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A Real-time Path Planning Algorithm for Mobile Robots Based on Safety
Distance Matrix and Adaptive Weight Adjustment Strategy
Xinpeng Zhai, Jianyan Tian* ■ , and Jifu Li

Abstract: The fusion of the A* and the dynamic windowing algorithm is commonly used for the path planning
of mobile robots in dynamic environments. However, the planned path has the problems of redundancy and low
security. This paper proposes a path planning algorithm based on the safety distance matrix and adaptive weight
adjustment strategy to address the above problems. Firstly, the safety distance matrix and new heuristic function are
added to the traditional A* algorithm to improve the safety of global path. Secondly, the weight of the evaluation
sub-function in the dynamic window algorithm is adjusted through an adaptive weight adjustment strategy to solve
the problem of path redundancy. Then, the above two improved algorithms are fused to make the mobile robot have
dynamic obstacle avoidance capability by constructing a new global path evaluation function. Finally, simulations
are performed on grid maps, and the fusion algorithm is applied to the actual mobile robot path planning based on
the ROS. Simulation and experimental results show that the fusion algorithm achieves optimization of path safety
and length, enabling the robot to reach the end point safely with real-time dynamic obstacle avoidance capability.
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1. INTRODUCTION

Path planning is an important part of autonomous navi-
gation technology for mobile robots, and the purpose is to
plan a collision-free optimal or suboptimal path from the
starting point to the end point [1-3]. According to the com-
pletely known, partially known, or completely unknown
information about the environment where the mobile robot
is located, path planning can be divided into global path
planning and local path planning [4,5].

Global path planning algorithms include the Dijkstra al-
gorithm [6], ant colony algorithm [7], fast random search
tree algorithm (RRT) [8], A* algorithm [9], etc. The Di-
jkstra algorithm adopts the breadth-first search method to
find the shortest path from the starting point to the end-
point by calculating the distance from the starting point to
the other nodes. However, when the environment is more
complex, the number of computing nodes increases, and
the computing efficiency decreases [10]. The ant colony
algorithm uses the mathematical model of ants coopera-
tively searching for food to obtain the optimal path, which
has the advantages of being robust and easy to combine
with other algorithms because of its distributed nature.
However, it also has the disadvantages of slow conver-
gence speed and easy to fall into local optimum [11]. The

RRT is a sampling algorithm, which has fast search speed
and strong searchability. However, the search accuracy is
low and the path smoothness is poor [12]. The A* algo-
rithm calculates the cost value of nodes by heuristic func-
tion to get the optimal extended node and finally generates
the optimal path. However, the planned path has problems
such as unsmooth, node redundancy, and low path secu-
rity [13,14]. Compared with other global path planning
algorithms, the A* algorithm is widely used in the au-
tonomous navigation of mobile robots due to its high com-
puting efficiency. In the autonomous navigation of mobile
robots, the safety of the search path is the most impor-
tant prerequisite for the implementation of all functions
[15]. To improve the security of the search path planned
by the A* algorithm, many scholars have improved the
A* algorithm from different aspects. Zhang et al. [16] in-
troduced the distance cost between nodes and obstacles
to improve the safety of path planning in the A* algo-
rithm. When there are many obstacles, it needs to calculate
the distance between each obstacle and the current node,
which reduces the search efficiency. Chen et al. [17] made
the path planned by the A* algorithm away from obstacles
through the shifting process, but the fixed shifting distance
is not suitable for complex environments. Duan et al. [18]
introduced a matrix in the A* algorithm to ensure safe dis-
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tances under different environments. However, it specifies
that the mobile robot can only move in four directions,
which does not meet the actual robot motion requirements.
Besides, the expansion of obstacles can ensure the safety
of path planning, but the expanded map will enlarge the
inaccuracy when the created map is not accurate. More-
over, when the obstacle spacing is small, the expansion
process will most likely cause the robot to be unable to
follow the normal path, which may increase the length of
the path and the search time.

In addition, although the above-improved method can
ensure the safety of the path to some extent, it does not
consider unknown obstacles and does not have dynamic
obstacle avoidance capability. The combination of the
global path algorithm and the local path algorithm enables
the robot to dynamically avoid obstacles in real time based
on the globally optimal path [19]. The local path planning
methods include the artificial potential field method [20],
neural network method [21], dynamic window method
(DWA) [22], etc. The artificial potential field method con-
structs gravitational and repulsive fields around the target
point and obstacles to plan the optimal path without col-
lision according to the descent direction of the search po-
tential function. When there are more obstacles in the en-
vironment, it will be multiple zero-potential points, and
easy to fall into local optimum [23,24]. The neural net-
work algorithm can quickly find the optimal solution un-
der the training of a large number of sample data and is
often used in local obstacle avoidance operations of mo-
bile robots. However, it requires a large number of training
samples and has high requirements on the neural network
model [25]. The DWA algorithm combines sensing infor-
mation to predict its trajectory at the next time interval
from the linear and angular velocities collected in velocity
space to achieve real-time obstacle avoidance. The DWA
algorithm is widely used in mobile robot obstacle avoid-
ance processing due to its low computational complexity,
but it has the problem of redundant paths [26,27].

How to quickly and accurately plan a safe and effec-
tive path of travel in a complex and dynamic environment
is of great research significance. To solve the problem of
low path security of the A* algorithm and path redun-
dancy of the DWA algorithm, a real-time path planning
algorithm for mobile robots based on safety distance ma-
trix and adaptive weight adjustment strategy is proposed.
The safety distance matrix is added to the traditional A*
algorithm to ensure the safety of its search. The heuristic
function of the traditional A* algorithm is also improved
to retain search efficiency. The weight of the evaluation
sub-function in the dynamic window algorithm is adjusted
through an adaptive weight adjustment strategy to solve
the problem of redundant paths. Finally, the two improved
algorithms are fused by constructing a global evaluation
function to enable the robot to achieve dynamic real-time
obstacle avoidance based on the global optimum. Simu-

lations and experiments verify the feasibility of the pro-
posed fusion algorithm in this paper.

The main contributions can be summarized: 1) We add
the safety distance matrix to the A* algorithm and con-
struct a new heuristic function to guarantee the safety of
the path. It improves the search method from the algo-
rithm itself and reduces the requirement of environmen-
tal map accuracy during the search. 2) We proposed an
adaptive weight adjustment strategy to adjust the weights
of the evaluation sub-functions in the DWA algorithm in
real-time to solve the path redundancy problem. 3) We
constructed global evaluation functions to fuse the two
improved algorithms, which enables the mobile robot to
avoid obstacles dynamically in real-time based on the
globally optimal path.

The other parts of this paper are organized as follows:
Section 2 proposed an improved A* algorithm with the
safety distance matrix. Section 3 described the adaptive
weight adjustment strategy. Section 4 introduced the fu-
sion of two improved algorithms. Section 5 is the simula-
tion and experimental. Section 6 is the conclusions.

