
International Journal of Control, Automation, and Systems 22(5) (2024) 1751-1759
http://dx.doi.org/10.1007/s12555-022-1133-1

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

Reinforcement Q-learning and Optimal Tracking Control of Unknown
Discrete-time Multi-player Systems Based on Game Theory
Jin-Gang Zhao ■

Abstract: This paper studies the fully cooperative game tracking control problem (FCGTCP) for a class of discrete-
time multi-player linear systems with unknown dynamics. The reference trajectory is generated by a command gen-
erator system. An augmented multi-player systems composed of the origin multi-player systems and the command
generator system is constructed, and an exponential discounted cost function is introduced to derive an augmented
fully cooperative game tracking algebraic Riccati equation (FCGTARE). When the system dynamics are known,
a model-based policy iteration (PI) algorithm is proposed to solve the augmented FCGTARE. Furthermore, to re-
lax the system dynamics, an online reinforcement Q-learning algorithm is designed to obtain the solution to the
augmented FCGTARE. The convergence of designed online reinforcement Q-learning algorithm is proved. Finally,
two simulation examples are given to verify the validity of the model-based PI algorithm and online reinforcement
Q-learning algorithm.
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1. INTRODUCTION

Tracking control aims to design a feedback controller
such that the output of the control system can track a ref-
erence signal while ensuring the closed-loop stability [1].
The past few decades have seen extensive exploration of
tracking control [2-5]. It has been widely used in vari-
ous fields, such as mobile robots [6], quadrotor [7], over-
head cranes [8], multiagent systems [9], etc. These wide-
ranging applications have greatly promoted the develop-
ment of optimal tracking control [10-14], which strives
to minimize or maximize a predefined performance index
function while ensuring that the output tracks a reference
signal. Unlike the optimal control problem, the optimal
tracking control problem needs to consider both the con-
trol system dynamics and the reference signal dynamics,
and is more complicated to solve [1]. In addition, the opti-
mal control problem can be essentially regarded as the op-
timal tracking control problem when the reference signal
is zero, which is a special kind of optimal tracking con-
trol problem. Therefore, the study of the optimal tracking
control problem is of more practical value.

As we all know, for general discrete-time linear sys-
tems, it is well known that the solution to optimal track-
ing control problem can be found by solving an associ-
ated algebraic Riccati equation (ARE) [15]. For discrete-

time multi-player linear systems, the solution to optimal
tracking control problem can be found by solving an as-
sociated non-zero-sum game ARE (NZSGARE, from a
non-zero sum game perspective) [16] or fully cooperative
game ARE (FCGTARE, from a fully cooperative game
perspective) [17]. However, it is not easy to directly solve
these equations due to the nonlinearity of the unknown pa-
rameters. In addition, considering practical applications,
we often hope to obtain the solution of the optimal track-
ing control problem without relying on the accurate model
of the system.

In recent years, reinforcement learning (RL), especially
adaptive dynamic programming (ADP) based on RL [18-
20], has become a powerful tool for solving optimal con-
trol problems for complex systems with unknown mod-
els, such as generally linear and nonlinear control system
[21-23], Helicopter [24], multi-player systems [25], cyber-
physical systems [26,27]. For optimal tracking control
problems, in general linear and nonlinear systems, refer-
ence [15] proposed a reinforcement Q-learning algorithm
to solve the ARE. A critic-Only Q-Learning method was
proposed to solve the optimal tracking control problem of
nonaffine nonlinear discrete-time systems [28]. A model-
free policy gradient ADP method is designed for optimal
tracking control problem of discrete-time nonlinear sys-
tems [29]. Optimal parallel tracking control for general
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nonlinear systems was investigated by a new ADP method
[30]. A novel value function was proposed to solve the
optimal tracking problem of nonlinear discrete-time sys-
tems using ADP method in [31]. For linear and nonlin-
ear multi-player systems, references [16,32] respectively
developed off-policy reinforcement learning method and
Q-learning approach to solve the NZSGARE. References
[33,34] have designed RL approach to the optimal track-
ing control problem of multi-player systems from the non-
zero sum game perspective, respectively. In terms of fully
cooperative games, scholars mainly focus on the optimal
control problem of multi-player linear and nonlinear sys-
tems. Reference [17] designed a data-driven ADP method
for optimal control problem of multi-player systems with
partially constrained inputs. A neural network-based ADP
approach was proposed to deal with the cooperative game
issues of discrete-time multi-player systems in [35]. Ref-
erence [36] investigated the optimal control problem of
multi-player systems with completely unknown dynamics
using data-driven ADP from the perspective of fully co-
operative games. In cooperative games, where all players
have the same performance index function and achieve a
common goal, it is actually a special case of a non-zero-
sum game. In [17,35,36], the optimal control problem for
fully cooperative games in different situations was stud-
ied using reinforcement learning. However, fewer studies
have been conducted for the fully cooperative game op-
timal tracking control problem, which motivates our re-
search in this paper.

