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Stochastic Consensus for Heterogeneous Multi-agent Networks With Con-
straints and Communication Noises
Haokun Hu, Lipo Mo* ■ , and Fei Long

Abstract: The mean-square consensus of the discrete-time heterogeneous multi-agent systems (HMASs) with con-
vex position constraints, nonconvex velocity constraints and communication noises is reported in this paper, where
the dynamics of HMASs are composed of first-order or second-order difference equations, and the noises are as-
sumed to be martingale difference sequences. Firstly, a new algorithm is designed based on the information from
neighbor agents with noises, and the original system is changed into an equivalent one by introducing a coordinate
transformation. Secondly, when the communication graph is joint strongly connected, it is proved that mean-square
consensus can be achieved by the properties of stochastic matrix, projection operator and martingale, and the po-
sition and velocity states of agents stay at the corresponding constraint sets. Specially, the situations of a network
containing only first-order agents or second-order agents are considered, respectively. Finally, the correctness of the
theoretical results is verified by numerical simulations.

Keywords: Communication noises, heterogeneous multi-agent networks, nonconvex constraints, stochastic con-
sensus.

1. INTRODUCTION

Over the past few years, consensus problem has aroused
increasing attention from the control field due to its
widespread applications including wireless sensor net-
work [1], formation control [2], satellite cluster [3] and
so on. The objective of consensus is to drive all agents
to coordinately converge to a static or dynamic point. It
has been shown that the states of systems can reach con-
sensus if the graph has a directed spanning tree in [4-7].
However, the aforementioned researches focused on the
consensus problem of the homogeneous multi-agent sys-
tems (MASs), which means that the system has the same
dynamics. It is hard to ensure that all agents have the same
dynamic structure in practical applications. For example,
there are different commands, control and data collection
functions in joint UAV and ground vehicle operations. As
a result, many researchers have turned their attention to
HMASs.

As a part of the distributed coordination problem, con-
strained consensus for MASs has also many engineering
applications, such as power transmission, formation satel-

lite attitude control. In some physical systems, the position
and velocity can not be arbitrarily large due to the limita-
tions of internal and external environment. For example,
even if a vehicle is given too much driving force, it might
not cause the vehicle to exceed its maximum speed. Es-
pecially, the actual velocity should be constrained in cer-
tain nonconvex sets due to the existence of a velocity dead
zone of a physical object. To solve this problem, a con-
straint operator was introduced in [8]. It was shown that
the states of the agents can reach constrained consensus
if the communication graph is jointly strongly connected.
Later, this result was extended to the distributed consen-
sus of HMASs with nonconvex input constraints [9-18].
However, all of these works only considered one type of
the constraints and few works considered two or more
types of constraints. Authors of [10-16] considered con-
sensus with nonconvex input constraints and group con-
sensus with input constraints, respectively. The consen-
sus of second-order with input saturation was considered
in [11]. Moreover, some results on heterogeneous con-
sensus of event-triggered control, fractional-order, hybrid
and nonlinear MASs have been studied in [19-24], respec-
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tively.
It was assumed that each agent can receive accurate in-

formation from their neighbours in the above literatures.
In reality, the network is always in a complex and change-
able environment, which means that the communication
between agents is always affected by stochastic distur-
bances. Therefore, the stochastic system with communi-
cation noises should be considered rather than a determin-
istic form. It is a very challenging subject for MASs with
communication noises to achieve consensus. In [25-27],
some distributed algorithms were designed to solve con-
sensus and optimization problem in mean square or with
probability one, respectively. Especially, some sufficient
and necessary conditions were given to drive all agents
to reach mean square consensus in [25,26]. Later, these
results were extended to consensus for HMASs. For ex-
ample, authors of [28] studied mean square consensus for
continuous-time HMASs with and without leader. Mean
square bounded consensus was considered for discrete-
time HMASs over Markov switching graph in [29]. But
these results did not considered any constraints.

Motivated by the above results, we focus on stochastic
consensus for discrete-time HMASs with state constraints
in this paper. The main contributions of this paper are as
follows:

I) Compared with existing results [10-24], this paper
studies consensus problem with nonconvex velocity
constraints and convex position constraints. A novel
model based on projection operator and nonconvex
contraction operator is built to deal with position
and velocity constraints. Due to stochastic noises ex-
ist extensively in practical application, it is assumed
that the communication between agents is affected by
noises. A more general distributed algorithm is pro-
posed to solve constrained consensus problem with
the consideration of communication noises.

II) Compared with [4-9,25-27], where the distributed
consensus problems were studied for first-order or
second-order MASs, this paper extends these results
to HAMSs with first-order and second-order dynam-
ics, which brings us more difficulties due to the dif-
ferences of each agent’s dynamics.

III) The position and velocity constraints are considered
simultaneously, which make the results of [28,29] be
a special case of this paper. Different from [29], our
algorithm can guarantee that the states of all agents
can reach consensus rather than boundedness consen-
sus in mean square, and the position states can stay in-
side the corresponding convex constraint sets. Mean-
while, we also obtain the same results for the situa-
tion of a network containing only first-order agents or
second-order agents, respectively.

Notations: Let Rn be the vector space with dimen-
sion n. Let 000 be zero vector with corresponding dimen-

sion. Given the vector z ∈ Rn and matrix A. Let AT be
its transposed matrix, ∥A∥ and ∥z∥ be the 2-norm. Let
PZ(z) = argmin{∥z−y∥|y ∈ Z} be projection of the vector
z ∈ Rn on the convex set Z ∈ Rn. Given a random vari-
able x. Denote E[x], Var[x] and E[x|F(k)] as its mathe-
matical expectation, variance and conditional expectation
on the σ -algebra F(k), respectively. ⊗ represents kro-
necker product. Define SVi(·) to be a contract operator with
SVi(y)=

y
∥y∥ max0≤ℓ≤∥y∥

{
ℓ| ℓϑy

∥y∥ ∈Vi, ∀0≤ϑ ≤ ℓ
}

, if y ̸= 0;
otherwise, SVi(y) = 0.

2. PRELIMINARIES AND PROBLEM
STATEMENT

The communication topology of HMASs can be mod-
eled as a directed graph G(k) = (Im+n, E(k), A(k)),
Im+n = {1, 2, · · · , m+ n} represents the sets of agents,
E(k) ⊆ I × I represents the sets of edges and A(k) =
[ai j(k)] represents a weighted adjacency matrix. (i, j) ∈
E(k) represents that agent j can receive information from
agent i. ai j(k) > 0 if ( j, i) ∈ E(k), and ai j(k) = 0 if
( j, i) /∈ E(k). Let Ni(k) = { j ∈ Im+n | ( j, i) ∈ E(k)} be
the neighbor set of agent i. The Laplacian matrix is de-
fined as L(k) =D(k)−A(k), where D(k) = diag{d1, · · · ,
dm+n} is called as the degree matrix and di = ∑

m+n
j=1 ai j(k).

For a directed graph, if there exists at least one directed
path between any two different nodes, then the graph
is strongly connected. The graph is joint strongly con-
nected if there exists a integer B > 0, such that the union
graph

⋃B
j=1G(k+ j) is strongly connected for any k, where⋃B

j=1G(k+ j) = G(k+1)
⋃
G(k+2)

⋃
· · ·

⋃
G(k+B).

In this paper, we consider a network with m second-
order agents and n first-order agents. The dynamics of
second-order agents

xi(k+1) = PXi [xi(k)+ vi(k)T ],

vi(k+1) = SVi [vi(k)+ui(k)T ], i ∈ Im, (1)

where xi(k), vi(k), ui(k) ∈ Rn represent position, veloc-
ity and input of the ith agent, respectively. Xi ⊂ Rn repre-
sents a bounded closed convex set, 0 ∈Vi ⊂Rn represents
a bounded set which may be nonconvex. T is sampling
time.

The dynamics of first-order agents can be expressed as

xi(k+1) = PXi [xi(k)+SVi(ui(k))T ], i ∈ Im+n −Im,
(2)

where xi(k), ui(k) ∈ Rn represent position and input of
the ith agent, respectively. Xi ⊂ Rn represents a bounded
closed convex set, 0 ∈ Vi ⊂ Rn represents a bounded set
which may be nonconvex. T is a sampling time.