2. IMPROVING THE A* ALGORITHM

In this section, we first describe the basic principles of
the traditional A* algorithm and analyze the problems of
the traditional A* algorithm. Then, we introduce the key
turning node extraction strategy and the safety distance
matrix in detail.

2.1. The traditional A* algorithm
A* algorithm is a path planning algorithm combining a

heuristic search algorithm and a breadth-first algorithm,
which is the most efficient direct search algorithm for
solving optimal paths in static environments. The A* al-
gorithm selects the search direction by a cost function. It
starts from the starting point and expands to the surround-
ing node. The generation value of each surrounding node
is calculated by the heuristic function. The node with the
smallest generation value is selected as the next expan-
sion node. This process is repeated until the endpoint is
reached. In the search process, since each node on the path
is the minimum cost node, the obtained path cost is also
the minimum. The cost function of the A* algorithm can
be calculated by

F(n) = G(n)+H(n), (1)

where F(n) is the cost function, G(n) is the actual path
cost from the start point to the current node, H(n) is the
estimated cost from the current node to the endpoint, and
is also called the heuristic function. The heuristic function
can control the speed and accuracy of the A* algorithm.

When calculating G(n) and H(n), to make it closer to
the real distance, the eight-direction search and Euclidean
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Fig. 1. The simulation result of traditional A* algorithm.

distance are used as the criteria for judging the cost. It can
be calculated as{

G(n) = sqrt[(xcurr − xstart)
2 +(ycurr − ystart)

2],

H(n) = sqrt[(xcurr − xgoal)
2 +(ycurr − ygoal)

2],
(2)

where (xcurr, ycurr) is the coordinates of the current node,
(xstart , ystart) is the coordinates of the start point, (xgoal ,
ygoal) is the coordinates of the endpoint.

The A* algorithm uses openlist and closelist to record
node expansion and optimal node during the search pro-
cess. When a node is searched, its surrounding nodes will
be saved in the openlist. The cost value of these nodes
is calculated according to formulas (1) and (2). The node
with the smallest is selected as the next expansion node
and added to the closelist at the same time. This process is
repeated until the target point is added to the closelist and
the A* algorithm is successful. The path planning result
of the traditional A* algorithm is shown in Fig. 1.

As shown in Fig. 1, the path planned by the tradi-
tional A* algorithm contains many redundant nodes and
unnecessary turning nodes. If there are too many turning
nodes, the mobile robot can only move a short distance at
a time, which will cause the robot to be stuck [28]. Be-
sides, the robot is regarded as a point, and the safety dis-
tance between the robot and the obstacle is not considered.
The path safety is low. It requires accurate environment
map construction and high robot motion control accuracy.
Based on the A* algorithm, the key fold extraction strat-
egy and the security distance matrix are added to solve the
above problems.

2.2. Key turning node extraction strategy
Aiming at the problem of many redundant nodes and

unnecessary turning nodes in the traditional A* algorithm,
this paper proposes a key turning nodes extraction strat-
egy.The key turning node extraction strategy is as follows:

1) Get all node U = {Pi, 1 ≤ i ≤ n} of the path planned
by the A* algorithm, where P1 is the starting point of

Fig. 2. Schematic diagram of key turning node extraction
strategy.

the planned path, Pn is the end point. Create a turning
node set V to store the extracted key turning node.
The initial value of set V is {P1, Pn}.

2) Use the area method to extract the turning node: Cal-
culate the area enclosed by three adjacent nodes (Pi−1,
Pi, Pi+1) in the path in turn. The area calculation for-
mula can be expressed as

S =
√

L(L−|Pi−1Pi+1|)(L−|Pi−1Pi|)(L−|PIPi+1|),
(3)

where S is the area of the triangle, L is the half-
perimeter of a triangle, |Pi−1Pi+1|, |Pi−1Pi|, |PiPi+1| is
the side lengths of triangles. It can be calculated using
(2). If S = 0, Pi is the redundant node. Otherwise, Pi

is the turning node. Store the extracted turning nodes
into the set V .

3) In the adjacent turning nodes (Pk−1, Pk, Pk+1) of the
set V , connect two nodes Pk−1 and Pk+1 that are not
adjacent. If the straight line of these two nodes passes
through the obstacle area, the turning node Pk is a key
turning node, otherwise it is a redundant turning node.

The key turning node extraction strategy is described in
detail in Fig. 2.

As shown in Fig. 2, P1−P5 are the five nodes in the path.
Because the nodes P1, P2, and P3 are on a straight line,
the area enclosed is 0, so P2 is a redundant node. Connect
node P1 and node P4, because the area of triangle P1P3P4

is not 0, so P3 is the turning node. The line segment P2P4

passes through the obstacle, so P3 is the key turning node.
Similarly, it can be judged that P4 is also a key turning
node.

The above method is used to remove redundant nodes
and extract key turning node in Fig. 1. The result is shown
in Fig. 3.

As shown in Fig. 3, after adding the key turning node
extraction strategy, redundant nodes can be removed and
key turning nodes can be extracted. During the actual nav-
igation, the robot can move longer distances with a sin-
gle command. It satisfies the non-holonomic constraints
of mobile robots.
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Fig. 3. The result of key turning node extraction.

2.3. The safe distance matrix
There is an appropriate safety distance between the

robot and the obstacle, which is good protection for the
robot and surrounding environment. The expansion of ob-
stacles can improve path security, but it may increase the
inaccuracy of maps [29,30]. Moreover, when the obsta-
cle spacing is small, the expansion process will cause the
robot unable to follow the normal path, which may in-
crease the path length and search time [31].

In this paper, the safety distance matrix and matching
heuristic function are proposed to improve the safety of
the path. This method does not require an accurate envi-
ronment map or reconstructed map. It is simple and easy
to operate, which can better solve the problem of low path
security.

The safety distance matrix proposed is different from
the distance cost between nodes and obstacles, which
refers to the distance cost of all obstacles to the node
within a certain range [32]. The safety distance matrix can
be regarded as a rectangular range with the current node
at the center. It only needs to consider whether there are
obstacles in the four corners of the rectangle. If there is an
obstacle, the cost of the current point is increased, mak-
ing the path away from the obstacle. The safety distance
matrix can be expressed as

Kn =



2 0 · · · · · · · · · 0 2
0 0 · · · · · · · · · 0 0
...

...
. . .

... . . .
...

...
...

... · · · 1 · · ·
...

...
...

... . . .
...

. . .
...

...
0 0 · · · · · · · · · 0 0
2 0 · · · · · · · · · 0 2


, (4)

where Kn ∈ Rd×d , the number 0 has no real meaning, the
number 1 represents the next node the robot may reach,
the number 2 indicates the four positions to be detected.

During the path search, in addition to calculating the
cost at “1” in the safety distance matrix, it is also necessary
to detect whether there is an obstacle at the position of “2”.
The cost function after adding the safety distance matrix
can be calculated by

F ′(n) = G(n)+H(n)+aS(n), (5)

where S(n) is the cost value of the safety distance matrix,
a is the weight coefficient.