This paper will study the optimal tracking control prob-
lem of discrete-time multi-player linear systems from the
perspective of fully cooperative game, and considering
that the control system mathematical model is usually dif-
ficult to obtain in practical applications, we design a re-
inforcement Q-learning method. The designed method in
this paper does not depend on system dynamics and has
more practical application value. The main contributions
of this paper can be described as follows:

1) The tracking control problem for a class of discrete-
time multi-player systems may be the first to be stud-
ied from the perspective of fully cooperative game.

2) An exponential discounted cost function is intro-
duced. Accordingly, the corresponding Bellman
equation and FCGTARE for FCGTCP are derived.

3) An online reinforcement Q-learning algorithm is pro-
posed to solve the FCGTCP without requiring the
system dynamics. The convergence of proposed on-
line reinforcement Q-learning algorithm is proved.

The rest of this paper is organized as follows: Sec-
tion 2 formulates the FCGTCP of multi-player linear sys-
tems. In Section 3, we present the Bellman equation and
FCGTARE for FCGTCP. In Section 4, an online reinforce-
ment Q-learning algorithm is designed to solve the aug-
mented FCGTARE. Simulation studies on a discretized

F-16 dynamic system model is given to demonstrate the
effectiveness of the designed online reinforcement Q-
learning algorithm in Section 5. Section 6 concludes this
paper and gives the future research directions.

2. PROBLEM FORMULATION

Consider a class of discrete-time multi-player linear
systems with two players

xk+1 = Axk +B1u1k +B2u2k,

yk =Cxk, (1)

where xk ∈ Rn denotes the system state, u1k ∈ Rm1 and
u2k ∈ Rm2 denote the two players or two control inputs,
yk ∈Rp denotes the system output. A ∈Rn×n, B1 ∈Rn×m1 ,
B2 ∈ Rn×m2 , and C ∈ Rp×n are constant matrices, and it is
assumed that A, B1, B2 are unknown.

Assumption 1: (A,B1) and (A,B2) are controllable and
(A,C) is observable.

The goal of FCGTCP is to find a tuple of feedback con-
trol inputs (u1k,u2k) for the system (1) which ensures that
the output yk tracks a reference trajectory rk, and the two
control inputs take actions together as a team to minimize
the following cost function or value function

V (xk,rk,u1k,u2k)

=
∞

∑
i=k

e−α(i−k)[(Cxi − ri)
T Q(Cxi − ri)

+uT
1iR1u1i +uT

2iR2u2i
]
, (2)

where Q, R1, R2 are positive definite matrices with com-
patible dimensions. e−α ∈ (0, 1) is a discount factor and
α > 0 is an adjustable parameter.

In other words, the optimal control inputs (u∗
1k,u

∗
2k) can

be obtained by solving the minimization problem as

V *(xk,rk) =V (u∗1k,u
∗
2k) = min

u1k ,u2k
V (u1k,u2k), (3)

and satisfy

V (u∗1k,u
∗
2k)≤ min{V (u1k,u∗2k),V (u*

1k,u2k)}. (4)

The optimal control inputs (u∗1k,u
∗
2k) obtained by (3) and

satisfying (4) constitute a coordination equilibria solution
of two-player FCG [17].

