Lu

Table 2. Local performance of path planning algorithm.

Algorithm Improve avoidance ability COLREGs Considering relative velocity
DWA [8] / / /

Fuzzy-based DWA [15] Yes / /
A* and DWA [16] Yes / /

Algorithms based on COLREGs [18] / Yes /
Path planning algorithm for MSV [19] / Yes /

DWA in complex environment [20] / / Yes
DWA considering constraint [21] / / Yes

is proposed. This method introduces the virtual field sam-
pling function and ocean current constraint function into
the RRT* algorithm so that the algorithm can sample and
optimize according to the direction and intensity of the
current. At the same time, the global planning path is
optimized by adjusting the path between the parent and
child nodes. Second, the COLREGs constraint is intro-
duced into the DWA algorithm, and the dist function in
the DWA algorithm is improved to optimize its obstacle
avoidance capability.

The main contributions of this work can be summed up
in the following:

1) In this paper, the COC-RRT* algorithm is proposed,
the efficiency of the RRT algorithm in the space-
varying ocean environment is improved, shortens the
time of USVs sailing, and reduces the length of the
planning path.

2) An improved DWA algorithm was proposed in this
paper, which can optimize the rationality of the path
planning and the dynamic obstacle avoidance ability
of the DWA algorithm.

The subsequent sections of this article are structured as
follows: Section 2 outlines the modeling process, while
Section 3 presents the proposed algorithm. Section 4 dis-
cusses the experimental results obtained through imple-
menting the algorithm. Finally, Section 5 presents the con-
clusion.

2. PRELIMINARIES AND PROBLEM
FORMULATION

2.1. Ocean current modeling
Multiple single-point eddies can form the dynamic

model of the ocean, and the expression of single-point ed-
dies is as follows:

eddy{p,a} :

f (x,y) = (x− px)
2 +(y− py)

2,
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(1)

Fig. 1. The model of ocean current.

where cx is the strength of the seawater flow in the x-axis
direction; cy denotes the strength of the seawater flow in
the y-axis direction; ax denotes the strength coefficient of
the seawater flow on the x-axis; ay denotes the strength co-
efficient of the seawater flow on the y-axis; px denotes the
coordinate of the eddy p on the x-axis; the coordinate of
eddy p on the y-axis is py; and sgn() is a symbolic function
[22]. Fig. 1 illustrates the ocean current, with the arrow in-
dicating the direction of the seawater flow.

2.2. Obstacle modeling

The Unity3D platform is applied to model obstacles in
maps. To ensure the safety of USV sailing, extended mod-
eling of obstacles was carried out. In Fig. 2, the obstacle
coordinate system {o} is established with the center of the
obstacle serving as the origin.

The outline of obstacles is denoted as (xo.i, yo.i), i = 1,
2, ..., n. The expression of expanded outline is as follows:

{
x∗o.i = (1+E) · xo.i,

y∗o.i = (1+E) · yo.i,
(2)

where E is the obstacle expansion coefficient, x∗o.i and y∗o.i
are the expanded outline coordinate. In Figs. 2(a) and 2(c)
display the obstacle prior to expansion, Figs. 2(b) and 2(d)
depict the obstacle after expansion.
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Fig. 2. Obstacle modeling: (a) Static obstacle. (b) Static
obstacle after expansion. (c) Dynamic obstacle. (d)
Dynamic obstacle after expansion.

2.3. USV modeling
The USV coordinate system [23] is specified, as shown

in Fig. 3. A coordinate system is established on the ocean’s
surface, where the origin Oe can be anywhere on the
ocean’s surface. The Ye- and Xe-axes point to the north
and east respectively. This system is transformable to an
{e} coordinate system. This paper exclusively focuses on
the surge, sway, and yaw motions of a USV. A three-
degree-of-freedom mathematical model for the USV is es-
tablished as follows:{

η̇ = J(η) ·υ ,
M · υ̇ +C ·υ +D ·υ = τ +ω.

(3)

Modeling real USVs through the Unity 3D platform to
construct 3D USV models. The actual USV and its 3D
model are depicted in Figs. 4(a) and 4(b). To facilitate the
observation of 3D USV collisions, the collision and colli-
sion detection module of the Unity3D platform has been

Fig. 3. The USV movement coordinate system.