When an obstacle is detected at the position of “2” in
Kn, the value of Sn is set to 1. When an obstacle is not
detected at the position of “2” in Kn, the value of Sn is
set to 0. If the value of a is much smaller than G(n) and
H(n), the safety distance matrix may fail. If the value of a
is much larger than G(n) and H(n), the planned path will
be far away from the obstacles. The number of path search
nodes will increase and reduce the efficiency of the search.
It can be expressed as

a =

[√
(M/L)2 +(N/L)2

]
, (6)

where M, N is working range of the robot, L is the safety
distance, [] is the rounding operation. When the robot is
circular, the radius can be chosen as the safety distance.
When the robot is rectangular, half of the longest side can
be chosen as the safety distance.

The appropriate dimension of the safety distance matrix
should be selected according to the size of the robot and
the map resolution. It can be expressed as

d = [2× (L×b)+1], (7)

where d is the dimension of the safety distance matrix, b
is the map resolution.

To illustrate the safety distance matrix Kn more clearly,
we calculated the cost values of the node involved in the
path search. The path search cost is shown in Fig. 4.

(a) (b)

Fig. 4. The search cost value of path planning. (a) The
search cost of traditional A*. (b) The search cost
of adding the safety distance matrix.
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(a) (b)

(c) (d)

Fig. 5. The results of ablation experiments. (a) The path planning of traditional A*. (b) The result of adding key turning
node extraction strategy. (c) The result of adding safety distance matrix. (d) The result of improved A*.

As shown in Fig. 4, the yellow grid represents the start-
ing point, the green grid represents the end point, the black
grid represents the obstacle. The grid without numbers in-
dicates the nodes that are not related to the search process,
and the grid with numbers is the node related to the search
process. The four numbers in the grid with numbers rep-
resent G(n), H(n), aS(n), and F ′(n) in formula (5), re-
spectively. The value of a is 10, and the dimension of the
safety distance matrix is 3. As can be seen from Fig. 4(a),
the path (AC and CD) planned by the traditional A* algo-
rithm is close to the obstacle, and the safety of the path
is poor. When the environment map is inaccurate or the
robot control has errors, the robot will be easily connected
to the obstacle. It can be seen that after adding the safety
distance matrix, the cost value F ′(n) of point B in Fig.
4(b) is much larger than the point B in Fig. 4(a). This is
because the point below point B is at the “1” position in
formula (4), and there is an obstacle at the “2” position,
so the value of Sn is 1. According to formula (5), the cost

value F ′(n) of point B in Fig. 4(b) is bigger than point B in
Fig. 4(a). The algorithm will select the point with a smaller
value of F ′(n) as the next position. After adding the safety
distance matrix, the path planned by the algorithm will not
pass through point B. Finally, it gets the path as shown in
Fig. 4(b). The path is far away from obstacles, with good
safety, and can effectively avoid the collision.

To verify the effectiveness of the safety distance matrix
and key turning extraction strategy on the A* algorithm,
we set up ablation experiments. The result is shown in Fig.
5. The grid map size is 20×20, and the length of the unit
grid is 0.20 m.

As shown in Fig. 5(a), the path planned by the tradi-
tional A* algorithm is close to the obstacles, and the safety
of the path is poor. If the environment map is not accurate
or the robot control has errors, it is easy to cause the robot
and the obstacles to collide. In addition, there are many
redundant nodes in the path, and the motor needs to be
started and stopped many times, which will cause damage
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Table 1. Comparison result of traditional A* and im-
proved A*.

The path
length (m)

DNO (m) Search time
(s)

Traditional A* 3.91 0 3.63
Improved A* 5.18 0.20 2.69

to the motor. As can be seen from Fig. 5(b), after adopting
the key turning point extraction strategy, redundant nodes
can be removed and key turning nodes can be extracted. It
reduces the number of motor starts and stops, and reduces
the energy consumption of the robot. As can be seen from
Fig. 5(c), compared with the traditional A* algorithm, the
path planned adding the safety distance matrix is far away
from the obstacles, and the safety of the path is better. The
requirements for the accuracy of the environment map or
the robot control accuracy are not high, which can effec-
tively avoid the collision between the robot and the obsta-
cles. As shown in Fig. 5(d), the improved A* algorithm
optimizes the path in terms of the number of nodes and
path security. During the actual navigation, the robot can
move longer distances along the safe path with a single
command.

The path length, the distance to the nearest obstacle
(DNO), and the path search time are used as performance
indicators to quantitatively analyze the paths of Figs. 5(a)
and 5(d). The results are shown in Table 1.

It can be seen from Table 1 that the improved A* algo-
rithm increases the total path length by 1.27 m compared
with the traditional A* algorithm, but increases the dis-
tance from the nearest obstacle by 0.20 m, which improves
the security of the path. The search time of the proposed
A* algorithm includes the path search time and other pro-
cesses (removing redundant nodes and checking key turn-
ing nodes).The search time of the traditional A* algorithm
is only the path search time. The improved A* algorithm

Table 2. Comparison result of RRT, Ant colony, and Im-
proved A*.

Scenarios Algorithm The path
length (m)

DNO (m) Search time
(s)

Scenario 1

RRT 11.48 0.1 4.26
Ant colony 9.59 0 5.34
Improved

A*
9.37 0.14 5.09

Scenario 2

RRT 10.64 0.1 2.52
Ant colony 13.58 0 3.56
Improved

A*
9.75 0.13 3.44

reduces the path planning time by 0.94 s compared to the
traditional A* algorithm. The reason is that after adding
the safety distance matrix to the traditional A* algorithm,
the algorithm can sense the obstacles around the current
node in advance.

We also compared the proposed A* algorithm with the
RRT, and ant colony in different scenarios. The grid map
size is 30× 30, and the length of the unit grid is 0.20 m.
The results are shown in Figs. 6 and 7.

As shown in Figs. 6 and 7, the coverage and complexity
of the obstacles are different, and the maps are representa-
tive. The above 3 path-planning algorithms can plan a path
from the starting point to the endpoint, but the path length,
the distance to the nearest obstacle, and the search time
are different. The initial parameters of 3 path-planning al-
gorithms are set consistently. The algorithms are run 10
times and the average value is taken. The results are shown
in Table 2.

As shown in Table 2, the RRT algorithm has the short-
est search time, but the path length is the longest. Besides,
it generates too many turning nodes. The robot will con-
sume more time in actual movement. The improved A*
algorithm is better than the ant colony algorithm in all as-

(a) (b) (c)

Fig. 6. The simulation results of scenario 1. (a) The path planning of RRT algorithm. (b) The path planning of ant colony
algorithm. (c) The path planning of improved A* algorithm.
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(a) (b) (c)

Fig. 7. The simulation results of scenario 2. (a) The path planning of RRT algorithm. (b) The path planning of ant colony
algorithm. (c) The path planning of improved A* algorithm.

pects, and the planned path length is shorter and safer.
In this chapter, we introduce the construction of the safe

distance matrix and how to choose the appropriate dimen-
sion. It should be noted that compared with map expan-
sion method, the safety distance matrix proposed in this
paper does not improve the safety of the path by changing
the map, but by modifying the search methodology of the
algorithm to improve safety of the path.