Remark 1: In the most of existing works [10-16], the
dynamics of the HMASs was usually assumed to be the
following form: xi(k + 1) = xi(k) + vi(k)T , vi(k + 1) =
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Fig. 1. Three examples of the nonconvex constraint oper-
ator SVi(·).

vi(k)+ ui(k)T , for all i ∈ Im; xi(k+ 1) = xi(k)+ ui(k)T ,
for all i ∈ Im+n −Im, where xi(k), vi(k), ui(k) ∈ Rn are
position, velocity and control input of agent i respectively.
In the actual engineering applications, the position and ve-
locity are usually subjected to irregular constraints. For
example, the drive force of each flight vehicle, such as
quadrotors, have different constraints in different direc-
tions. On this basis, it is assumed here that vi(k) ∈ Vi for
all i ∈ Im, where Vi is a nonconvex set. For the first-order
agent, the control input ui(k) can usually be viewed as
velocity. Hence, it is also assumed that ui(k) ∈ Vi for all
i ∈ Im+n −Im. Moreover, if the position of a vehicle is
subjected to a certain area, its position may be restricted
when the vehicle touches the boundary. In particular, there
are different functions for different agents, hence, the con-
straint sets may be different. It is usually assumed that
xi(k) ∈ Xi for all i ∈ Im+n, where Xi is a convex set.

To describe the nonconvex and convex contraint sets,
we first introduce two assumptions proposed in [5,8], re-
spectively.

Assumption 1: Let 0 ∈ Vi ⊂ Rn be a bounded closed
nonconvex sets, which satisfy maxy∈Vi ∥SVi(y)∥ = ℏ,
miny/∈Vi ∥SVi(y)| = ℏ and 0 ∈ Vi for all i ∈ Im+n, where
ℏ and ℏ are two positive constants.

Assumption 2: Let Xi be a bounded closed convex set.
The intersection X of all convex sets Xi is assumed to be
nonempty, i.e., X =

⋂m+n
i=1 Xi ̸= /0.

Remark 2: Under Assumptions 1 and 2, it is indicated
that the velocities of all second-order agents and control
input of the first-order agents in system (1), (2) can not
be arbitrarily large. It is easy to see that the constraint op-
erator only changes the magnitude of the velocity, not its
direction from the definition of SVi , such that cSVi(·) ⊆ Vi

for all c ∈ [0, 1]. (See Fig. 1 for some specific examples)
The major difference between this operator and the pro-
jection operator PXi(·) is that the projection operator will
not only change its size but also its direction.

The considered system with disturbance is a stochastic
process due the noises, the states of agents can not reach

consensus exactly. Hence, it is necessary to study consen-
sus problem in the statistical sense. Therefore, the mean
square consensus of HMASs with communication noises
is considered. The definition of mean square consensus is
given in the following.

Definition 1 [28]: All agents are said to reach
mean square consensus if for any xi(0) ∈ Xi ⊂ Rn and
vi(0) ∈ Vi ⊂ Rn, there exists a random variable x∗, such
that lim

k→∞

E[∥xi(k)− x∗∥2] = 0, lim
k→∞

E[∥v j(k)∥2] = 0, and

Var(x∗)< ∞ for all i ∈ Im+n, j ∈ Im.

Lemma 1 [5]: Let Ω be a nonempty closed convex set
in Rn, for any x, y∈Rn, z∈Ω⊂Rn, ai ≥ 0 and ∑

n
i=1 ai = 1.

Then

i) ∥PΩ(x)− z∥2 ≤ ∥x− z∥2 +∥x−PΩ(x)∥2;
ii) ∥PΩ(x)−PΩ(y)∥ ≤ ∥x− y∥;

iii) ∥∑
n
i=1 aixi −PΩ(∑

n
i=1 aixi)∥ ≤ ∑

n
i=1 ai∥xi −PΩ(xi)∥.

Lemma 2 [30]: Let {S(k)}, {B(k)} and {Q(k)} be
nonnegative random variable sequences and let ζ (k) be
a deterministic nonnegative scalar sequence. Let F(k) be
the σ -algebra generated by S(1), · · · , S(k), B(1), · · · , B(k),
Q(1), · · · , Q(k). Suppose ∑

∞

k=1 ζ (k)< ∞,

E[S(k+1)|F(k)]≤ (1+ζ (k))S(k)−B(k)+Q(k),

and ∑
∞

k=1 Q(k) < ∞ almost surely. Then, the sequence
{S(k)} almost surely converges to a nonnegative random
variable and ∑

∞

k=1 B(k)< ∞.

The main purpose of this paper is to design a dis-
tributed control protocol such that all agents can reach
mean square consensus, while the position states of all
agents keep in the corresponding convex sets, and the ve-
locity states of all second-order agents keep in the cor-
responding nonconvex sets, i.e., xi(k) ∈ Xi, v j(k) ∈ Vj,
∀ i ∈ Im+n, j ∈ Im, k.

3. MAIN RESULT

The convergence analysis of constrained consensus in
mean square of HMASs is given in this section. For sys-
tems (1) and (2) over jointly strongly connected graph,
design the following distributed algorithm

ui(k) =

{
− pivi(k)+πi(k), i ∈ Im,

πi(k), i ∈ Im+n −Im,
(3)

where πi(k) = γ(k)∑ j∈Ni(k) ai j(k)(x j(k)− xi(k)+ ξ ji(k)),
γ(k) is a diminishing step size and ξ ji(k) is stochastic
noise, pi > 0 is the feedback gain.

Assumption 3: The step size γ(k) statisfies the follow-
ing conditions

∞

∑
k=0

γ(k) = ∞,
∞

∑
k=0

γ
2(k)< ∞, γ(k+1)< γ(k).
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Assumption 4: The stochastic noise {ξ ji(k)} is as-
sumed to be a martingale difference sequence with
E[ξ ji(k)|F(k − 1)] = 0, E[∥ξ ji(k)∥2|F(k − 1)] ≤ σ 2

ξ
,

where σξ > 0 and F(k) is a σ -algebra generated by
the entire history information from 0 to k, namely,
F(k) = {xi(0), vi(0), ξ ji(s), ui(s), ∀0 ≤ s ≤ k − 1, i,
j ∈ Im+n}, F(0) = {xi(0), vi(0), ξ ji(0), ∀ i, j ∈ Im+n}.

To facilitate the convergence analysis of the system, the
coordination transformation is needed to be introduced.
For i ∈ Im, let ιi(k) =

∥SVi [vi(k)+ui(k)T ]∥
∥vi(k)+ui(k)T∥ , if vi(k)+ui(k)T ̸=

0; otherwise, ιi(k) = 1. For i ∈ Im+n − Im, let ιi(k) =
∥SVi [ui(k)]∥
∥ui(k)∥ , if ui(k) ̸= 0; otherwise, ιi(k) = 1. Obviously,

0 < ιi(k)≤ 1. Therefore,

vi(k+1) = SVi [vi(k)+ui(k)T ]

= SVi [(1− piT )vi(k)+πi(k)T ]

= ιi(k)vi(k)− ιi(k)(vi(k)pi −πi(k))T

= vi(k)− τi(k)vi(k)T + ιi(k)πi(k)T,

where τi(k) =
1−ιi(k)(1−piT )

T . Let yi(k) = xi(k)+ vi(k), for
i ∈ Im. Then,

xi(k+1) = PXi [xi(k)+ vi(k)T ]

= (1−T )xi(k)+Tyi(k)+ρi(k),

where ρi(k) = PXi [(1−T )xi(k)+Tyi(k)]− [(1−T )xi(k)+
Tyi(k)], and

yi(k+1) = xi(k+1)+ vi(k+1)

= (1−T )xi(k)+Tyi(k)+ρi(k)+ vi(k)

− τi(k)vi(k)T + ιi(k)πi(k)T

= (τi(k)T −T )xi(k)+ ιi(k)πi(k)T

+(1− τi(k)T +T )yi(k)+ρi(k).

For i ∈ Im+n −Im, we have

xi(k+1) = PXi [xi(k)+SVi(ui(k))T ]

= xi(k)+ ιi(k)πi(k)T +ρi(k),

where ρi(k) = PXi [xi(k) + ιi(k)πi(k)T ] − [xi(k) +
ιi(k)πi(k)T ]. Define Z(k)= [ZT

1 (k), · · · , ZT
2m+n(k)]

T , where
[ZT

1 (k), · · · , ZT
m(k)] = [xT

1 (k), · · · , xT
m(k)]

T , [ZT
m+1(k), · · · ,

ZT
2m(k)] = [yT

1 (k), · · · , yT
m(k)]

T , [ZT
2m+1(k), · · · , ZT

2m+n(k)] =
[xT

m+1(k), · · · , xT
m+n(k)]

T . Define ρ(k) = [ρ̄T
1 (k), · · · ,

ρ̄T
2m+n(k)]

T = [ρT
1 (k), · · · , ρT

m(k), ρT
1 (k), · · · , ρT

m(k),
ρT

m+1(k), · · · , ρT
m+n(k)]

T ,

Φ(k) =

 Φ1(k) Φ2(k) 000
Φ3(k)γ(k)T Φ7(k) Φ4(k)γ(k)T
Φ5(k)γ(k)T 000 Φ6(k)γ(k)T

 ,

where Φ1(k) = diag{1−T , · · · , 1−T}, Φ2(k) = diag{T ,

· · · , T},

Φ3(k) =


Φ31(k) ι2(k)a12(k) · · · ι1(k)a1m(k)

ι2(k)a21(k) Φ32(k) · · · ι2(k)a2m(k)
...