The reference trajectory is generated by the following
command generator system

rk+1 = Frk, (5)

where F ∈Rp×p is a constant matrix. Note that F may not
be Hurwitz due to the introduction of the discount factor
e−α in the cost function (2).
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Defining Xk =
[
xT

k rT
k

]T , based on (1) and (5), an aug-
mented system with two players is constructed as follows:

Xk+1 =

[
xk+1

rk+1

]
=

[
A 0
0 F

][
xk

rk

]
+

[
B1

0

]
u1k +

[
B2

0

]
u2k

= ĀXk + B̄1u1k + B̄2u2k. (6)

According to the augmented system state, the cost func-
tion (2) can be rewritten as follows:

V (Xk) =
∞

∑
i=k

e−α(i−k)[XT
i Q̄Xi +uT

1iR1u1i +uT
2iR2u2i

]
,

(7)

where

Q̄ =

[
CT QC −CT Q
−QC Q

]
.

Now, the solution of FCGTCP can be obtained by solv-
ing the optimal control problem consisting of augmented
system (6) and cost function (7).

3. THE SOLUTION FOR THE FCGTCP

In this section, the Bellman equation and FCGTARE for
FCGTCP are firstly presented. Then, when system dynam-
ics A and B are known, a model-based online PI algorithm
is given to solve the FCGTARE.

3.1. Derivation of Bellman equation and FCGTARE
The value function (7) can be written in the following

recursive form

V (Xk)

= XT
k Q̄Xk +uT

1kR1u1k +uT
2kR2u2k

+ e−α

∞

∑
i=k+1

e−α(i−k−1)[XT
i Q̄Xi+uT

1iR1u1i+uT
2iR2u2i].

(8)

According to (8), we can obtain the Bellman equation
for FCGTCP as follows:

V (Xk) = XT
k Q̄Xk +uT

1kR1u1k +uT
2kR2u2k

+ e−αV (Xk+1). (9)

Similar to [15], the value function (7) can be written in
a quadratic form as follows:

V (Xk) = XT
k PXk. (10)

Based on (10), the Bellman equation (9) can be rewrit-
ten as follows:

XT
k PXk = XT

k Q̄Xk +uT
1kR1u1k +uT

2kR2u2k

+ e−α XT
k+1PXk+1. (11)

Define the FCGTCP Hamiltonian equation as

H(Xk,u1k,u2k) = XT
k Q̄Xk +uT

1kR1u1k +uT
2kR2u2k

+ e−α XT
k+1PXk+1 −XT

k PXk, (12)

or equivalently

H(Xk,u1k,u2k) = XT
k Q̄Xk +uT

1kR1u1k +uT
2kR2u2k

+ e−αV (Xk+1)−V (Xk). (13)

The next theorem will show how to solve the FCGTCP
by an augmented FCGTARE.

Theorem 1: For the augmented system (6) with the
cost function (7), the optimal control inputs u∗1k and u∗2k
have the form

u∗1k = L∗
1Xk,

u∗2k = L∗
2Xk,

with

L∗
1 = [F∗

11 − e−2α B̄T
1 P∗B̄2(F∗

22)
−1B̄T

2 P∗B̄1]
−1

× [e−2α B̄T
1 P∗B̄2(F∗

22)
−1B̄T

2 P∗Ā− e−α B̄T
1 P∗Ā],

(14)

L∗
2 = [F∗

22 − e−2α B̄T
2 P∗B̄1(F∗

11)
−1B̄T

1 P∗B̄2]
−1

× [e−2α B̄T
2 P∗B̄1(F∗

11)
−1B̄T

1 P∗Ā− e−α B̄T
2 P∗Ā],

(15)

and the P∗ satisfies the following augmented FCGTARE

P∗ = e−α ĀT P∗Ā+ Q̄− e−2α
[
ĀT P∗B̄1 ĀT P∗B̄2

]
×
[

F∗
11 F∗

12
F∗

21 F∗
22

]−1 [B̄T
1 P∗Ā

B̄T
2 P∗Ā

]
, (16)

where F∗
11 = R1 + e−α B̄T

1 P∗B̄1, F∗
12 = e−α B̄T

1 P∗B̄2, F∗
21 =

e−α B̄T
2 P∗B̄1, F∗

22 = R2 + e−α B̄T
2 P∗B̄2.