3. IMPROVED DWA ALGORITHM

Although the above improved A* algorithm can obtain
the optimal safe path from the starting point to the ending
point, it does not consider unknown obstacles. It cannot
avoid dynamic obstacles. In this paper, an improved DWA
algorithm is proposed to solve the above problem.

3.1. The traditional DWA algorithm
The traditional DWA algorithm samples the speed space

(vt , ωt) of the mobile robot in the window area and then
simulates the motion trajectory under this speed space.
The changes of the linear velocity vt and the angular ve-
locity ωt in the velocity space represent the motion state of
the mobile robot. Among all feasible trajectories, the opti-
mal trajectory is obtained through the evaluation function.
Assuming that the mobile robot moves in a time interval
∆t, the kinematic model of the mobile robot can be calcu-
lated by

xt2 = xt1 + vt∆t cos(∆θ),

yt2 = yt1 + vt∆t sin(∆θ),

θt2 = θt1 +ωt∆t,

(8)

where (xt2, yt2, θt2) is the pose of the robot in the world
coordinates at time t +∆t, (xt1, yt1, θt1) is the pose of the
robot in the world coordinates at time t, ∆θ = ωt∆t.

There are infinitely many groups (vt , ωt) in the veloc-
ity space. In practice, it is necessary to constrain the sam-
pling speed range according to the constraints of the mo-
bile robot itself and the environment. The speed constraint
of the mobile robot can be calculated by

Vm = {(v,ω) | v ∈ [vmin, vmax], ω ∈ [ωmin, ωmax]}.
(9)

The velocity constraint caused by the motor during the
dynamic window movement interval of the mobile robot
can be estimated by

Vd =
{
(v,ω) |v ∈ [vc − v̇b∆t, vc + v̇a∆t],

ω ∈ [ωc − ω̇b∆t, ωc + ω̇a∆t]
}
, (10)

where (vc, ωc) is current speed of the mobile robot, (v̇a,
ω̇a) is maximum acceleration of mobile robots, (v̇b, ω̇b) is
minimum acceleration of mobile robots.

Mobile robot braking distance constraint: When avoid-
ing obstacles in the local environment, the safety of the
mobile robot needs to be ensured. Under the constraints
of maximum deceleration, the speed can be reduced to 0
before a collision occurs. The braking constraint can be
expressed as

Vb =
{
(v,ω) |v ≤ (2d(v,ω)v̇b)

1/2,

ω ≤ (2d(v,ω)ω̇b)
1/2

}
, (11)

where d(v,ω) is the closest distance between the track and
the obstacle. This paper uses Euclidean distance to calcu-
late it.

The sampling speed (v,ω) should satisfy the following
formula

(v,ω) ∈ {Vm ∩Vd ∩Vb} . (12)
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The predicted trajectory evaluation function of the
DWA algorithm includes the heading angle evaluation
sub-function, the speed evaluation sub-function, and the
obstacle distance evaluation sub-function. It can be ex-
pressed as

Eval(v,ω) = αH(v,ω)+βS(v,ω)+ γD(v,ω), (13)

where Eval(v,ω) is the prediction trajectory evaluation
sub-function, H(v,ω) is the heading angle evaluator sub-
function, S(v,ω) is the speed evaluation sub-function,
D(v,ω) is the obstacle distance evaluation sub-function,
α , β , γ is the weight value corresponding to each evalua-
tion sub-function.

The DWA algorithm gives priority to ensuring the secu-
rity of the path, so it defines β < α < γ .

Each sub-function needs to be normalized before cal-
culating the predicted trajectory evaluation function. The
normalization method is divided into I) and II) [33]. I) The
current evaluation sub-function is divided by the sum of
all evaluation sub-functions. II) 1 minus the current evalu-
ator function divided by the sum of all evaluator functions.
When the value of the evaluation sub-function is smaller
and the score is higher, normalization should be performed
using II). When the value of the evaluation sub-function
is larger and the score is higher, normalization should be
performed using I).

The prediction trajectory evaluation sub-function can
be expressed as

H(v,ω) = |ϕ −θ | , (14)

where ϕ is the angle between the line (connecting the cur-
rent position of the robot and the target point) and the x-
axis, θ is the heading angle. The value of H(v,ω) is larger,
the score is higher. It should be normalized using I).

The heading angle evaluator sub-function can be ex-
pressed as

S(v,ω) = |vt | . (15)

The value of S(v,ω) is larger, the score is higher. It
should be normalized using I).

The obstacle distance evaluation sub-function can be
expressed as

D(v,ω) = d(P,O), (16)

where P is the predicted position of the robot for time t,
O ∈ {ob1, ob2, ob3, · · · , obi} is the coordinates of the clos-
est obstacle to the robot. The value of SD(v,ω) is smaller,
the score is higher.It should be normalized using II).

To ensure the safety of the path, the traditional DWA
algorithm defines the weight of the obstacle distance eval-
uation sub-function is always greater than the weight of
other evaluation sub-functions. This weight rule causes
the DWA algorithm to have a redundant route. This paper
proposes a weight adaptive adjustment method to solve
this problem.

3.2. DWA adaptive weight adjustment strategy
The weight adaptive adjustment strategy rules are as

follows. when the environment of the mobile robot meets
one or more of the following three conditions, the rela-
tionship between α and γ is set to α > γ . The above three
conditions are as follows:

1) When the distance between all obstacles (obi)
and the current position (P) of the robot satisfies
Dist(P,obi) >

3
√

2L
2 , we set α > γ . That is, there are

no obstacles in the area of radius 3
√

2L
2 from the robot.

2) Assume that the current position of the robot is
P(xp,yp), the target point is G(xG,yG), and the obsta-
cle between the current position and the target point
can be expressed as

obi(xobi ,yobi) ∈ {(x,y) | xp ≤ x ≤ xG, yp ≤ y ≤ yG}.
(17)

When the line connecting the robot’s current position
and the target point does not pass through the obstacle
area, we set α > γ . It can be expressed by the follow-
ing formula

LDist(obi,LP→G(obi))>

√
2L
2

, (18)

where LP→G is the connecting line segment between
the robot’s current position and the target point. It can
be calculated by

p0 = (x,y); p1 = (x1,y1); p2 = (x2,y2);

Lp1→p2(p0) = (y1 − y2)x+(x2 − x1)y

+(y2 − y1)x1 +(x1 − x2)y1,

LDist(p0,Lp1→p2(p0)) =
|Lp1→p2(p0)|√

(x2 − x1)
2 +(y1 − y2)

2
.

(19)

3) When the robot is relatively close to the target point,
we set α > γ . It can be expressed by the following
formula

Dist(P,G)≤
√

2L
2

. (20)

In order to verify that the DWA adaptive weight adjust-
ment strategy can solve the problem of redundant routes.
We perform simulation validation in a raster map with a
grid size of 20× 20 and a grid unit length of 0.2 m. The
results are shown in Fig. 8.