Fig. 4. The model of USV: (a) The real USV. (b) The 3D
USV.

incorporated into the 3D USV model. Additionally, a rigid
body and kinematic rigid body collider have been added to
the 3D USV model to account for its inertia and gravity.
Finally, a buoyancy module has been integrated into the
3D USV model. These modeling methods enable the 3D
USV model to exhibit realistic physical characteristics in
simulation experiments, thereby allowing for more effec-
tive validation of the proposed algorithm through simula-
tion experiments.

2.4. Problem statement
Defined distance-based evaluation criteria. The plan-

ning path P is constructed by linking multiple path nodes
or grids. The Euclidean distance of the planning path P is
presented as

D(P) =
k−1

∑
i=1

si,si =
√
(xi+1− xi)2 +(yi+1− yi)2, (4)

where si is the Euclidean distance between adjacent path
nodes or grids, (xi, yi), i = {1, 2, ..., k− 1} is the coordi-
nates of each path node or grid. There are various obsta-
cles in the lake, which form a prohibited area O. The USV
must avoid this area. Assuming that the planning path can
avoid the prohibited area O, the optimal path is determined
based on time T (Pi). In this study, the USV has to travel
to the target point in the shortest possible time. Therefore,
the objective function is

X∗ = argmin
X

T (Pi), ∀i = {1, 2, ..., K}, (5)

where T (Pi) is the time cost function. In the simulation,
water flow with variable space and constant time was con-
sidered; The direction and intensity of water flow vary be-
tween different positions, but remain unchanged in differ-
ent time series. T (Pi) is

T (Pi)

=



|D(Pi.0)−D(Pi.1)|
|Va.1|

+
M−1

∑
m=2

|D(Pi.m−1)−D(Pi.m)|
|Va.m|

+
|D(Pi.M−1)−D(Pi.M)|

|Va.M|
, Pi∩O = /0,

+∞, otherwise,
(6)
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where Pi is the candidate for the ith path planing, that does
not travel through the prohibited area O; Pi.m is the local
path on Pi; Va.m is sailing speed of USV sailing in the local
path Pi.m; Meanwhile, Va.m represents the combined vec-
tor of the USV’s forward speed and environmental distur-
bances.

3. PROPOSED ALGORITHMS

3.1. COC-RRT* algorithm
Ocean currents will affect the sailing of USVs. In this

paper, ocean currents were transformed into a virtual field.
At each point in the virtual field, the strength of P(x, y) is
Uc

Uc = Foc

√
c2

x + c2
y , (7)

where Foc is point P’s current gain; cx is the size of the
ocean current along the x-axis; cy is the size of the ocean
current along the y-axis.

Fig. 5 displays the virtual obstacle field, where the
sphere represents the boundary of the obstacle virtual
field. The virtual field extends from the center of the ob-
stacle to the USV.

The value of Uo represents the strength of any point P(x,
y) within the obstacle virtual field, and its expression is as
follows:

Uo =


1
2

Foo ·
n

∑
i=1

x∗o.i
xo.i
·
[

1
ρ
− 1

ρ0

]
, ρ ≤ ρ0,

0, ρ > ρ0,

(8)

where Foo represents the strength parameter of the virtual
field surrounding the obstacle; x∗o.i is the boundary coor-
dinate of the obstacle after expansion; xo.i is the bound-
ary coordinate of the obstacle before expansion; ρ0 is the
range of virtual field influenced; xo and yo are the x- and
y-axis coordinates of the obstacle; and ρ is the Euclidean
distance of (x, y) and (xo, yo), and its expression is

ρ =
√
(x− xo)2 +(y− yo)2. (9)

The sampling range of the COC-RRT* algorithm is M;
p is an extension step; T is a planning path of random tree;

Fig. 5. Virtual field model of obstacles.

Fig. 6. The expansion process involves random sampling
points in the COC-RRT* algorithm.