...
...

...
ιm(k)am1(k) · · · · · · Φ3m(k)

,

Φ31(k) = −ι1(k)∑ j∈N1(k) a1 j(k) + τ1(k)−1
γ(k) , Φ32(k) =

−ι2(k)∑ j∈N2(k) a2 j(k) +
τ2(k)−1

γ(k) , · · · , Φ3m(k) =
τm(k)−1

γ(k) −
ιm(k)∑ j∈Nm(k) am j(k), [Φ4(k)]i j = [ιi(k)ai j(k)], ∀ i ∈ Im,
j ∈ Im+n −Im, [Φ5(k)]i j = [ιi(k)ai j(k)], ∀ i ∈ Im+n −Im,
j ∈ Im,

Φ6(k)

= Φ6s(k)


Φ61(k) am+1m+2(k) · · · am+1m+n(k)

am+2m+1(k) Φ62(k) · · · am+2m+n(k)
...

...
...

...
am+nm+1(k) · · · · · · Φ6n(k)

,

Φ6s(k) = diag{ιm+1(k), · · · , ιm+n(k)}, Φ61(k) =
1

ιm+1(k)

T γ(k) −

∑ j∈Nm+1(k) am+1 j(k), Φ62(k)=
1

ιm+2(k)

T γ(k) −∑ j∈Nm+2(k) am+2 j(k),

· · · , Φ6n(k) =
1

ιm+n(k)

T γ(k) − ∑ j∈Nm+n(k) am+n j(k)T , Φ7(k) =

diag{1− τ1(k)T + T , · · · , 1− τm(k)T + T}. Let ξ (k) =
[ξ̄ T

1 (k), ξ̄ T
2 (k), · · · , ξ̄ T

2m+n(k)]
T = [0, · · · , 0, ξ T

1 (k), · · · ,
ξ T

m+n(k)]
T ,

Ξ(k) =



0 · · · 0 · · · 0
... · · ·

... · · ·
...

0 · · · Ξ11(k)T · · · 0
...

...
... · · ·

...
0 · · · 0 · · · ΞN1(k)T

 ,

where ξi(k) = [ξ1i(k), · · · , ξm+ni(k)]T , Ξi1(k) =
ιi(k)[ai1(k), · · · , aiN(k)]. Then the dynamics of HMASs
(1) and (2) with algorithm (3) can be rewritten as the
following compact form

Z(k+1) = [Φ(k)⊗ In]Z(k)+ρ(k)+ γ(k)Ξ(k)ξ (k).
(4)

To further analyze the convergence of algorithm, the fol-
lowing assumptions need to be satisfied.

Assumption 5: Suppose that there exists 0 < µ1 <
1, such that ai j(k) ≥ µ1 if and only if ai j(k) > 0, and
∑ j∈Ni(k) ai j(k) ≤ 1− µ1, for all i, j ∈ Im+n. 1 < pi <

1
T ,

T < 1 for all i ∈ Im.

Assumption 6: Supposed that there exists a sequence
0= k0 < k1 < k2 < · · · such that the union graph of all sub-
graphs G(kt), G(kt + 1), · · · , G(kt+1 − 1) is strongly con-
nected, and kt − kt−1 ≤ B for all t.
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Remark 3: Assumption 5 implies that information
from neighbor agent exists persistently. If the assumption
is absent, it may lead to the loss of information from cer-
tain agents. The conditions are easy to be satisfied and the
illustration is given in the following simulation example.
Assumption 6 shows that there exists a directed path be-
tween any two agents in a limited communication interval.

Lemma 3: Under Assumptions 1-6, let Y ⊂ X be arbi-
trary nonempty closed convex set, the following inequali-
ties hold for any sample path.
1) For all i ∈ Im, ∥xi(k + 1) − PY (xi(k + 1))∥ ≤

(1 − T )∥xi(k) − PY (xi(k))∥ + T∥yi(k) − PY (yi(k))∥,
∥ρi(k)∥2 ≤ [(1 − T )∥xi(k)− PY (xi(k))∥+ T∥yi(k)−
PY (yi(k))∥]2 −∥xi(k+1)−PY (xi(k+1))∥2.

2) For all i ∈ Im, there exist ϕix(k), ϕiy(k),
∑ j∈Ni(k) ϕi j(k), k1 ≥ 0 and ϕix(k) + ϕiy(k) +

∑ j∈Ni(k) ϕi j(k) = 1, such that ∥yi(k + 1)−PY (yi(k +
1))∥ ≤ ϕix(k)∥xi(k)−PY [xi(k)]∥+∑ j∈Ni(k) ϕi j(k)∥x j

(k) − PY [x j(k)]∥ + ∥γ(k)δiξ (k)∥ + ϕiy(k)∥yi(k) −
PY [yi(k)]∥, where k1 satisfies γ(k) ≤ (pi−1)2

pi(1−µ1)
for all

k ≥ k1.
3) For all i ∈ Im+n − Im, ∥xi(k + 1) − PY [xi(k +

1)]∥ ≤ χix(k)∥xi(k) − PY [xi(k)]∥ + ∥γ(k)χiξ (k)∥ +

∑ j∈Ni(k) χi j(k)∥x j(k) − PY [x j(k)]∥, ∥ρi(k)∥2 ≤
[∥γ(k)χiξ (k)∥ + χix(k)∥xi(k) − PY [xi(k)]∥ + ∑ j∈Ni(k)
χi j(k)∥x j(k)− PY [x j(k)]∥]2 − ∥xi(k + 1)− PY [xi(k +
1)]∥2, where χix(k) = 1 − ιi(k)γ(k)T ∑ j∈Ni(k) ai j(k),
χiξ (k) = ιi(k)∑ j∈Ni(k) ai j(k)ξ ji(k)T , χi j(k) =
ιi(k)γ(k)Tai j(k).

Lemma 4: Under Assumptions 1-6, xi(k), yi(k) are
bounded almost surely, and there exists a constant β0 >
0, such that β0 ≤ ιi(k) ≤ 1 almost surely, where β0 =

min
{ ℏi

L1
, ℏ j

L2
| i ∈ Im, j ∈ Im+n −Im

}
.

The proofs of Lemmas 3 and 4 can be found in Appen-
dices A and B, resepctively.

Remark 4: It is shown in Lemma 4 that the sequences
{xi(k)} and {y j(k)} almost surely converge to a non-
negative variable for i∈Im+n, j ∈Im. Take the expectation
of both side of the inequality (B.1)-(B.3), it follows that
E[∥xi(k)− sl∥2] and E[∥yi(k)− sl∥2] are bounded by the
definition of convergence of a sequence, which means that
xi(k) and y j(k) are also bounded in mean square, hence, al-
most surely. Lemma 4 plays a very significant role in the
subsequent convergence analysis.

Lemma 5: Under the Assumptions 1-6, there exists
a constant k2 such that Φ(k) and Ψ(k,s) are stochas-
tic matrices for all k ≥ s > k2 ≥ k1. All nonzero ele-
ments of Φ(k) and Ψ(k,s) have a positive lower bound.
And there exist θ j(s) > 0 and 0 < β1 < 1

2m+n , such that

∥[Ψ(k,s)]i j −θ j(s)∥ ≤ 2Cµ(1−2β1)
k−s
B0 almost surely, for

all i, j ∈ Im+n, where B0 = (N − 1)B = (2m+ n− 1)B,
Cµ = 1

1−2β1
Ψ(k,s) = Φ(k)Φ(k − 1) · · ·Φ(s), for all k ≥

s > k2 ≥ k1.