As shown in Figs. 8(a) and 8(b), the starting point and
end point are consistent and both algorithms can get the
robot from the starting point to the ending point. The path
length planned by the traditional DWA algorithm is 6.25
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(a) (b)

Fig. 8. The simulation results of traditional DWA and improved DWA. (a) The path planning of traditional DWA algo-
rithm. (b) The path planning of improved DWA algorithm.

m. The path length planned by the improved DWA algo-
rithm is 5.37 m. Compared with the traditional DWA algo-
rithm, the path length planned by the improved DWA algo-
rithm is shortened by 0.88 m and optimized by 14.1%. The
reason for reducing path redundancy is that when there are
no obstacles around the robot or when the robot is about to
reach the end point, the adaptive weight adjustment strat-
egy will automatically adjust the weights of the heading
angle evaluation sub-function and the obstacle distance
evaluation sub-function.

4. FUSION ALGORITHM

The traditional A* algorithm and DWA algorithm are
improved respectively, but the path planned by improved
A* algorithm does not have the ability of real-time dy-
namic obstacle avoidance. The path planned by the im-
proved DWA algorithm is not the global optimal path.
Therefore, this paper proposes a fusion algorithm com-
bining the advantages of the two optimization algorithms.
The flow chart of the algorithm is shown in Fig. 9.

As shown in Fig. 9, the static global path is first ob-
tained by optimizing the A* algorithm, and the key turn-
ing points of the global path are extracted. Then, the key
turning points other than the starting point are set as the
local target points of the DWA algorithm in turn, and real-
time local planning is performed until the target point is
reached.

In order to make the local path planned by the DWA al-
gorithm closer to the global path, the cost function of the
A* algorithm is added to the predicted trajectory evalu-
ation function as the global path evaluation sub-function.

Fig. 9. The flow chart of the fusion algorithm.

The evaluation function of the fusion algorithm can be cal-
culated by

Eval′(v,ω) = αH ′(v,ω)+βS′(v,ω)+ γD′(v,ω)

+ηG′(v,ω),

G′(v,ω) = F(n) = G(n)+H(n)+aSn,

(21)

where η is the weight of global path evaluation, the value
of η is less than α and γ , and greater than β . The value
of G(v,ω) is smaller, the score is higher. It should be nor-
malized using II). After normalizing each evaluation sub-
function, it is brought into formula (20) to calculate a new
evaluation sub-function.
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5. SIMULATION AND EXPERIMENTAL
ANALYSIS

5.1. The comparison experiment of different fusion
algorithm

In order to verify the feasibility, applicability and effec-
tiveness of the fusion algorithm proposed in this paper,
simulation comparison experiments are conducted for the
fused A* and DWA algorithms (A*-DWA) proposed in
[15], the fused ant colony and artificial potential field al-
gorithms (AC-APF) proposed in [20] and the fusion al-
gorithm proposed in this paper, respectively. The experi-
mental environment is a 64-bit Win 11 operating system
running with 16GB of memory, the simulation platform is
Python 3.7. The grid map size is 20×20, and the grid unit
length is 0.2 m. A dynamic obstacle is randomly added
in the simulation environment to verify the dynamic ob-
stacle avoidance performance of the algorithm. To ensure

the fairness of the simulation experiments, the parameters
of the mobile robot, such as the maximum linear velocity,
maximum angular velocity, maximum linear acceleration,
maximum angular acceleration, linear velocity resolution,
angular velocity resolution, time resolution, and predic-
tion period, were compared with those in [15], which were
1 m/s, 20◦/s, 0.2 m/s2, 50◦/s2, 0.01 m/s2, 1◦/s, 0.1 s, and
3 s. The starting point and end point of the path planning
of each algorithm are also the same. In the simulation ex-
periment, the map resolution (b) is set to 32, the safety
distance (L) is set to 0.2, and the dimension of the safety
distance matrix (dn) calculated according to formula (7)
is 11. The initial weight of each evaluation sub-function
is set as follows: α = 0.3, β = 0.1, γ = 0.4, η = 0.2. The
simulation results of the three algorithms are shown in Fig.
10.

As shown in Fig. 10, the red squares are used to sim-
ulate dynamic obstacles. As shown in Fig. 10(a), the im-

(a) (b)

(c) (d)

Fig. 10. The simulation results of different fusion algorithms. (a) The path planning of improved A* algorithm. (b) The
path planning of fusion method in this paper. (c) The path planning of A*-DWA. (d) The path planning of AC-
PAF.



A Real-time Path Planning Algorithm for Mobile Robots Based on Safety Distance Matrix and Adaptive Weight ... 1395

proved A* algorithm cannot avoid dynamic obstacles. As
shown in Fig. 10(b), the fusion algorithm in this paper can
reach the end point from the starting point on the global
path planned by the improved A* algorithm. The three fu-
sion algorithms can reach the end point from the starting
point in complex environments, and can avoid dynamic
obstacles during the movement. Although the above three
fusion algorithms can complete dynamic path planning,
comparing Figs. 10(b) and 10(c), it can be seen that the
path planned by A*-DWA is relatively close to the ob-
stacle, and the path safety is low. When the robot control
accuracy is not high or the environment modeling is inac-
curate, the robot can easily collide with the environment.
Because the fusion algorithm proposed in this paper adds
the safety distance matrix to the A* algorithm, the planned
path is far away from the obstacle, and the safety of the
path is high. In addition, the path is relatively smooth com-
pared with the improved A* algorithm. The path planned
by AC-APF in Fig. 10(d) has redundant path, which is not
the optimal path from the starting point to the target point.

In order to further verify the effect of the fusion algo-
rithm, the above three fusion algorithms are quantitatively
analyzed with the path length, path search time, and the
distance from the path to the nearest obstacle as perfor-
mance indicators. The results are shown in Table 3.

As shown in Table 3, compared with A*-DWA, the

Table 3. Comparison result of A*-DWA, AC-APF, and the
fusion algorithm of this paper in Fig. 10.

The path
length (m)

The distance to
the nearest

obstacle (m)

Search time
(s)

A*-DWA 5.26 0.02 3.16
AC-APF 6.53 0.05 3.49

This paper 4.95 0.07 3.05

Table 4. Comparison result of A*-DWA, AC-APF, and the
fusion algorithm of this paper in scenario 3 and
scenario 4.

Scenarios Algorithm The path
length (m) DNO (m) Search time

(s)

Scenario 3

A*-DWA 10.35 0.04 5.83
AC-APF 9.97 0.01 5.26

This paper 9.46 0.08 4.57

Scenario 4

A*-DWA 15.37 0 7.74
AC-APF 14.69 0 6.81

This paper 12.13 0.09 6.25

length of the path planned by the fusion algorithm in this
paper is reduced by 0.31 m, the minimum distance from
the path to the obstacle is increased by 0.05 m, and the
search time is reduced by 0.11 s. The reason is that after
adding the safety distance matrix to the A* algorithm, the
algorithm can sense obstacles around the robot in advance,
which improves the path safety and reduces the search
time. In addition, after adopting the adaptive weight ad-
justment strategy, the robot will adjust the weight of the
heading angle evaluation sub-function and the obstacle
evaluation sub-function in real time according to the posi-
tional relationship between itself and the surrounding ob-
stacles, which reduce the path length. The fusion algo-
rithm in this paper is ahead of the AC-PAF in the com-
parison of each index, which further verifies the superior-
ity. We also simulated the above three fusion algorithms
in grid map with the size of 30×30 and 40×40. The rest
of the parameters are the same as above. The results are
shown in Figs. 11-12 and Table 4.