Algorithm 1: COC-RRT* (qinit , qgoal).
Step 1: T ← InitializeTree(T , qinit);
Step 2: For i = 1: n do
Step 3: qrand ← SOCMFSample(T , qgoal , M);
Step 4: qnear ← Nearest(T , qrand);
Step 5: qnew ← Steer(qnear, qrand , p);
Step 6: qneighbor ← Findnearneighbor(T , qnew, M);
Step 7: if CollisionFree(qnew, T , M) then
Step 8: if OCConstraints(qnew, T , M) then
Step 9: T ←Chooseparent(qnew, qneighbor, T );
Step 10: T ← Rewire(T , qnew, qneighbor);
Step 11: return T

qinit is the initial point; qgoal is the target; n is the maximum
iterations. The COC-RRT* algorithm is based on RRT*
to achieve path planning under spatially changing ocean
currents. Fig. 6 shows the expansion process of the sam-
pling points of the COC-RRT* algorithm. The path nodes
are created to maximize their utilization, shorten the sail-
ing time of USVs, and avoid excessive energy costs. The
pseudocode of the COC-RRT* algorithm is represented in
Algorithm 1.

In Algorithm 1, InitializeTree(T , qinit) is used to ini-
tialize the random tree T and take qinit as the initial node.
Nearest(T , qrand) is used to select the path node closest
to the point qrand in T as the point qnear. The point from
the line between point qnear and point qrand are took by
Steer(qnear, qrand , p) as qnew, and the distance between
point qnear and point qrand is p. Findnearneighbor(T ,
qnew, M) is used to find the point qnew. Set the sampling
range as M, qnew as the center. The point qneighbor are se-
lect by above parameters, and it is the highest index in
T . CollisionFree(qnew, T , M) is used to detect whether
the planning path collides. Chooseparent(qnew, qneighbor,
T ) connects the point qneighbor in T with the point qnew.
Rewire(T , qnew, qneighbor) is used to reselect the shortest
planning path, calculate the distance between the point
qneighbor and the point qnew in T , and return the path with
the shortest distance to T [25].
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This article improves the RRT* algorithm, and proposes
SOCMFSample(T , qgoal , M). SOCMFSample(T , qgoal , M)
is used to generate point qrand . The length between the
point qrand and the point with the highest index in T is
must less than M. qT (xT , yT )’s index is T . Usum is the sum
of the virtual field at qT , and its expression is

Usum =
√

U2
c +U2

o +2UcUocos(δ − ϵ), (10)

where Uc is at qT , which refers the virtual field strength;
Uo is at qT , which refers the virtual field strength of obsta-
cles; δ is current virtual field angle; ϵ is obstacle virtual
field angle. δsum is at qT , which refers the total virtual field
angle, and its expression is

δsum =
δ ·Uc + ϵ ·Uo

Uc +Uo
. (11)

The coordinates of point qrand are (xrand , yrand). The ex-
pression of xrand is as follows:

xrand = xT +
Usum

Us
· sin[δ + rand(

|ψ−δ |
2

)] · rand(M),

(12)

where xT is the x-axis coordinate; Us is the range param-
eter, and qrand will be affected by Us; rand(n) takes a ran-
dom number from 0 to n; and ψ is the planning path at qT .
The yrand is

yrand

= yT +
Usum

Us
sin[δ + rand(

|ψ−δ |
2

)]

× rand(
√

M2− (xrand− xT )2), (13)

where yT is the y-axis coordinate of the path node qT .
The pseudo-code of SOCMFSample(T , qgoal, M) is rep-
resented in Algorithm 2.

In Algorithm 2, Usum is the sum of Uc and Uo; xrand is
the x-axis coordinate of qrand ; and the y-axis coordinate of
qrand is yrand .

OCConstraints(qnew, T , M) is the ocean current con-
straint function in RRT*. Sampling at a distance of M can
obtain the center qnew; qs(xs, ys) is the midpoint between

Algorithm 2: SOCMFSample(T , qgoal, M).
Step 1: if rand(1) > 0.9 then
Step 2: return qgoal

Step 3: else Usum ← (10);
Step 4: δsum ← (11);
Step 5: δ ← δsum;
Step 6: xrand ← (12);
Step 7: yrand ← (13);
Step 8: qrand ← (xrand , yrand);
Step 9: return qrand

Algorithm 3: OCConstraints(qnew, T , M).
Step 1: qs ← (qnew + qT ) / 2;
Step 2: For j = 1: e do
Step 3: xdom ← (14);
Step 4: ydom ← (15);
Step 5: if Ucdom > 2Bs

Step 6: return False
Step 7: return True

qnew and qT ; qdom(xdom, ydom) is a random sampling point.
The expression of xdom is

xdom = xs + rand(M). (14)

The expression of ydom is as follows:

ydom = ys + rand(
√

M2− (xdom− xs)2). (15)

The pseudo-code of OCConstraints(qnew, T , M) is rep-
resented in Algorithm 3.