Proof: From τi(k) =
1−ιi(k)(1−piT )

T and 1 < pi <
1
T , it

follows that 1 < pi ≤ τi(k)< 1
T . Note that limk→∞ γ(k) = 0

and 0< ιi(k)≤ 1 for all i∈ Im+n, then there exists k2, such
that γ(k)< min{ pi−1

2∑ j∈Ni(k)
ai j(k)

, 1
2β0T ∑ j∈Ni(k)

ai j(k)
}, for all k >

k2.
Hence, for all i ∈ Im, τi(k)T −T − ιi(k)γ(k)∑ j∈Ni(k) ai j

(k)T ≥ (pi −1)T − ιi(k)γ(k)∑ j∈Ni(k) ai j(k)T ≥ (pi−1)T
2 >

0 and ιi(k)γ(k)ai j(k)T > β0γ(k)µ1T > 0, for i ∈ Im+n −
Im, 1− ιi(k)γ(k)∑ j∈Ni(k) ai j(k)T ≥ 1

2 > 0 almost surely.
Therefore, all nonzero elements of Φ(k) and Ψ(k,s) have
a positive lower bounded and it is easy to verify that
Φ(k)1112m+n =111 and Ψ(k,s)1112m+n =111. Therefore, Φ(k) and
Ψ(k,s) are stochastic matrices for all k ≥ s > k2 ≥ k1. □

In the following, it is shown in Lemma 6 that the states
of system can converge to the interior of the intersection of
all position constraints in mean square. Then it is proved
in Theorem 1 that all position and velocity states of sys-
tem can reach mean-square consensus. the convergence
analysis is given in Corollary 1 that when considering the
case of a network containing only first-order agents and
second-order agents, respectively.

Lemma 6: Under Assumptions 1-6, lim
k→∞

E[∥Zi(k) −
PX [Zi(k)]∥2] = 0, for all i ∈ Im+n.

The proof of Lemma 6 can be found in Appendix C.

Theorem 1: Under Assumptions 1-6, there exists a
random variable x∗ ∈X such that lim

k→∞

E[∥xi(k)−x∗∥2] = 0,

for all i, j ∈ I, lim
k→∞

E[∥v j(k)∥2] = 0, for all i ∈ Im+n,

j ∈ Im, and Var(x∗)< ∞.

Proof: Let x∗ = 1
2m+n ∑

2m+n
i=1 Zi(k+1). From Lemma 3

to Lemma 6, lim
k→∞

E[∥ρi(k)∥]2 = 0. Note that lim
k→∞

γ(k) =

0. Therefore, for any ϖ > 0, there exist K > 0 such that
E[∥ρi(k)∥]2 < ϖ , 16[γ(k)(2m+ n)(1− µ)T σξ ]

2 < ϖ for
all k > K. From the above analysis, we have

E
[
∥Zi(k+1)− x∗∥2]

≤ 12

[
2m+n

∑
j=1

4Cµ(1−2β1)
k

B0

]2

∥Z j(s)∥2

+12

[
k

∑
r=s+1

2m+n

∑
j=1

4Cµ(1−2β1)
k−r
B0

]2

ϖ +28ϖ

+8

[
k

∑
r=s+1

2m+n

∑
j=1

4Cµ(1−2β1)
k−r
B0

]2

× [(2m+n)(1−µ)T σξ ]
2.

Hence, lim
k→∞

E
[
∥Zi(k + 1) − x∗∥2

]
≤ 7ϖ . According to

the arbitrariness of ϖ , we have lim
k→∞

E[∥xi(k)− x∗∥2] = 0,

lim
k→∞

E[∥yi(k)−x∗∥2] = 0 for all i ∈ Im+n. Note that yi(k) =

xi(k) + vi(k), then lim
k→∞

E[∥vi(k)∥2] = 0, for all i ∈ Im+n.



Stochastic Consensus for Heterogeneous Multi-agent Networks With Constraints and Communication Noises 1155

Morover, E(x∗) = ∑
k
r=s+1 ∑

2m+n
j=1 [Ψ(k,r)]i jρ̄ j(r − 1) +

∑
2m+n
j=1 [Ψ(k,s)]i jZ j(s)+ ρ̄i(k), Var(x∗)=E[∥∑

k
r=s+1 ∑

2m+n
j=1

[Ψ(k,r)]i jγ(r − 1)∑
2m+n
u=1 [Ξ(r − 1)] juξ̄ T

u (r − 1) +
γ(k)∑

2m+n
j=1 [Ξ(k)]i jξ̄

T
j (k)∥2] < ∞. Therefore, all states of

the agents can reach consensus in mean square. Since
xi(k) ∈ Xi and Xi is a bounded closed convex set, it means
that x∗ ∈ X =

⋂m+n
i=1 Xi. □

Remark 5: From the above analysis, it is easy to ob-
tain that constrained consensus can also be achieved in
mean square by alogrithm (3) for first-order or second-
order agents, i.e., n = 0 or m = 0.

Corollary 1: For second-order agent systems, i.e.,
n = 0, there exists a random variable x∗ such that
lim
k→∞

E[∥xi(k) − x∗∥2] = 0, lim
k→∞

E[∥vi(k)∥2] = 0, i = 1,

2, · · · , m. For first-order agent systems, i.e., m = 0,
lim
k→∞

E[∥xi(k)− x∗∥2] = 0, i = 1, 2, · · · , n.

Proof: For n = 0, Let yi(k) = xi(k) + vi(k), then
xi(k+ 1) = PXi [xi(k)+ vi(k)T ] = (1− T )xi(k)+ Tyi(k)+
ρi(k), and yi(k + 1) = (τi(k)T − T )xi(k) + ιi(k)πi(k)T +
(1 − τi(k)T + T )yi(k) + ρi(k), where ρi(k) = PXi [(1 −
T )xi(k)+Tyi(k)]− [(1−T )xi(k)+Tyi(k)]. Define Z(k) =
[ZT

1 (k), · · · ,ZT
2m(k)]

T = [xT
1 (k), · · · , xT

m(k), yT
1 (k), · · · ,

yT
m(k)]

T , ρ(k) = [ρ̄T
1 (k), · · · , ρ̄T

2m(k)]
T = [ρT

1 (k), · · · ,
ρT

m(k), ρT
1 (k), · · · , ρT

m(k)]
T ,

Φ(k) =
[

Φ1(k) Φ2(k)
Φ3(k) Φ4(k)

]
,

where Φ1(k) = diag{1−T , · · · , 1−T}, Φ2(k) = diag{T ,
· · · , T},

Φ3(k) = Φ3s(k)


Φ31(k) a12(k)γ(k)T · · ·

a21(k)γ(k)T Φ32(k) · · ·
...

...
...

am1(k)γ(k)T · · · · · ·
a1m(k)γ(k)T
a2m(k)γ(k)T

...
Φ3m(k)

 ,

Φ3s(k) = diag{ι1(k), · · · , ιm(k)}, Φ31(k) = τ1(k)T−T
ι1(k)

−
γ(k)∑ j∈N1(k) a1 j(k)T , Φ32(k) = τ2(k)−T

ι2(k)
− γ(k)∑ j∈N2(k)

a2 j(k)T , · · · , Φ3m(k) =
τm(k)−T

ιm(k)
− γ(k)∑ j∈Nm(k) am j(k)

T , Φ4(k) = diag{1− τ1(k)T + T , · · · , 1− τm(k)T + T}.
Then the dynamics of second-order MASs with algorithm
(3) can be rewritten as a compact form

Z(k+1) = [Φ(k)⊗ In]Z(k)+ρ(k)+ γ(k)Ξ(k)ξ (k),

where Ξ(k) = diag{0, · · · , 0, Ξ T
1 (k), · · · , Ξ T

m(k)}, Ξi(k) =
[ai1(k), · · · , aim(k)], ξ (k) = [ξ̄ T

1 (k), · · · , ξ̄ T
2m(k)]

T = [0, · · · ,
0, ξ T

1 (k), · · · , ξ T
m (k)]

T , ξi(k) = [ξi1(k), · · · , ξim(k)]T .
For m = 0, xi(k + 1) = PXi [xi(k) + SVi(ui(k))T ] =

xi(k) + ιi(k)πi(k)T + ρi(k), where ρi(k) = PXi [xi(k) +
ιi(k)πi(k)T ]− [xi(k)+ ιi(k)πi(k)T ]. Define Z(k) = [xT

1 (k),
· · · , xT

n (k)]
T , ρ(k) = [ρT

1 (k), · · · , ρT
n (k)]

T ,

Φ(k) =


Φ1(k) ι1(k)γ(k)a12(k)T · · ·

ι2(k)γ(k)a21(k)T Φ2(k) · · ·
...

...
...