Proof: Based on (13), according to the stationary con-
ditions ∂H(Xk ,u1k ,u2k)

∂u1k
= 0 and ∂H(Xk ,u1k ,u2k)

∂u2k
= 0, we have

(R1 + e−α B̄T
1 PB̄1)u1k + e−α B̄T

1 PB̄2u2k

=−e−α B̄T
1 PĀXk, (17)

and

(R2 + e−α B̄T
2 PB̄2)u2k + e−α B̄T

2 PB̄1u1k

=−e−α B̄T
2 PĀXk. (18)

By solving (17) and (18) simultaneously, we can obtain
the optimal control inputs u∗1k and u∗

2k with (14) and (15).
Furthermore, the augmented FCGTARE can be ob-

tained by substituting the obtained optimal control inputs
u∗

1k and u∗2k into the Bellman equation (11). □

It is worth noting that the system stability is affected by
the discount factor e−α . In practice, we can always choose
a small α or a large Q to guarantee stability [37].
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3.2. Model-based online PI algorithm for solving
FCGTARE

Since the augmented FCGTARE (16) is a nonlinear equa-
tion of P∗ and involves matrix inversion, it is difficult
to solve the FCGTARE (16) directly. Inspired by [15], a
model-based online PI algorithm presented in Algorithm
1 is developed to solve the Bellman equation (11).

Remark 1: In policy evaluation, the LS is employed to
implement Algorithm 1 online by using the data tuple Xk,
Xk+1, u1k, u2k measured along the system trajectories. In
fact, (19) is a scalar equation and P is a positive symmet-
ric (n+ p)× (n+ p) matrix with (n+ p)× (n+ p+ 1)/2
independent element. Therefore, at least (n+ p)×(n+ p+
1)/2 data tuples are required to solve (19) using LS. In ad-
dition, to maintain persistence of excitation (PE), probing
noises are generally added to the control inputs. The addi-
tion of the probe noise may cause Algorithm 1 to produce
a biased solution [37].

It should be noted that the complete knowledge of sys-
tem dynamics A and B are required in Algorithm 1. To
eliminate the requirement for system dynamics, a rein-

Algorithm 1: Model-based online PI algorithm.
1) Initialization: Start with initial admissible control
input policies {u0

1, u0
2} and the iteration number j = 0.

2) Policy evaluation: Solve for P j+1 using the least-
squares (LS) by

XT
k P j+1Xk = XT

k Q̄Xk +(u j
1k)

T
R1u j

1k

+(u j
2k)

T
R2u j

2k + e−α XT
k+1P j+1Xk+1.

(19)

3) Policy improvement: Update the control input policies
using obtained P j+1 by

F j+1
11 = R1 + e−α B̄T

1 P j+1B̄1, (20)

F j+1
22 = R2 + e−α B̄T

2 P j+1B̄2, (21)

L j+1
1 = [F j+1

11 − e−2α B̄T
1 P j+1B̄2(F

j+1
22 )

−1
B̄T

2

×P j+1B̄1]
−1[e−2α B̄T

1 P j+1B̄2(F
j+1

22 )
−1

× B̄T
2 P j+1Ā− e−α B̄T

1 P j+1Ā], (22)

L j+1
2 = [F j+1

22 − e−2α B̄T
2 P j+1B̄1(F

j+1
11 )

−1
B̄T

1

×P j+1B̄2]
−1[e−2α B̄T

2 P j+1B̄1(F
j+1

11 )
−1

× B̄T
1 P j+1Ā− e−α B̄T

2 P j+1Ā]. (23)

4) If ∥L j+1
1 −L j

1∥ ≤ ε and ∥L j+1
2 −L j

2∥ ≤ ε , stop and use
{L j+1

1 , L j+1
2 } as the approximated optimal L∗

1, L∗
2, where ε

is a pre-given small positive number; Else, let j = j + 1,
and go to Step 2.

forcement Q-learning algorithm is provided to solve the
FCGTCP in the next section.