In Algorithm 3, the maximum iterations is e; Ucdom is at
qdom, which refers to ocean current virtual field strength.

3.2. Improved DWA algorithm
The DWA [26] algorithm constrains sampling from

three aspects: distance, speed, and security, and then uses
the objective function to determine the optimal planning
path. The expression of the DWA algorithm is

G(v,ω) = K[αH(v,ω)+βD(v,ω)+ γV (v,ω)]. (16)

3.2.1 COLREGs constraints
To guarantee navigational safety of unmanned under-

water vehicles, International Regulations for Preventing
Collisions at Sea (COLREGs) [27]. have been incorpo-
rated into the constraints of obstacle avoidance maneu-
vers, which can improve the safety and rationality of local
path planning. When the USV encounters dynamic obsta-
cles or in the R− crossing area, the DWA algorithm will
not plan the path from the back end of the dynamic obsta-
cle to the L intersection area, as shown in Fig. 7. In Fig.
7, only green paths are planned. However, when the USV
encounters dynamic obstacles in the L−crossing area, any
feasible path can be planned by the DWA algorithm. The
local planned path Pi is

Pi =

{
(ui± v̇i.c∆t,ri− ω̇i.c∆t), AR∩Od ̸= /0,

(ui± v̇i.c∆t,ri± ω̇i.c∆t), otherwise,
(17)

where µ < ω̇i.c ≤
√

2dist(ui± v̇i.c∆t,ri− ω̇i.c∆t)ω̇b. For
USV, Pi is the planning path; ui is velocity; ri is the angu-
lar speed; v̇i.c is the collision avoiding acceleration; ω̇i.c is
the collision avoiding angular acceleration; µ is the angle
between the connecting line and USV’s geometric ray, and
this connecting line is between the USV and the dynamic
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Fig. 7. The path planning results of the DWA algorithm
with the COLREGs.

obstacle; Od is the area of dynamic obstacle; dist(v,ω) is
the distance between the planning path of (v,ω) and an
obstacle; AR and AL are the areas of head− on between
R− crossing and the L− crossing; ω̇b is the obstacle’s ac-
celeration of angular velocity.

The DWA algorithm’s planning path is red in Fig. 7.
The planning path of the DWA algorithm with the COL-
REGs is green. The dynamic obstacle’s trajectory is yel-
low.

3.2.2 Improved dist function
It’s important to consider that the threat degree of a dy-

namic obstacle to a USV is significantly higher than that
of a static obstacle. n is number of obstacles. Therefore,
we improved the dist function D(v,ω) of the DWA algo-
rithm as follows:

D∗(v,ω) = ψ(Vb.i) ·
D(vi,ωi)

n
∑

i=1
D(vi,ωi)

, (18)

where ψ(Vb.i) is the obstacle speed factor

ψ(Vb.i) =

n
∑

i=1
Vb.i

Vb.i +
n
∑

i=1
Vb.i

, (19)

where l ∈ [1, n]; Vb.l is the velocity of the obstacle closest
to the USV, and higher than Vb.l . D∗(v,ω) and the disence
of the planning path to dynamic obstacle. Therefore, the
DWA algorithm tends to choose a planning path that is
further away from dynamic obstacles as the local optimal
path as shown in Fig. 8. The green path denotes planned
through the DWA algorithm with D∗(v,ω). Vb.i and ψ(Vb.i)
are negatively correlated, so D∗(v,ω) is high when a dy-
namic obstacle is far from the USV.

4. SIMULATION RESULTS AND DISCUSSION

We conducted the simulation experiments on a PC op-
erating on Windows 11 using Unity3D. The hardware fea-
tured an Intel Core i7-10870H processor operating at a

Fig. 8. The path planning results of the DWA algorithm
with the COLREGs and D(v,ω).

Table 3. The parameters of the proposed algorithm and
simulation experiment in this paper.