As shown in Figs. 11-12 and Table 4, three algo-
rithms can achieve dynamic obstacle avoidance. The per-
formance metrics of the fusion algorithm in this paper are
better than the other two algorithms.

(a) (b) (c)

Fig. 11. The simulation results of scenario 3. (a) The path planning of A*-DWA. (b) The path planning of AC-APF. (c)
The path planning of fusion algorithm in this paper.
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(a) (b) (c)

Fig. 12. The simulation results of scenario 4. (a) The path planning of A*-DWA. (b) The path planning of AC-APF. (c)
The path planning of fusion algorithm in this paper.

5.2. Experimental verification of mobile robot based
on ROS

The mobile robot is equipped with MPU6050 inertial sen-
sor, lidar, Jetson NX arithmetic unit, and other equipment.
The MPU6050 is used to obtain the attitude information
of the mobile robot, the lidar is used to obtain the external
environment information, and the Jetson NX computing
unit runs the ROS operating system. The experimental pa-
rameters of the robot are: the maximum linear velocity is
0.6 m/s, the maximum angular velocity is 0.3 rad/s, the
number of linear velocity samples is 10, the number of
angular velocity samples is 20, and the sampling period is
0.2 s.

In the experiment 1, no dynamic obstacles were added.
The result of experimental 1 is shown in Fig. 13.

As shown in Fig. 13(a), 1-5 represent static known ob-
stacles. As shown in Fig. 13(b), 1-5 represent the map out-
lines of static known obstacles in Fig. 13(a). The mobile
robot can move from the starting point to the end point.

The path is farther away from the obstacle. It should be
noted that the obstacle was not expanded in this experi-
ment. After adding the safety distance matrix to the A*
algorithm, the safety of the path is guaranteed from the al-
gorithm itself. The method proposed in this paper reduces
the requirements for the accuracy of the environment map,
and provides a new way for the safety of robot operation.

In order to verify the dynamic obstacle avoidance abil-
ity of the fusion algorithm, we added a dynamic obstacle
to the experimental environment 1. The result is shown in
Fig. 14.

As shown in Fig. 14(b), the robot can also run safely
from the starting point to the end point after adding the
dynamic obstacles. Dynamic obstacles in the experiments
are non-mapped obstacles. In addition, it can be seen from
Fig. 14(b) that the path planned by the fusion algorithm in
this paper has no redundant path, which verifies the effec-
tiveness of the adaptive weight adjustment strategy.

We also did experiment 3 and experiment 4. The results

(a) (b)

Fig. 13. The results of experimental 1. (a) Experimental environment 1. (b) The path trajectory of experimental 1.
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(a) (b)

Fig. 14. The results of experimental 2. (a) Experimental environment 2. (b) The path trajectory of experimental 2.

(a) (b)

Fig. 15. The results of experimental 3. (a) Experimental environment 3. (b) The path trajectory of experimental 3.

(a) (b)

Fig. 16. The results of experimental 4. (a) Experimental environment 4. (b) The path trajectory of experimental 4.

are shown in Figs. 15 and 16.

As shown in Fig. 15(a), there are no dynamic obstacles
in experiment 3. As shown in Fig. 15(b), the robot can
move safely from the starting point to the end point.

As shown in Fig. 16(a), two dynamic obstacles have

been added to environment 3. As shown in Fig. 16(b),
the robot will automatically avoid the obstacles and move
safely from the starting point to the end point.
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6. CONCLUSION

Aiming at the problems that the traditional A* algo-
rithm planned a path with low security, and the DWA
algorithm planned a path with redundant length, this pa-
per proposed a path planning algorithm for mobile robots
based on a safety distance matrix and an adaptive weight
adjustment strategy. By adding the safety distance ma-
trix and the matching heuristic function, the A* algorithm
will plan a global path with higher security. The adaptive
weight adjustment strategy is introduced into the DWA al-
gorithm, and the robot adjusts the weights of the head-
ing angle evaluation sub-function and the distance evalu-
ation sub-function in real time according to the distance
between itself and the obstacle. A new global evaluation
function is designed to fuse the above two improved algo-
rithms. In the fusion algorithm, the key fold nodes of the
improved A* algorithm are set as the local target points
of the DWA algorithm in turn, so that the path planned by
the DWA algorithm is closer to the global path. The sim-
ulation and experimental results verify that the proposed
fusion algorithm in this paper can safely and efficiently
complete the path planning task in the actual environment.
In the future, the path planning of multi-mobile robots will
be studied.

CONFLICT OF INTEREST

The authors declare that there is no competing financial
interest or personal relationship that could have appeared
to influence the work reported in this paper.

REFERENCES

[1] W. Youn, H. Ko, H. Choi, I. Choi, J. H. Baek, and H.
Myung, “Collision-free autonomous navigation of a small
UAV using low-cost sensors in GPS-denied environments,”
International Journal of Control, vol. 19, no. 2, pp. 953-
968, 2021.

[2] S. O. Park, M. C. Lee, and J. Kim, “Trajectory planning
with collision avoidance for redundant robots using Jaco-
bian and artificial potential field-based real-time inverse
kinematics,” International Journal of Control, Automation,
and System, vol. 18, no. 8, pp. 2095-2107, 2020.

[3] R. Mao, H. L. Gao, and L. Guo, “Optimal motion plan-
ning for differential drive mobile robots based on multiple-
interval Chebyshev pseudospectral methods,” Robotica,
vol. 39, no. 3, pp. 391-410, 2021.

[4] J. Song, “Automatic guided vehicle global path planning
considering multi-objective optimization and speed con-
trol,” Sensors and Materials, vol. 33, no. 6, pp. 1999-2011,
2021.

[5] T. S. P. H. Pazhohe, R. Akram, and J. S. Mahdi, “Enhanced
path planning for automated nanites drug delivery based
on reinforcement learning and polymorphic improved ant
colony optimization,” Journal of supercomputing, vol. 77,
no. 7, pp. 6714-6733, 2021.

[6] A. S. Nepomniaschaya and M. A. Dvoskina, “A simple im-
plementation of Dijkstra’s shortest path algorithm on as-
sociative parallel processors,” Fundamenta Informaticae,,
vol. 43, no. 1, pp. 227-243, 2000.

[7] Y. N. Ma, Y. J. Gong, C. F. Xiao, Y. Gao, and J. Zhang,
“Path planning for autonomous underwater vehicles: An
ant colony algorithm incorporating alarm pheromone,”
IEEE Transactions on Vehicular Technology, vol. 68, no.
1, pp. 141-154, 2019.