4. REINFORCEMENT Q-LEARNING TO SOLVE
THE FCGTARE

In this section, a reinforcement Q-learning algorithm
without requiring the system dynamics A, B1, B2 and ref-
erence trajectory dynamics F is designed to solve the aug-
mented FCGTARE (16).

4.1. Q-function for the FCGTCP
According to the FCGTCP Bellman equation (11), de-

fine the FCGTCP Q-function as

Q(Xk,u1k,u2k) = XT
k Q̄Xk +uT

1kR1u1k +uT
2kR2u2k

+ e−α XT
k+1PXk+1. (24)

Using augmented system (6), (24) becomes

Q(Xk,u1k,u2k)

= XT
k Q̄Xk +uT

1kR1u1k +uT
2kR2u2k + e−α XT

k+1PXk+1

= XT
k Q̄Xk +uT

1kR1u1k +uT
2kR2u2k

+ e−α(ĀXk + B̄u1k + B̄u2k)
T P(ĀXk + B̄u1k + B̄u2k)

=

Xk

u1k

u2k

T

H

Xk

u1k

u2k

 , (25)

where the kernel matrix

H

=


Q̄+ e−α ĀT PĀ e−α ĀT PB̄1 e−α ĀT PB̄2

e−α B̄T
1 PĀ R1+e−α B̄T

1 PB̄1 e−α B̄T
1 PB̄2

e−α B̄T
2 PĀ e−α B̄T

2 PB̄1 R2+e−α B̄T
2 PB̄2


=

HXX HXu1 HXu2

Hu1X Hu1u1 Hu1u2

Hu2X Hu2u1 Hu2u2

 ∈ Rl×l , (26)

where l = n+ p+m1 +m2.
Based on the Q-function, the FCGTCP is to derive

Q*(Xk,u1k,u2k) = min
u1k ,u2k

Q(Xk,u1k,u2k). (27)

By applying ∂Q(Xk ,u1k ,u2k)
∂u1k

= 0 and ∂Q(Xk ,u1k ,u2k)
∂u2k

= 0 to
(25), we can obtain the following optimal control input
polices

u∗1k = [H∗
u1u1

−H∗
u1u2

(H∗
u2u2

)−1H∗
u2u1

]
−1

× [H∗
u1u2

(H∗
u2u2

)−1H∗
u2X −H∗

u1X ]Xk, (28)

u∗2k = [H∗
u2u2

−H∗
u2u1

(H∗
u1u1

)−1H∗
u1u2

]
−1

× [H∗
u2u1

(H∗
u1u1

)−1H∗
u1X −H∗

u2X ]Xk, (29)
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and optimal control gains

L∗
1 = [H∗

u1u1
−H∗

u1u2
(H∗

u2u2
)−1H∗

u2u1
]
−1

× [H∗
u1u2

(H∗
u2u2

)−1H∗
u2X −H∗

u1X ], (30)

L∗
2 = [H∗

u2u2
−H∗

u2u1
(H∗

u1u1
)−1H∗

u1u2
]
−1

× [H∗
u2u1

(H∗
u1u1

)−1H∗
u1X −H∗

u2X ], (31)

which are the same as (14) and (15), respectively.

4.2. Online reinforcement Q-learning algorithm for
FCGTCP

According to the Q-function (24), we can develop a re-
inforcement Q-learning algorithm to solve the FCGTARE
(16) online without requiring the augmented system dy-
namics.