Parameters Definition Numerical
value

u (m/s) Forward speed of USV 10
r (rad/s) Angular velocity of USV 0.8

E Expansion coefficient of
obstacle

1.3

α Heading weight coefficient 0.08
β Dist weight coefficient 0.3
γ Velocity weight coefficient 0.2

Foc Ocean current gain 1.2
Foo Obstacle gain 1.1
Us Range coefficient 15

ρ0 (m) Influence range of obstacle 15

base frequency of 2.21 GHz and 8 GB of memory. To val-
idate the effectiveness of the proposed algorithm, the po-
sitions of obstacles on the map were randomly selected,
and We constructed a 3D square map of 1000 m × 1000
m that contained a number of areas of environmental dis-
turbance, following the description provided in Section 3.
The parameters of the proposed algorithm and simulation
experiment in this paper are shown in Table 3.

The data presented in Table 3 were obtained from [28].
The experiment in this paper was conducted in three steps.
Experiment 1 primarily aimed to validate the effectiveness
of the proposed algorithm in an environment with space-
varying ocean currents. Experiment 2 mainly verified the
effectiveness of the proposed algorithm in the dynamic ob-
stacle environment. Experiment 3 mainly verified the ef-
fectiveness of the proposed algorithm in the dynamic en-
vironment.

4.1. Validation of the algorithm in the space-varying
ocean current environment

In Scenario 1, the coordinates of the starting point and tar-
get point are set to (-430, -346) and (355, 400), respec-
tively. Static obstacles are added to the map and their po-
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Fig. 9. The experiment map of Scene 1.

Fig. 10. The experiment results in Scene 1: (a) RRT*. (b)
A*. (c) A* with B-spline. (d) COC-RRT*.

sitions are random. At the same time, there are also ocean
currents on the map, as shown in Fig. 9, where the blue
arrow indicates the direction of the current.

Select the RRT* algorithm, A* algorithm, and a hy-
brid algorithm of A* and B-spline curves as the com-
parison algorithms. The effectiveness of this algorithm in
global path planning under spatially changing ocean cur-
rents was verified through comparative experiments. The
experimental results are shown in Fig. 10 and Table 4.

From Figs. 10(a) and 10(b), it can be seen that the RRT*
algorithm and A* algorithm did not plan the path in accor-
dance with the direction of the ocean current. resulting in
an extension of navigation time. From Fig. 10(c), it can
be seen that although the first half of the planning path of
A* with B-spline is planned in accordance with the ocean
current direction, the second half of the planning path is
not planned according to the ocean current direction. From
Fig. 10 (d), it can be seen that the COC-RRT* algorithm

Table 4. The results of the four algorithms in Scene 1.

Algorithm Path length (m) Sailing time (s)
RRT* algorithm 1288.1553 118.5496

A* algorithm 1375.7496 101.9204
A* with B-spline

curve
1310.2377 97.0671

COC-RRT*
algorithm

1291.4585 90.2185

Fig. 11. The experiment results of four different ocean
current gain.

plans the path based on the ocean current direction. From
the results of the experiments in Table 4, it can be seen that
although the planning path length of the COC-RRT* algo-
rithm is longer than that of the RRT* method, the USV is
affected by ocean currents during navigation. Therefore,
the navigation time of USVs using the COC-RRT* algo-
rithm is shorter than that of USVs using the RRT* method.
Therefore, the performance of the COC-RRT* algorithm
is superior to that of the comparison algorithm.

To avoid the randomness of the experimental results,
three different sets of starting and target points for sim-
ulation experiments were selected in Scenario 1, and the
results obtained are shown in Table 5.

To test the impact of current gain on the planned path,
we selected four different current gains to plan the planned
path based on the same starting and target points. The ex-
perimental results are shown in Fig. 11.

As can be seen from Fig. 11, with the reduction of the
ocean current gain, the planning path is not planned ac-
cording to the ocean current direction. When the ocean
current gain increases, the planning path is planned along
the ocean current direction, but when the ocean current
gain is greater than 1.5, the planning path is excessively
affected by the ocean current. Therefore, when the ocean
current gain is 1.2, the planning path is most reasonable.

According to the experimental analysis, the planning
path becomes farther away from obstacles as the obsta-
cle gain increases. When the obstacle gain is 1.1, the al-
gorithm has the best performance. The relationship be-
tween obstacle gain and algorithm performance is shown
in Fig. 12.
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Table 5. The simulation results of the four algorithms for different combinations of the starting and target points in Scene 1.