[8] D. Lin, B. Shen, Y. R. Liu, F. E. Alassdi, and A. Alsaedi,
“Genetic algorithm-based compliant robot path planning:
an improved Bi-RRT-based initialization method,” Assem-
bly Automation, vol. 37, no. 3, pp. 261-270, 2017.

[9] Q. H. Liu, L. J. Zhao, Z. B. Tan, and W. Chen, “Global path
planning for autonomous vehicles in off-road environment
via an A-star algorithm,” International Journal of Vehicle
Autonomous Systems, vol. 13, no. 4, pp. 330-340, 2017.

[10] Y. P. Lu, X. Yao, and Y. Z. Luo, “Path planning for rolling
locomotion of polyhedral tensegrity robots based on Di-
jkstra algorithm,” Journal of the International Association
for Shell and Spatial Structures, vol. 60, no. 4, pp. 273-286,
2019.

[11] Y. F. Wu, X. X. Zhang, and J. Q. Wu, “Using cellular ant
colony algorithm for path-planning of robots,” Applied Me-
chanics & Materials, vol. 182, no. 183, pp. 1776-1780,
2012.

[12] J. S. Liu, J. H. Liu, Z. J. Zhang, J. B. Xu, and H. L. Lin,
“Anytime RRT based cable automatic routing under three-
dimensional environment,” Journal of Mechanical Engi-
neer, vol. 52, no. 13, pp. 156-165, 2016.

[13] Y. Xin, H. W. Liang, M. B. Du, T. Mei, Z. L. Wang, and R.
M. Jiang, “An improved A* algorithm for searching infinite
neighbourhoods,” Robot, vol. 36, no. 5, pp. 627-633, 2014.

[14] J. Chen, L. Xu, J. Chen, and Q. Liu, “Path planning based
on improved A* and dynamic window approach for mobile
robot,” Computer Integrated Manufacturing Systems, vol.
28, no. 6, pp. 1650-1658, 2022.

[15] C. Q. Chen, X. Y. Hao, J. S. Li, Z. J. Zhang, and G. P.
Sun, “Global dynamic path planning based on fusion of
improved A* algorithm and dynamic window approach,”
Journal of XI’AN JIAOTONG UNIVERSITY, vol. 51, no.
11, pp. 137-143, 2017.

[16] H. M. Zhang, M. L. Li, and J. Yang, “Safe path planning of
mobile robot based on improved A* algorithm,” Computer
Simulation, vol. 35, no. 4, pp. 324-329, 2018.

[17] X. Cheng and Y. Qi, “Indoor indicator path planning algo-
rithm based on grid method,” Journal of Chinese Inertial
Technology, vol. 26, no. 2, pp. 236-240, 2018.

[18] S. Y. Duan, Q. F. Wang, X. Han, and G. R. Liu, “Im-
proved A-star algorithm for safety insured optimal path
with smoothed corner turns,” Journal of Mechanical En-
gineering, vol. 56, no. 18, pp. 205-215, 2020.

[19] X. Zhao, Z. Wang, C. K. Huang, and Y. W. Zhao, “Mobile
robot path planning based on an improved A* algorithm,”
Robot, vol. 40, no. 6, pp. 904-910, 2018.

https://doi.org/10.1007/s12555-019-0797-7
https://doi.org/10.1007/s12555-019-0797-7
https://doi.org/10.1007/s12555-019-0797-7
https://doi.org/10.1007/s12555-019-0797-7
https://doi.org/10.1007/s12555-019-0797-7
https://doi.org/10.1007/s12555-019-0076-7
https://doi.org/10.1007/s12555-019-0076-7
https://doi.org/10.1007/s12555-019-0076-7
https://doi.org/10.1007/s12555-019-0076-7
https://doi.org/10.1007/s12555-019-0076-7
https://doi.org/10.1017/S0263574720000430
https://doi.org/10.1017/S0263574720000430
https://doi.org/10.1017/S0263574720000430
https://doi.org/10.1017/S0263574720000430
https://doi.org/10.18494/SAM.2021.3280
https://doi.org/10.18494/SAM.2021.3280
https://doi.org/10.18494/SAM.2021.3280
https://doi.org/10.18494/SAM.2021.3280
https://doi.org/10.1007/s11227-020-03559-6
https://doi.org/10.1007/s11227-020-03559-6
https://doi.org/10.1007/s11227-020-03559-6
https://doi.org/10.1007/s11227-020-03559-6
https://doi.org/10.1007/s11227-020-03559-6
https://doi.org/10.3233/FI-2000-43123412
https://doi.org/10.3233/FI-2000-43123412
https://doi.org/10.3233/FI-2000-43123412
https://doi.org/10.3233/FI-2000-43123412
https://doi.org/10.1109/TVT.2018.2882130
https://doi.org/10.1109/TVT.2018.2882130
https://doi.org/10.1109/TVT.2018.2882130
https://doi.org/10.1109/TVT.2018.2882130
https://doi.org/10.1109/TVT.2018.2882130
https://doi.org/10.1108/AA-12-2016-173
https://doi.org/10.1108/AA-12-2016-173
https://doi.org/10.1108/AA-12-2016-173
https://doi.org/10.1108/AA-12-2016-173
https://doi.org/10.1504/IJVAS.2017.087148
https://doi.org/10.1504/IJVAS.2017.087148
https://doi.org/10.1504/IJVAS.2017.087148
https://doi.org/10.1504/IJVAS.2017.087148
https://doi.org/10.20898/j.iass.2019.202.037
https://doi.org/10.20898/j.iass.2019.202.037
https://doi.org/10.20898/j.iass.2019.202.037
https://doi.org/10.20898/j.iass.2019.202.037
https://doi.org/10.20898/j.iass.2019.202.037
https://doi.org/10.4028/www.scientific.net/AMM.182-183.1776
https://doi.org/10.4028/www.scientific.net/AMM.182-183.1776
https://doi.org/10.4028/www.scientific.net/AMM.182-183.1776
https://doi.org/10.4028/www.scientific.net/AMM.182-183.1776
https://doi.org/10.3901/JME.2016.13.156
https://doi.org/10.3901/JME.2016.13.156
https://doi.org/10.3901/JME.2016.13.156
https://doi.org/10.3901/JME.2016.13.156
https://doi.org/10.13973/j.cnki.robot.2014.0627
https://doi.org/10.13973/j.cnki.robot.2014.0627
https://doi.org/10.13973/j.cnki.robot.2014.0627
https://doi.org/10.7652/xjtuxb201711019
https://doi.org/10.7652/xjtuxb201711019
https://doi.org/10.7652/xjtuxb201711019
https://doi.org/10.7652/xjtuxb201711019
https://doi.org/10.7652/xjtuxb201711019
https://doi.org/10.3390/a11040044
https://doi.org/10.3390/a11040044
https://doi.org/10.3390/a11040044
https://doi.org/10.3901/JME.2020.18.205
https://doi.org/10.3901/JME.2020.18.205
https://doi.org/10.3901/JME.2020.18.205
https://doi.org/10.3901/JME.2020.18.205


A Real-time Path Planning Algorithm for Mobile Robots Based on Safety Distance Matrix and Adaptive Weight ... 1399

[20] X. L. Ma and H. Mei, “Mobile robot global path planning
based on improved ant colony system algorithm with po-
tential field,” JOURNAL OF MECHANICAL ENGINEER-
ING, vol. 57, no. 1, pp. 19-27, 2021.