ιn(k)γ(k)an1(k)T · · · · · ·
ι1(k)γ(k)a1n(k)T
ι2(k)γ(k)a2n(k)T

...
Φn(k)

 ,

Φ1(k) = 1 − ι1(k)γ(k)∑ j∈N1(k) a1 j(k)T , Φ2(k) =
1 − ι2(k)γ(k)∑ j∈N2(k) a2 j(k)T , · · · , Φn(k) = 1 −
ιn(k)γ(k)∑ j∈Nn(k) an j(k)T . Then the dynamics of first-
order MASs with algorithm (3) can be rewritten as a
compact form

Z(k+1) = [Φ(k)⊗ In]Z(k)+ρ(k)+ γ(k)Ξ(k)ξ (k),

where Ξ(k) = diag{Ξ T
1 (k), · · · , Ξ T

n (k)}, Ξi(k) = [ai1(k),
· · · , ain(k)], ξ (k) = [ξ T

1 (k), · · · , ξ T
n (k)]

T , ξi(k) = [ξi1(k),
· · · , ξin(k)]T . Hence, by Lemmas 3-6, we obtain the same
result as Theorem 1, i.e., when the networks contains only
first-order agents, lim

k→∞

E[∥xi(k)−x∗∥2] = 0, ∀ i = 1, 2, · · · ,
n; when the networks contains only second-order agents,
lim
k→∞

E[∥xi(k)− x∗∥2] = 0, lim
k→∞

E[∥vi(k)∥2] = 0, ∀ i = 1, 2,

· · · , m. □

4. SIMULATION

In this section, a numerical simulation example is given
to verify the correctness of theoretical results. The com-
munication graph of HMASs switches among three sub-
graphs shown in Fig. 2, which includes four second-order
agents (1)-(4) and two first-order agents (5) and (6). It is
obvious that each digraph does not have a spanning tree,
but the union graph is strongly connected. Take T = 0.85,
p1 = 1.12, p2 = 1.14, p3 = 1.16, p4 = 1.15. It is easy
to verify that Assumptions 5 and 6 are satisfied. Sup-
pose that nonconvex constraint sets Vi = {x|∥x∥ ≤ 0.8,
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Fig. 2. Communication graph.
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Fig. 3. Trajectories of the first component of position.
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Fig. 4. Trajectories of the second component of position.

|x[0 1]T |
|x[1 0]T | ≤ 1}∪{x|∥x∥ ≤ 0.4, |x[0 1]T |

|x[1 0]T | ≥ 1} and convex con-
straint sets X1 = X6 = {(x1,x2)

T | 0 ≤ x1 ≤ 2, −1 ≤ x2 ≤
2}, X3 = X4 = {(x1,x2)

T | −2 ≤ x1 ≤ 2, −3 ≤ x2 ≤ 1},
X2 = X5 = {(x1,x2)

T | −5 ≤ x1 ≤ 3, −1 ≤ x2 ≤ 1} ∈ R2.
Take initial values x1(0) = [1, −0.5]T ∈ X1, x2(0) = [−4,
1]T ∈ X2, x3(0) = [−2, −3]T ∈ X3, x4(0) = [1, −2]T ∈ X4,
x5(0) = [−2, 3]T ∈ X5, x6(0) = [1, 2]T ∈ X6, v1(0) = [0,
0]T , v2(0) = [0, 0]T , v3(0) = [0, 0]T , v4(0) = [0, 0]T ,
γ(k) = 1/k. Suppose that the noise sequences {ξ ji(k)} is
white noise with zero mean and bounded variance. By tak-
ing algorithm (3), the position and velocity trajectories are
given in Figs. 3-6, from which it is easy to see that the
position states of the agents converge to a point and the
velocity states of second-order agents converge to zero.
Moreover, the velocity states of the second-order agents
and the input states of first-order agents in the phase plane
are given in Fig. 7, from which we can see that these states
are constrained in the nonconvex sets of two concentric
circles and straight lines. The position states of all agents
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Fig. 5. Trajectories of the first component of velocity.
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agent 1

agent 2

agent 3

agent 6

agent 5

agent 4

Fig. 7. The velocity states of all second-order agents and
input states of all first-order agents in phase plane.
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agent 1

agent 6

agent 2

agent 5

agent 3 agent 4

Fig. 8. The position states of all agents in phase plane.

in the phase are given in Fig. 8. It is easy to see that the po-
sition states of different agents are constrained in different
convex sets. It reveals that our algorithm can solve con-
strained consensus problems with communication noises.

5. CONCLUSION

In this paper, stochastic consensus problems with
bounded convex position and nonconvex constraints have
been considered over jointly strongly connected graph.
The dynamical models of HMASs were built based on
the projection operator and nonconvex constraint oper-
ator. A novel algorithm with diminishing step size was
designed under communication noises. By control the-
ory and stochastic analysis, it was proved that the pro-
posed algorithm can guarantee that mean-square consen-
sus was achieved. Moreover, the same results have been
obtained when considering the case of a network contain-
ing only first-order agents or second-order agents, respec-
tively. The simulation example was verified the correct-
ness of theoretical results.

APPENDIX A: PROOFS OF LEMMA 3

The proof of Lemma 3 is given as follows:

Proof: 1) By Lemma 1, we have

∥xi(k+1)−PY (xi(k+1))∥2

= ∥PXi [(1−T )xi(k)

+Tyi(k)]−PY
(
PXi [(1−T )xi(k)+Tyi(k)]

)
∥2

≤ ∥(1−T )xi(k)+Tyi(k)−PY [(1−T )xi(k)

+Tyi(k)]∥2 −∥ρi(k)∥2

≤ [(1−T )∥xi(k)−PY (xi(k))∥+T∥yi(k)

−PY (yi(k))∥]2 −∥ρi(k)∥2.

Therefore, ∥xi(k+ 1)−PY (xi(k+ 1))∥ ≤ (1−T )∥xi(k)−
PY (xi(k))∥+ T∥yi(k)− PY (yi(k))∥, ∥ρi(k)∥2 ≤ −∥xi(k +
1) − PY (xi(k + 1))∥2 + [(1 − T )∥xi(k) − PY (xi(k))∥ +
T∥yi(k)−PY (yi(k))∥]2, ∀ i ∈ Im.

2) Let σic(k) = (1 − T )xi(k) + Tyi(k) = xi(k) +
T (yi(k) − xi(k)), σip(k) = PXi [σic(k)], σiq(k) = xi(k) +
T qi(k)(yi(k)− xi(k)), qi(k) = max{q ∈ [0, 1] | xi(k) +
T q(yi(k)− xi(k)) ∈ Xi}, σi(k) = σip(k)− σiq(k). First,
consider the situation of qi(k) < 1. Obviously, ρi(k) =
σip(k) − σic(k) = PXi [σic(k)] − σic(k) = σi(k) − (1 −
qi(k))T (yi(k)− xi(k)).

yi(k+1) = δii(k)xi(k)+δiy(k)yi(k)

+ ∑
j∈Ni(k)

δi j(k)x j(k)+σi(k)+ γ(k)δiξ (k)

= [δii(k)+ ∑
j∈Ni(k)

δi j(k)]xi(k)+δiy(k)yi(k)

+ ∑
j∈Ni(k)

δi j(k)x j(k)− ∑
j∈Ni(k)

δi j(k)xi(k)

+ γ(k)δiξ (k)+σi(k)

= δic(k)δis(k)+(1−δis(k))δiy(k)yi(k)

+ ∑
j∈Ni(k)

δi j(k)x j(k)+σi(k)+ γ(k)δiξ (k)

= δis(k)δip(k)+(1−δis(k))δiy(k)yi(k)

+ ∑
j∈Ni(k)

δi j(k)x j(k)+ γ(k)δiξ (k),

where δii(k) = τi(k)T − ιi(k)γ(k)∑ j∈Ni(k) ai j(k)T −
T qi(k), δiy(k) = 1 − τi(k)T + T qi(k), δi j(k) =
ιi(k)γ(k)ai j(k)T , δiξ (k) = ιi(k)∑ j∈Ni(k) ai j(k)ξ ji(k)T ,
δic(k) =

[
∑ j∈Ni(k) δi j(k) + δii(k)

]
xi(k) + δiy(k)yi(k),

δip(k) = δic(k) +
σi(k)
δis(k)

, δis(k) = δii(k)
δii(k)+∑ j∈Ni(k)

δi j(k)
. Note

that δii(k) + ∑ j∈Ni(k) δi j(k) = τi(k)T − T qi(k). Hence,
∑ j∈Ni(k) δi j(k) + (1 − δis(k))δiy(k) + δis(k) = 1 and 0 ≤
∑ j∈Ni(k) δi j(k), (1− δis(k))δiy(k), δis(k) ≤ 1. By Lemma
1, we have

∥yi(k+1)−PY (yi(k+1))∥
≤ δis(k)∥δip(k)−PY [δip(k)]

+(1−δis(k))δiy(k)∥yi(k)−PY [yi(k)]∥
+ ∑

j∈Ni(k)

δi j(k)∥x j(k)−PY [x j(k)]∥+∥γ(k)δiξ (k)∥.