The Q-function (24) satisfies the following Bellman
equation

Q(Xk,u1k,u2k) = XT
k Q̄Xk +uT

1kR1u1k +uT
2kR2u2k

+ e−α Q(Xk+1,u1k+1,u2k+1). (32)

Define

Zk =
[
Xk u1k u2k

]T
,

to rewrite (25) as follows:

Q(Xk,u1k,u2k) = ZT
k HZk. (33)

By substituting (33) into (32), we can rewrite the Q-
function Bellman equation as follows:

ZT
k HZk = XT

k Q̄Xk +uT
1kR1u1k +uT

2kR2u2k

+ e−α ZT
k+1HZk+1. (34)

Furthermore, denote

ZT
k HZk = H̄T Z̄k, (35)

with

H̄ = vec(H) ∈ Rl(l+1)/2

≜ [H11, 2H12, ..., 2H1l , H22, H23, ..., H2l ,

...., Hll ]
T , (36)

and

Z̄k = Zk ⊗Zk ∈ Rl(l+1)/2,

where Hi j, i, j = 1, 2, ..., l represents the ith row and the
jth column element of matrix H. ⊗ represents the Kro-
necker product.

By substituting (35) and (36) into (34), yields the fol-
lowing parameterized Q-function Bellman equation

H̄T Z̄k = XT
k Q̄Xk +uT

1kR1u1k +uT
2kR2u2k

+ e−α H̄T Z̄k+1. (37)

Based on the parameterized Q-function Bellman equa-
tion (37), we can establish an online reinforcement Q-
learning algorithm presented in Algorithm 2.

Algorithm 2: Online reinforcement Q-learning algorithm.
1) Initialization: Start with initial admissible control
input policies {u0

1,u
0
2, H̄

0}.

2) Policy evaluation: Solve for P j+1 using the least-
squares (LS) by

(H̄ j+1)
T
(Z̄k − e−α Z̄k+1)

= XT
k Q̄Xk +(u j+1

1k )
T

R1u j+1
1k +(u j+1

2k )
T

R2u j+1
2k . (38)

3) Policy improvement: Update the control input policies

u j+1
1k = [H j+1

u1u1
−H j+1

u1u2
(H j+1

u2u2
)
−1

H j+1
u2u1

]
−1

× [H j+1
u1u2

(H j+1
u2u2

)
−1

H j+1
u2X −H j+1

u1X ]Xk, (39)

u j+1
2k = [H j+1

u2u2
−H j+1

u2u1
(H j+1

u1u1
)
−1

H j+1
u1u2

]
−1

× [H j+1
u2u1

(H j+1
u1u1

)
−1

H j+1
u1X −H j+1

u2X ]Xk. (40)

4) If
∥∥H̄ j+1 − H̄ j

∥∥ ≤ ε , stop and use {u j+1
1k , u j+1

2k } as the
approximated optimal control inputs u∗1k, u∗

2k, where ε is a
pre-given small positive number; Else, let j = j+ 1, and
go to Step 2.

Remark 2: Similar to Algorithm 1, in policy evalu-
ation of Algorithm 2, the LS is adopted. Since H̄ has
l(l + 1)/2 independent elements, we need to collect at
least l(l+1)/2 data samples. Similarly, to maintain persis-
tence of excitation (PE), probing noises need to be added
to the control inputs. Unlike Algorithm 1, in Algorithm 2,
the added probing noises do not cause any bias in estimat-
ing the Q-function [37].

Theorem 2: The online reinforcement Q-learning al-
gorithm converges to the optimal solution given in Theo-
rem 1, as j → ∞ under the sufficient excitation.

Proof: By substituting (39) and (40) into (38) and do-
ing some math transformations, one has

P j+1 = e−α ĀT P j+1Ā+ Q̄

− e−2α
[
ĀT P j+1B̄1 ĀT P j+1B̄2

]
×
[

F j+1
11 F j+1

12
F j+1

21 F j+1
22

]−1 [
B̄T

1 P j+1Ā
B̄T

2 P j+1Ā

]
, (41)

where F j+1
11 = R1 + e−α B̄T

1 P j+1B̄1, F j+1
12 = e−α B̄T

1 P j+1B̄2,
F j+1

21 = e−α B̄T
2 P j+1B̄1, F j+1

22 = R2 + e−α B̄T
2 P j+1B̄2. □

According to the arguments in [38], we can conclude
that iterating on (41) converges to the solution of the aug-
mented FCGTARE (16). This completes the proof.
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Remark 3: The developed online reinforcement Q-
learning algorithm presented in Algorithm 2 is model-
free and can be extended in a straightforward manner to
discrete-time multi-players systems with more than two
players.