Start and target Algorithm Path length (m) Sailing time (s)

(-94, -27), (347, -451)

RRT* algorithm 692.4512 78.8482
A* algorithm 750.8269 88.4003

A* with B-spline curve 715.0733 84.1908
Proposed algorithm 701.1358 61.2596

(181, -419), (-84, 103)

RRT* algorithm 672.1135 72.2151
A* algorithm 724.7819 71.4705

A* with B-spline curve 690.2685 68.0671
Proposed algorithm 683.6091 58.5226

(400, -400), (-400, 400)

RRT* algorithm 1298.2208 120.2126
A* algorithm 1395.8702 117.9479

A* with B-spline curve 1329.4002 112.3314
Proposed algorithm 1302.1548 91.2158

Fig. 12. The experiment results of four different obstacle
gain.

4.2. Validation of the algorithm in the dynamic obsta-
cle environment

The start point is (-410, -410), and target point is (370,
370). The DWA algorithm, the DWA algorithm with COL-
REGs constraints, and the DWA algorithm with the im-
proved distance function D∗(v,ω) was used as comparison
algorithm. Validate the dynamic obstacle avoidance abil-
ity of proposed algorithm in the experiment of Scenario 2.
The yellow ship represented a threat ship. The experimen-
tal results are depicted in Fig. 13 and Table 6.

The USV collided with TS1, as shown in Table 6 and
Fig. 13(a). In addition, due to the fact that the DWA algo-
rithm does not include COLREGs constraints, USV col-
lides with TS2. As shown in Fig. 13(b), when USV en-
counters TS1 and TS3, it complies with COLREG and
does not perform unnecessary obstacle avoidance actions.
When USV encounters TS2, it will perform the correct ob-
stacle avoidance action, but the planned path is too long.

Fig. 13. The experimental results of the four algorithms in
Scene 2: (a) DWA. (b) DWA with COLREGs. (c)
DWA with D∗(v,ω). (d) The proposed algorithm.

Table 6. The results of the four algorithms in Scene 2.

Algorithm Planning
time (s)

Path length
(m)

Number of
collisions

DWA 3.8498 1391.1518 3
DWA with
COLREGs

3.1821 1273.2949 0

DWA with
D∗(v,ω)

3.2157 1324.8153 0

Proposed
algorithm

2.6543 1188.4486 0

In addition, as shown in Fig. 13(c), when the USV encoun-
ters TS1 and TS3, even though the DWA algorithm con-
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siders the relative speeds of the threat ship and the USV
and can successfully avoid obstacles, the algorithm does
not include the COLREGs constraint, resulting in an ex-
tension of the USV’s navigation distance and an increase
in navigation time costs. When USV encounters TS2, it is
scratched by TS2. From the figure, it can be seen that in
Fig. 13(d), due to the addition of COLREGs constraints
in the algorithm, the proposed algorithm follows the left
crossing rule and does not perform any unnecessary ob-
stacle avoidance actions. In addition, when USV encoun-
ters TS1, this reduces the time spent on navigation. When
USV encounters TS2, the algorithm follows the right side
traversal rule and performs correct obstacle avoidance ac-
tions, improving safety. Therefore, the proposed algorithm
is superior to comparative algorithms in avoiding dynamic
obstacles.

4.3. Validation of the algorithm in the dynamic envi-
ronment

In the experiment of Scenario 3, ocean currents and threat
ships were added in order to verify the effectiveness of the
proposed algorithm. The speed of the threat ship is 5 me-
ters per second, as shown in Fig. 14. In order to simulate
the ocean current in real sea areas, in this experiment, we
generated the position of the ocean current based on the
coordinates provided in the simulation; This position ran-
domly moves within a circle with a radius of 10 meters,
and the current intensity varies randomly between 0 me-
ters per second and 7 meters per second. This algorithm
adjusts the planned path based on real-time data of ocean
currents.

In Scenario 3, the coordinates of the starting point and
target point are set to (-410, -410) and (410, 410), respec-
tively. Choose a hybrid algorithm that combines RRT*
and DWA algorithms as the comparison algorithm. In
the comparison algorithm, the parameters of RRT* algo-
rithm and DWA algorithm are consistent with those of the

Fig. 14. The experiment map of Scene 3.