It follows that δic(k) = [δii(k) + ∑ j∈Ni(k) δi j(k)]xi(k) +
δiy(k)yi(k) = (τi(k)T − T qi(k))xi(k) + (1 − τi(k)T +
T qi(k))yi(k) = xi(k) + [1 − τi(k)T + T qi(k)](yi(k) −
xi(k)) > T qi(k) for qi(k) < 1. Hence δic(k) /∈ Xi. Let
δiy(k) =

σic(k)−σiq(k)
δis(k)

+ δic(k). Note that δip(k) = δic(k) +
σip(k)−σiq(k)

δis(k)
. Therefore, triangles (δiy(k),δic(k),δip(k))
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and (σic(k),σiq(k),σip(k)) is similar, and vectors
δip(k)− δic(k) and σip(k)− σiq(k) have same the direc-
tion. Therefore, the angle between PY [δiy(k)] − δip(k)
and δiy(k) − δip(k) belongs to the interval

[
π

2 , π
]
.

Hence, ∥δip(k)− PY [δiy(k)]∥ ≤ ∥δiy(k)− PY [δiy(k)]∥ and
δiy(k) = δic(k) +

σic(k)−σiq(k)
δis(k)

= xi(k) + [1 − τi(k)T +

T qi(k)](yi(k − xi(k)) +
σic(k)−σiq(k)

δis(k)
= δ̄ic(k)xi(k) + (1 −

δ̄ic(k))yi(k), where δ̄ic(k) = τi(k)T − T qi(k)− T (1−qi(k))
δis(k)

.

From 1 < pi <
1
T and τi(k) =

1−ιi(k)(1−piT )
T , it follows

that 1 < pi ≤ τi(k) < 1
T , and by Assumptions 3 and 5,

there exists a constant k1 > 0 such that γ(k) ≤ (pi−1)2

pi(1−µ1)

for all k ≥ k1. Then, we have 1
pi
< δis(k) ≤ 1. Hence,

δ̄ic(k) ≤ τi(k)T − T qi(k) ≤ 1− T qi(k) < 1 and δ̄ic(k) ≥
τi(k)T − T qi(k) − T (1−qi(k))

1/pi
≥ (pi − 1)T > 0. There-

fore, ∥δip(k) − PY [δip(k)]∥ ≤ ∥δip(k) − PY [δiy(k)]∥ ≤
∥δiy(k) − PY [δiy(k)]∥ ≤ δ̄ic(k)∥xi(k) − PY [xi(k)]∥ + (1 −
δ̄ic(k))∥yi(k)−PY [yi(k)]∥. Then,

∥yi(k+1)−PY (yi(k+1))∥
≤ δis(k)∥δip(k)−PY [δip(k)]∥
+(1−δis(k))δiy(k)∥yi(k)−PY [yi(k)]∥
+ ∑

j∈Ni(k)

δi j(k)∥xi(k)−PY [xi(k)]∥+∥γ(k)δiξ (k)∥

≤ ϕix(k)∥xi(k)−PY [xi(k)]∥+ϕiy(k)∥yi(k)

−PY [yi(k)]∥+ ∑
j∈Ni(k)

ϕi j(k)∥x j(k)−PY [x j(k)]∥

+∥γ(k)δiξ (k)∥,

where ϕix(k) = δis(k)δ̄ic(k), ϕiy(k) = δis(k)(1− δ̄ic(k))+
(1 − δis(k))δiy(k), ϕi j(k) = δi j(k). It is easy to ob-
tain that 0 ≤ ϕix(k), ϕiy(k), ϕi j(k) ≤ 1 and ϕix(k) +
∑ j∈Ni(k) ϕi j(k) + ϕiy(k) = 1. Next, let us consider the
situation of qi(k) = 1, then σic(k) ∈ Xi and σ(k) =
0. Take ϕix(k) = τi(k)T − T − ιi(k)γ(k)∑ j∈Ni(k) ai j(k),
ϕi j(k) = ιi(k)γ(k)∑ j∈Ni(k) ai j(k), ϕiy(k) = 1− τi(k) + T ,
then ∥yi(k+1)−PY (yi(k+1))∥ ≤ ∑ j∈Ni(k) ϕi j(k)∥x j(k)−
PY [x j(k)]∥ + ∥γ(k)δiξ (k)∥ + ϕix(k)∥xi(k) − PY [xi(k)]∥ +
ϕiy(k)∥yi(k)−PY [yi(k)]∥, where ϕix(k), ϕiy(k) and ϕi j(k)
are nonegative and ϕix(k)+∑ j∈Ni(k) ϕi j(k)+ϕiy(k) = 1.

3) Let χiξ (k) = ιi(k)∑ j∈Ni(k) ai j(k)ξ ji(k)T , χi j(k) =
ιi(k)γ(k)Tai j(k), χix(k) = 1 − ιi(k)γ(k)T ∑ j∈Ni(k) ai j(k),
for all i ∈ Im+n −Im. Note that ∑ j∈Ni(k) ai j(k) ≤ 1− µ1,
χix(k) + ∑ j∈Ni(k) χi j(k) = 1, and 0 < µ1 < 1, we have
χix(k)≥ 1−T (1−µ1)> 0. Then, χix(k)> 0,

∥xi(k+1)−PY [xi(k+1)]∥2

= ∥PXi [χix(k)xi(k)+ ∑
j∈Ni(k)

χi j(k)x j(k)+ γ(k)χiξ (k)]

−PY
[
PXi [χix(k)xi(k)+ ∑

j∈Ni(k)

χi j(k)x j(k)

+ γ(k)χiξ (k)]
]
∥2

≤ ∥PXi [χix(k)xi(k)+ ∑
j∈Ni(k)

χi j(k)x j(k)+ γ(k)χiξ (k)]

−PY [χix(k)xi(k)+ ∑
j∈Ni(k)

χi j(k)x j(k)

+ γ(k)χiξ (k)]∥2

≤ ∥PY [χix(k)xi(k)+ ∑
j∈Ni(k)

χi j(k)x j(k)+ γ(k)χiξ (k)]

−χix(k)xi(k)+ ∑
j∈Ni(k)

χi j(k)x j(k)+ γ(k)χiξ (k)∥2

−∥ρi(k)∥2

≤
[
χix(k)∥xi(k)−PY [xi(k)]∥

+ ∑
j∈Ni(k)

χi j(k)∥x j(k)−PY [x j(k)]∥

+∥γ(k)χiξ (k)∥
]2 −∥ρi(k)∥2.

Hence, ∥xi(k + 1) − PY [xi(k + 1)]∥ ≤ ∥γ(k)χiξ (k)∥ +
χix(k)∥xi(k) − PY [xi(k)]∥ + ∑ j∈Ni(k) χi j(k)∥x j(k) −
PY [x j(k)]∥, ∥ρi(k)∥2 ≤

[
χix(k)∥xi(k) − PY [xi(k)]∥ +

∑ j∈Ni(k) χi j(k)∥x j(k) − PY [x j(k)]∥ + ∥γ(k)χiξ (k)∥
]2 −

∥xi(k+1)−PY [xi(k+1)]∥2. The proof is completed. □

APPENDIX B: PROOF OF LEMMA 4

The proof of Lemma 4 is given as follows:

Proof: Define V (k) = max
i∈Im+n

{∥Zi(k)−sl∥2}, where sl ∈
X . For i ∈ Im,

E[∥xi(k+1)− sl∥2|F(k)]

≤ (1−T )∥xi(k)− sl∥2 +T∥yi(k)− sl∥2

≤ ∥xi(k)− sl∥2. (B.1)

By Lemma 3, there exist ϕix(k), ϕiy(k), ∑ j∈Ni(k) ϕi j(k) ≥
0 and ϕix(k) + ϕiy(k) + ∑ j∈Ni(k) ϕi j(k) = 1, such that
∥yi(k+1)−sl∥≤ ϕix(k)∥xi(k)−sl∥+ϕiy(k)∥yi(k)−sl∥+
∥γ(k)δiξ (k)∥+∑ j∈Ni(k) ϕi j(k)∥x j

(k)− sl∥. Then

E[∥yi(k+1)− sl∥2|F(k)]

≤ ϕix(k)∥xi(k)− sl∥2 +ϕiy(k)∥yi(k)− sl∥2

+ ∑
j∈Ni(k)

ϕi j(k)∥x j(k)− sl∥2

+E[∥γ(k)δiξ (k)∥2|F(k)]

≤ ∥yi(k)− sl∥2 + γ
2(k)σ 2

ξ
. (B.2)