Remark 4: Similar to [15,39], the tracking error e can
be made as small as desired by choosing a small adjustable
parameter α , R1, R2 and/or large Q. Simulation results in
Section 5 will confirm this conclusion.

5. SIMULATION

In this section, in order to verify the validity of our pro-
posed scheme, two simulation examples are presented in
the following.

5.1. Example 1
Consider a discretized F-16 dynamic system model

from [16] as follows:

xk+1 = Axk +B1u1k +B2u2k,

yk =Cxk,

where A =

0.9065 0.0816 −0.0009
0.0741 0.9012 −0.0159

0 0 0.9048

, B1 =

[−0.0002, −0.0041, 0.4758]T , B2 = [0.0952, 0.0038,
0]T , C = [1, −1, 1]T . The reference trajectory dynamic
F = −1. α = 0.1, Q = 10000, R1 = 0.01, and R2 = 0.05.
The initial admissible control input policies are chosen as
u0

1 = [−1, 0, 0, 1], u0
2 = [−1, 0, 0, 1]. Algorithms 1 and 2

are respectively applied to the discretized F-16 system for
simulation experiments. And, some suitable probing noise
is added into initial input policies for the first 950 times.
The simulation results corresponding to Algorithm 1 are
shown in Figs. 1-3. The simulation results corresponding
to Algorithm 2 are depicted in Figs. 4-6.

From Figs. 1 and 4, it can be seen that L1 and L2 can
quickly converge to the optimal value L∗

1 and L∗
2. From

Figs. 2, 3, 5, and 6 , it can be seen that the designed scheme
can achieve good tracking performance.
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Fig. 1. The evolution of L1, L2 under Algorithm 1.
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Fig. 3. The tracking error e under Algorithm 1.
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Fig. 5. Output y and reference r under Algorithm 2.
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Fig. 6. The tracking error e under Algorithm 2.

5.2. Example 2
Consider the discrete-time linear multi-player systems,

where A =

 1 0 0
0 1 −1
−1 1 0

, B1 = [0.2, 0, 0.3]T , B2 = [0.3,

0, 0.2]T , C = [1, 0, 0]T . The reference trajectory dynamic
F = −1. α = 0.5, Q = 10000, R1 = 0.01, and R2 = 0.05.
The simulation results corresponding to Algorithm 2 are
presented in Figs. 7-9.

From Fig. 7, it can be seen that L1 and L2 can quickly
converge to the optimal value L∗

1 and L∗
2. From Figs. 8 and

9, it can be seen that the designed scheme can achieve
good tracking performance.

To sum up, our designed scheme can achieve good
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Fig. 7. The evolution of L1, L2 under Algorithm 2.
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Fig. 9. The tracking error e under Algorithm 2.

tracking performance. The tracking performance is also
related to parameters α , Q, R1 and R2. When choosing a
large Q or/and small R1, R2, a better tracking performance
can be achieved; as the discount factor α increases, the
learning rate will increase, that is, L1 and L2 in Figs. 1 and
3 can converge to the optimal value L∗

1 and L∗
2 faster. In ad-

dition, too large a discount factor α may make the track-
ing performance worse. Therefore, both learning rate and
tracking performance should be considered when choos-
ing the discount factor.

6. CONCLUSION

In this paper, the tracking control for a class of discrete-
time multi-player linear systems with unknown dynam-
ics is investigated from the perspective of FCG. In order
to obtain the solution to the tracking problem, an aug-
mented FCGTARE is derived. An online reinforcement
Q-learning algorithm is proposed to solve the augmented
FCGTARE without requiring the system dynamics. We in-
fer the impact of the relevant parameters on the tracking
performance and analyze the convergence of the proposed
online reinforcement Q-learning algorithm. Lastly, a dis-
cretized F-16 dynamic system model is simulated to verify
the validity of our proposed reinforcement Q-learning al-
gorithm and the influence of relevant parameters on the
tracking performance. In future work, we will extend the
results of this paper to more complex systems, such as net-
worked control systems, multi-agent systems, etc.
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