[21] D. C. Oh and Y. U. Jo, “Classification of hand gestures
based on multi-channel EMG by scale average wavelet
transform and convolutional neural network,” International
Journal of Control, Automation, and System, vol. 19, no. 3,
pp. 1443-1450, 2021.

[22] J. Kim and G. H. Yang, “Improvement of dynamic window
approach using reinforcement learning in dynamic envi-
ronments,” International Journal of Control, Automation,
and System, vol. 20, no. 9, pp. 2983-2992, 2022.

[23] J. Liu, J. Yang, H. Liu, P. Geng, and M. Mao, “Robot global
path planning based on ant colony optimization with artifi-
cial field,” Transactions of the Chinese Society of Agricul-
tural Machinery, vol. 46, no. 9, pp. 18-27, 2015.

[24] C. G. Li, X. B. Jiang, W. H. Wang, Q. Cheng, and Y. J.
Shen, “A simplified car-following model based on the arti-
ficial potential field,” Procedia Engineering, vol. 137, no.
7, pp. 13-20, 2016.

[25] G. Wang, X. P. Liu, Y. L. Zhao, and S. Han, “Neural
network-based adaptive motion control for a mobile robot
with unknown longitudinal slipping,” Chinese Journal of
Mechanical Engineering, vol. 32, no. 1, pp. 1-9, 2019.

[26] C. L. Lao, P. Li, and Y. Feng, “Path planning of greenhouse
robot based on fusion of improved A* algorithm and dy-
namic window approach,” Transaction of the Chinese So-
ciety for Agricultural Machinery, vol. 52, no. 1, pp. 14-22,
2021.

[27] J. J. Liu, L. Q. Xue, H. J. Zhang, and Z. P. Liu, “Robot
dynamic path planning based on improved A* and DWA
algorithm,” Computer Engineering and Applications, vol.
57, no. 15, pp. 73-81, 2021.

[28] S. Iwamura, Y. Mizukan, T. Endo, and F. Matsuno, “Cable-
path optimization method for industrial robot arms,”
Robotics and Computer-Integrated Manufacturing, vol. 73,
no. 5, pp. 1-13, 2022.

[29] L. Badilla, D. O. Carrasco, V. F. Sirvent, and H. Villavi-
cencio, “Topological stability for fuzzy expansive maps,”
Fuzzy sets and systems, vol. 425, no. 30, pp. 34-47, 2021.

[30] E. Aguirre and A. Gonzalez, “Integrating fuzzy topological
maps and fuzzy geometric maps for behavior-based robot,”
International Journal of Intelligent Systems, vol. 17, no. 3,
pp. 333-368, 2012.

[31] Z. L. Gong, Y. H. Gu, T. T. Zhu, and B. Ren, “A method
for setting costmap adaptive inflation radius based on robot
operating system,” Science Technology and Engineering,
vol. 21, no. 9, pp. 3662-3668, 2021.

[32] J. W. Zhan and Y. Q. Huang, “Path planning of robot comb-
ing safety A* algorithm and dynamic window approach,”
Computer Engineering, vol. 48, no. 9, pp. 105-112, 2022.

[33] J. Chen, Z. Y. Zhen, M. Y. Tang, and J. R. Tan, “Robust
optimization of uncertain structures based on normalized
violation degree of interval constraint,” Computer & Struc-
ture, vol. 182, no. 6, pp. 41-54, 2017.

Xinpeng Zhai received his B.S. degree
from School of Electrical Engineering and
Automation, Qilu University of Technol-
ogy, in 2017, and an M.S. degree from In-
stitute of Automation, Shandong Academy
of Sciences, in 2020. He is currently pur-
suing a Ph.D. degree in College of Electri-
cal and Power Engineering, Taiyuan Uni-
versity of Technology. His current research

interests include image processing and intelligent robot control.

Jianyan Tian received her B.S. and M.S.
degrees in control science and engineering
from College of Electrical and Power En-
gineering, Taiyuan University of Technol-
ogy, in 1988 and 1993, respectively. She
received a Ph.D. degree in system engi-
neering from Nanjing University of Aero-
nautics and Astronautics, in 2008. She is
a Professor at College of Electrical and

Power Engineering, Taiyuan University of Technology. Her re-
search interests include modeling of complex systems, intelli-
gent control systems, and intelligent robot.

Jifu Li received his B.S. degree in automa-
tion from Beijing Institute of Technology,
in 2017, and an M.S. degree in electrical
engineering from Texas A&M Univrsity,
College Station, in 2019. He is currently
working toward a Ph.D. degree in electri-
cal engineering at Taiyuan University of
Technology. His current research interests
include robotics, machine vision, and GIS

partial discharge detection.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

https://doi.org/10.1007/s12555-019-0802-1
https://doi.org/10.1007/s12555-019-0802-1
https://doi.org/10.1007/s12555-019-0802-1
https://doi.org/10.1007/s12555-019-0802-1
https://doi.org/10.1007/s12555-019-0802-1
https://doi.org/10.1007/s12555-021-0462-9
https://doi.org/10.1007/s12555-021-0462-9
https://doi.org/10.1007/s12555-021-0462-9
https://doi.org/10.1007/s12555-021-0462-9
https://doi.org/10.1016/j.proeng.2016.01.229
https://doi.org/10.1016/j.proeng.2016.01.229
https://doi.org/10.1016/j.proeng.2016.01.229
https://doi.org/10.1016/j.proeng.2016.01.229
https://doi.org/10.1186/s10033-019-0373-3
https://doi.org/10.1186/s10033-019-0373-3
https://doi.org/10.1186/s10033-019-0373-3
https://doi.org/10.1186/s10033-019-0373-3
https://doi.org/10.1016/j.rcim.2021.102245
https://doi.org/10.1016/j.rcim.2021.102245
https://doi.org/10.1016/j.rcim.2021.102245
https://doi.org/10.1016/j.rcim.2021.102245
https://doi.org/10.1016/j.fss.2020.11.013
https://doi.org/10.1016/j.fss.2020.11.013
https://doi.org/10.1016/j.fss.2020.11.013
https://doi.org/10.1002/int.10025
https://doi.org/10.1002/int.10025
https://doi.org/10.1002/int.10025
https://doi.org/10.1002/int.10025
https://doi.org/10.1016/j.compstruc.2016.10.010
https://doi.org/10.1016/j.compstruc.2016.10.010
https://doi.org/10.1016/j.compstruc.2016.10.010
https://doi.org/10.1016/j.compstruc.2016.10.010