For i ∈ Im+n −Im, ∥xi(k+1)− sl∥ ≤ χix(k)∥xi(k)− sl∥+
∑ j∈Ni(k) χi j(k)∥x j(k)− sl∥+∥γ(k)χiξ (k)∥, then

E[∥xi(k+1)− sl∥2|F(k)]

≤ χix(k)∥xi(k)− sl∥2 + ∑
j∈Ni(k)

χi j(k)∥x j(k)− sl∥2
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+E[∥γ(k)χiξ (k)∥2|F(k)]

≤ ∥xi(k)− sl∥2 + γ
2(k)σ 2

ξ
. (B.3)

By Lemma 2, the sequence {∥Zi(k)− sl∥} almost surely
converges to a nonnegative random variable, i.e., xi(k),
y j(k) are bounded almost surely for all i ∈ Im+n, j ∈ Im.
Hence, vi(k)+ ui(k)T is bounded almost surely, ∀ i ∈ Im.
Let its boundary be L1 > ℏi. Note that ∥SVi(y)∥ ≥ ℏi for
all y /∈ Vi, we have ∥SVi(y)∥ = ℏi for all ∥y∥ ≤ ℏi and
∥SVi(y)∥≥ ℏi for all ∥y∥≥ ℏi. Hence, for all i∈Im, ιi(k) =
1, if vi(k)+ui(k)T ≤ ℏi; ιi(k)≥ ℏi

L1
if vi(k)+ui(k)T ≥ ℏi.

Similarly, for all i∈ Im+n− i∈ Im, there exist L2 > ℏi such
that ιi(k) = 1 if ui(k)T ≤ ℏi and ιi(k) =

ℏi
L2

if ui(k)T ≥ ℏi.

Let β0 = min{ ℏi
L1
,
ℏ j

L2
|i ∈ Im, j ∈ Im+n − Im}. Then 0 <

β0 < 1 and β0 ≤ ιi(k)≤ 1 for i ∈ Im+n, k, almost surely.□

APPENDIX C: PROOF OF LEMMA 6

The proof of Lemma 6 is given as follows:

Proof: By Lemma 4, xi(k) and yi(k) are bounded.
Hence, E[∥Zi(k) − PX [Zi(k)]∥2] is bounded. If Lemma
6 is not true, there exist a sequence {k̂t} and M > 0,
lim sup

t→∞

max
i
{E[∥Zi(k̂t) − PX [Zi(k̂t)]∥2]} = M. Moreover,

lim
k→∞

γ(k)E[∥δiξ (k)∥2] = 0. Then, for any ϵ > 0, there ex-

ist i0, k̄, l0 N > (2m + n − 1)B + 1, such that M − ϵ <
E
[
∥Zi0(k̄) − PX [Zi0(k̄)]∥2

]
< M + ϵ for all k̄ − l0 > N,

E
[
∥Zi(k̂t)−PX [Zi(k̂t)]∥2

]
< M+ ϵ, E

[
[ωi(k̂t)]

T [ωi(k̂t)]
]
<

ϵ, for all i ∈ Im+n, k̂t > l0. Define ψ(k) = [ψ1(k), · · · ,
ψm(k), ψm+1(k), · · · , ψm+n(k)]T = [∥Z1(k)− PX [Z1(k)]∥,
· · · , ∥Z2m+n(k)− PX [Z2m+n(k)]∥]T . Let µ(k) be a (2m +
n)× (2m+n) matrix.

µ(k) =

µ1(k) µ2(k) 000
µ3(k) µ4(k) µ5(k)
µ6(k) 000 µ7(k)

 ,

where µ1(k) = diag{1−T , · · · , 1−T}, µ2(k) = diag{T ,
· · · , T},

µ3(k)

=


ϕ1x(k)+ϕ11(k) ϕ12(k) · · · ϕ1m(k)

ϕ21(k) ϕ22(k) · · · ϕ2m(k)
...

...
...

...
ϕm1(k) ϕm2(k) · · · ϕmx(k)+ϕmm(k)

 ,

µ4(k)= diag{ϕ1y(k), · · · , ϕmy(k)}, [µ5(k)]i j =ϕi j(k), ∀ i∈
Im, j ∈ Im+n −Im, [µ6(k)]i j = χi j(k), ∀ i ∈ Im+n −Im, j ∈
Im,

µ7(k) =


µ71(k) χm+1m+2(k) · · · χm+1m+n(k)

χm+2m+1(k) µ72(k) · · · ϕm+2m+n(k)
...

...
...

...
χm+nm+1(k) χm+nm+2(k) · · · µ7n(k)

 ,

µ71(k) = χm+1x(k) + χm+1m+1(k), µ72(k) = χm+2x(k) +
χm+2m+2(k), · · · , µ7n(k) = χm+nx(k) + χm+nm+n(k). De-
fine ω(k) = [ω1(k), · · · , ω2m+n(k)]T = γ(k)[0, · · · , 0,
∥δ1ξ (k)∥, · · · , ∥δmξ (k)∥, ∥χm+1ξ (k)∥, · · · , ∥χm+nξ (k)∥]T .
By Lemma 5, we have ψi(k+ 1) ≤ ∑

2m+n
j=1 [µ(k)]i jψi(k)+

ωi(k), µ(k) and Θ(k,s) are stochastic matrices, where
Θ(k,s) = µ(k)µ(k − 1) · · ·µ(s) for all k ≥ s > k2.
Hence, we have ψi(k̄ + 1) ≤ ∑

2m+n
j=1 [Θ(k̄, k̂t)]i jψ j(k̂t) +

∑
k̄
r=k̂t+1 ∑

2m+n
j=1 [Θ(k̄,r)]i jω j(r)+ωi(k̄), for all k̄ > k̂t > l0.

Note that E[ψi(k̂t)
T ψi(k̂t)]< M+ ϵ if k̂t > l0, we have

E[ψi0(k̄)
T

ψi0(k̄)]

≤ E
[
[(1− [Θ(k̄−1, k̂t)]i0i)ψ j(k̂t)

+ [Θ(k̄−1, k̂t)]i0iψi(k̂t)]
T [(1− [Θ(k̄−1, k̂t)]i0i)

×ψ j(k̂t)+ [Θ(k̄−1, k̂t)]i0iψi(k̂t)]
]
+5ϵ

≤ (1− [Θ(k̄−1, k̂t)]i0i)E[∥ψ j(k̂t)∥2]

+ [Θ(k̄−1, k̂t)]i0iE[∥ψi(k̂t)∥2]+5ϵ

≤ (1− [Θ(k̄−1, k̂t)]i0i)(M+ ϵ)

+ [Θ(k̄−1, k̂t)]i0iE[∥ψi(k̂t)∥2]+5ϵ,

for any k̄ > k̂t . Similar to Lemma 5 in [31], there ex-
ists µ̄ > 0, such that Θ(k̄− 1, k̂t)]i0i > µ̄ for all l0 < k̂t <
k̄ − 1− (2m+ n− 1)B and i ∈ Im+n. Note that M − ϵ <
E[ψi0(k̄)

T ψi0(k̄)], we have

E[∥ψi(k̂t)∥2]

≥ E[∥ψi0(k̄)∥2]−5ϵ
[Θ(k̄−1, k̂t)]i0i

− (1− [Θ(k̄−1, k̂t)]i0i)(M+ ϵ)

[Θ(k̄−1, k̂t)]i0i

≥ M− ϵ− (1− [Θ(k̄−1, k̂t)]i0i)(M+ ϵ)−5ϵ
[Θ(k̄−1, k̂t)]i0i

≥ (M+ ϵ)− 7ϵ
µ̄
.

For all i ∈ Im and l0 < k̂t < k̄−1−(2m+n−1)B, we have

E[∥ρi(k̂t)∥2]≤ E
[
[(1− piT

2
)∥xi(k̂t)−PY (xi(k̂t))∥

+
piT
2

∥yi(k̂t)−PY (yi(k̂t))∥]2
]

−E
[
∥xi(k̂t +1)−PY (xi(k̂t +1))∥2]

≤ (M+ ϵ)− [(M+ ϵ)− 7ϵ
µ̄
] =

7ϵ
µ̄
.

For all i ∈ Im+n −Im and l0 < k̂t < k̄−1− (2m+n−1)B,
we have

E[∥ρi(k̂t)∥2]

≤ E
[
[χix(k̂t)∥xi(k̂t)−PY [xi(k̂t)]∥+∥γ(k̂t)χiξ (k̂t)∥]2

+
m+n

∑
j=1

χi j(k̂t)∥x j(k̂t)−PY [x j(k̂t)]∥
]

−E
[
∥xi(k̂t +1)−PY [xi(k̂t +1)]∥2]
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≤ (M+ ϵ)+ ϵ− [(M+ ϵ)− 7ϵ
µ̄
]≤ ϵ+

7ϵ
µ̄
.