Fig. 15. The experimental results of the two algorithms in
Scene 3: (a) RRT* with DWA. (b) The proposed
algorithm.

proposed algorithm. The effectiveness of this algorithm
in path planning in dynamic environments was verified
through comparative experiments. The experimental re-
sults are shown in Fig. 15 and Table 7.

Table 7 shows that the proposed algorithm has lower
path length, navigation time, and collision time compared
to the RRT* of the DWA algorithm. Due to its more com-
plex structure and longer computational time, the pro-
posed algorithm is still within an acceptable range, mak-
ing it effective. According to the experimental results in
Table 7, it can be seen from the graph that when USV en-
counters TS1 and TS2 in Fig. 15(a), it does not comply
with the left crossing rule, which prolongs the planning
path length and increases the navigation time cost. When
USV encounters TS3, it does not comply with the correct
traversal rules, which prolongs the length of the planned
path and increases the cost of navigation time. When USV
encounters TS4, it does not comply with the left cross-
ing rule and collides with TS4. From the figure, it can
be seen that in Fig. 15(b), the proposed algorithm adds
a COLREG constraint. When encountering TS1 and TS2,
the USV follows the left crossing rule and does not engage
in large-scale obstacle avoidance movements, reducing the
planned path length. At the same time, the algorithm plans
the path based on the direction of the ocean current, reduc-
ing the navigation time of the USV. Therefore, the perfor-
mance of this algorithm in dynamic environments is supe-
rior to that of comparative algorithms, verifying its effec-
tiveness.

To avoid the randomness of the experimental results, we
selected three different sets of starting and target points
for simulation experiments in Scenario 3, and the results
obtained are shown in Table 8.

Table 7. The results of the two algorithms in Scene 3.

Algorithm Path length (m) Sailing time (s) Number of collisions Computational time (s)
RRT* with DWA 1319.1895 121.0453 1 0.75112

Proposed algorithm 1301.4933 107.6377 0 0.75896
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Table 8. The simulation results of the two algorithms for different combinations of the starting and target points in Scene 3.

Start and target Algorithm Path length (m) Sailing time (s) Number of collisions Computational time (s)

(-400, 400), (400, -400) RRT* with DWA 1277.9765 67.1244 1 0.61845
Proposed algorithm 1262.1578 57.0785 0 0.62048

(450, 350), (-400, -200) RRT* with DWA 1075.3998 72.0058 2 0.66402
Proposed Algorithm 1062.3233 65.3064 0 0.66506

(-50, 400), (50, -400) RRT* with DWA 847.2039 52.3108 1 0.74848
Proposed algorithm 830.8113 42.9518 0 0.75201

5. CONCLUSION

This paper proposed a path-planning method for USVs
in the dynamic environment. In the experiment of Scene
1, the planning path of the proposed algorithm could ef-
fectively address the impact of ocean currents. The ex-
perimental results indicate that the proposed algorithm re-
sulted in a shorter sailing time compared to the algorithm
used for comparison, which verifies the effectiveness of
the proposed algorithm in the ocean current environment.
In the experiment of Scene 2, the proposed algorithm
could effectively avoid dynamic obstacles. The experi-
mental results indicate that the planning time, path length,
and collision times of the proposed algorithm were better
than those of the comparison algorithm, which verifies the
effectiveness of the dynamic obstacle avoidance ability of
the proposed algorithm. In the experiment of Scene 3, the
proposed algorithm could effectively avoid dynamic ob-
stacles in the ocean current environment and successfully
reach the target point. Although the computational time
of the proposed algorithm was longer, it was within the
acceptable range. The experimental results show that the
path length, sailing time, and collision times of the pro-
posed algorithm were superior compared to the compari-
son algorithm, thereby confirming the effectiveness of the
proposed algorithm in the dynamic environment.

In future research, we can improve this study in two as-
pects. First, the majority of the parameters in this paper
were derived from accumulated experience gained from
previous research, consequently, the deep learning algo-
rithm can be employed to optimize these parameters. Sec-
ond, the proposed algorithm does not consider the prob-
lem of multi-targets, so optimization algorithms can be
introduced to specify the traversal order of multi-targets
for improvement.
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