Since ϵ is arbitrarily small, for any ϖ > 0, we can
take large enough N such that E[∥ρi(k)∥2] < ϖ .
By Lemma 5, there exist θ j(k) > 0 and 0 < β1 <
1/(2m + n), such that ∥[Ψ(k,s)]i j − θ j(k)∥ ≤ 2Cµ(1 −
2β1)

k−s
B0 , where B0 = (2m + n − 1)B, Cµ = 1/(1 −

2β1) and k ≥ s > k2. From (4), we have Zi(k +
1) = ∑

2m+n
j=1 [Φ(k)]i jZ j(k) + γ(k)∑

2m+n
j=1 [Ξ(k)]i jξ̄

T
j (k) +

ρ̄i(k) = ∆1i(k) + ∆2i(k) + ∆3i(k) + ∆4i(k) + ∆5i(k),
where ∆1i(k) = ∑

2m+n
j=1 [Ψ(k,s)]i jZ j(s), ∆2i(k) =

∑
k
r=s+1 ∑

2m+n
j=1 [Ψ(k,r)]i jρ̄ j(r−1), ∆3i(k) = ρ̄i(k), ∆4i(k) =

∑
k
r=s+1 ∑

2m+n
j=1 [Ψ(k,r)]i jγ(r − 1)∑

2m+n
u=1 [Ξ(r − 1)] juξ̄ T

u (r −
1), ∆5i(k) = γ(k)∑

2m+n
j=1 [Ξ(k)]i jξ̄

T
j (k). Let Z̄(k + 1) =

1
2m+n ∑

2m+n
i=1 Zi(k+1). Hence,

∥Zi(k+1)−Z j(k+1)∥2

≤ 4max
i

∥Zi(k+1)− Z̄(k+1)∥2. (C.1)

Take the expectation for each term of the expansion on the
right-hand side of the inequality,

E
[
∥∆1i(k)−

1
2m+n

2m+n

∑
i=1

∆1i(k)∥2
]

≤ E
[∥∥∥∥ 2m+n

∑
j=1

[
([Ψ(k,s)]i j −θ j(s))

− 1
2m+n

2m+n

∑
i=1

([Ψ(k,s)]i j−θ j(s))
]∥∥∥∥2

sup
j
{∥Z j(s)∥2}

]

≤

[
2m+n

∑
j=1

4Cµ(1−2β1)
k−s
B0

]2

max
j
{∥Z j(s)∥2}. (C.2)

And similarly, we can obtain

E
[
∥∆2i(k)−

1
2m+n

2m+n

∑
i=1

∆2i(k)∥2
]

≤ E
[∥∥∥∥ k

∑
r=s+1

2m+n

∑
j=1

[(
[Ψ(k,r)]i j −θ j(r)

)
− 1

2m+n

2m+n

∑
i=1

([Ψ(k,r)]i j −θ j(r))
]∥∥∥∥2

× sup
j,r
{∥ρ̄ j(r−1)∥2}

]
≤
[ k

∑
r=s+1

2m+n

∑
j=1

4Cµ(1−2β1)
k−r
B0

]2

ϖ , (C.3)

E
[
∥∆3i(k)−

1
2m+n

2m+n

∑
i=1

∆3i(k)∥2
]
≤ 2ϖ , (C.4)

E
[
∥∆4i(k)−

1
2m+n

2m+n

∑
i=1

∆4i(k)∥2
]

≤
[ k

∑
r=s+1

2m+n

∑
j=1

Cµ(4−8β1)
k−r
B0

]2

× [(2m+n)(1−µ)T σξ ]
2, (C.5)

E
[
∥∆5i(k)−

1
2m+n

2m+n

∑
i=1

∆5i(k)∥2]
≤ 8[γ(k)(2m+n)(1−µ)T σξ ]

2. (C.6)

Using the inequality 2xy ≤ x2 + y2, and (C.2)-(C.6), we
have

E

2[∆1i(k)−

2m+n
∑

i=1
∆1i(k)

2m+n
]T [∆2i(k)−

2m+n
∑

i=1
∆2i(k)

2m+n
]


≤
[ 2m+n

∑
j=1

4Cµ(1−2β )
k

B0

]2

∥Z j(s)∥2

+

[ k

∑
r=s+1

2m+n

∑
j=1

4Cµ(1−2β1)
k−r
B0

]2

ϖ . (C.7)

And similarly, then

E

2[∆1i(k)−

2m+n
∑

i=1
∆1i(k)

2m+n
]T [∆3i(k)−

2m+n
∑

i=1
∆3i(k)

2m+n
]


≤
[ 2m+n

∑
j=1

4Cµ(1−2β1)
k

B0

]2

∥Z j(s)∥2 +2ϖ ,

E

2[∆2i(k)−

2m+n
∑

i=1
∆2i(k)

2m+n
]T [∆3i(k)−

2m+n
∑

i=1
∆3i(k)

2m+n
]


≤
[ k

∑
r=s+1

2m+n

∑
j=1

4Cµ(1−2β1)
k−r
B0

]2

ϖ +2ϖ , (C.8)

E

2[∆4i(k)−

2m+n
∑

i=1
∆4i(k)

2m+n
]T [∆5i(k)−

2m+n
∑

i=1
∆5i(k)

2m+n
]


≤
[ k

∑
r=s+1

2m+n

∑
j=1

4Cµ(1−2β1)
k−r
B0

]2

× [(2m+n)(1−µ)T σξ ]
2

+8[γ(k)(2m+n)(1−µ)T σξ ]
2, (C.9)

E


∆1i(k)−

2m+n
∑

i=1
∆1i(k)

2m+n


T∆4i(k)−

2m+n
∑

i=1
∆4i(k)

2m+n




= 0,

E


∆1i(k)−

2m+n
∑

i=1
∆1i(k)

2m+n


T∆5i(k)−

2m+n
∑

i=1
∆5i(k)

2m+n




= 0,
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E


∆2i(k)−

2m+n
∑

i=1
∆2i(k)

2m+n


T∆4i(k)−

2m+n
∑

i=1
∆4i(k)

2m+n




= 0,

E


∆2i(k)−

2m+n
∑

i=1
∆2i(k)

2m+n


T∆5i(k)−

2m+n
∑

i=1
∆5i(k)

2m+n




= 0,

E


∆3i(k)−

2m+n
∑

i=1
∆3i(k)

2m+n


T∆4i(k)−

2m+n
∑

i=1
∆4i(k)

2m+n




= 0,

E


∆3i(k)−

2m+n
∑

i=1
∆3i(k)

2m+n


T∆5i(k)−

2m+n
∑

i=1
∆5i(k)

2m+n




= 0.

Therefore, taking expectation on the both side of (C.1),
by (C.2)-(C.9), we can get

E
[
∥Zi(k+1)−Z j(k+1)∥2]

≤12[
2m+n

∑
j=1

4Cµ(1−2β1)
k

B0 ]2∥Z j(s)∥2

+12
[ k

∑
r=s+1

2m+n

∑
j=1

4Cµ(1−2β1)
k−r
B0

]2

ϖ +24ϖ

+8
[ k

∑
r=s+1

2m+n

∑
j=1

4Cµ(1−2β1)
k−r
B0

]2

× [(2m+n)(1−µ)T σξ ]
2

+64[γ(k)(2m+n)(1−µ)T σξ ]
2.

It is easy to obtain that for any ϖ1 > 0, we can take
small enough ϖ and large enough N such that E[∥Zi(k)−
Z j(k)∥2] < ϖ1, for any k > k̂t > N, i ∈ Im+n. Let X̄i =
{x ∈ Xi|(M+ ϵ)− 7ϵ

µ̄
< E[∥x−PX(x)∥2] < M+ ϵ]}. Since

(M + ϵ)− 7ϵ
µ̄
> 0, X̄i

⋂
X = ∅. Let κ = min

i
max

j
{E[∥x−

PX j(x)∥2|x ∈ X̄i]}. If we choose ϖ1 < κ , then

E[∥xi(k+1)− x j(k+1)∥2]

< ϖ1 < κ ≤ max
i, j

{E[∥xi(k+1)−PX j [xi(k+1)]∥2}

≤ max
i, j

{E[∥xi(k+1)− x j(k+1)∥2},

for i, j ∈Im+n, which is a contradiction. Therefore, M = 0,
i.e., lim

k→∞

E[∥Zi(k)−PX [Zi(k)]∥2] = 0. □
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