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Iterative Algorithm for Feedback Nonlinear Systems by Using the Maxi-
mum Likelihood Principle
Huafeng Xia ■

Abstract: This paper aims to find a maximum likelihood least squares-based iterative algorithm to solve the identifi-
cation issues of closed-loop input nonlinear equation-error systems. By adopting the key term separation technique,
the parameters of the forward channel are identified separately from the parameters of the feedback channel to
address the cross-product terms. The hierarchical identification principle is introduced to decompose the original
system into two subsystems for reduced computational complexity. The iterative estimation theory and the max-
imum likelihood principle are applied to design a new least-squares algorithm with high estimation accuracy by
taking full use of all the measured input-output data at each iterative computation. Compared with the recursive
least-squares (RELS) method. The simulation results verify theoretical findings, and the proposed algorithm can
generate more accurate parameter estimates than the RELS algorithm.

Keywords: Feedback nonlinear system, iterative identification theory, key term separation technique, least-squares,
maximum likelihood.

1. INTRODUCTION

Parameter estimation is very important for system anal-
ysis and synthesis [1-4]. Some identification methods are
developed for open-loop systems [5-8]. However, in in-
dustrial processes, system identification is best carried out
in closed-loop conditions for safety and system stabil-
ity [9]. Because the feedback channel causes noise cou-
pling to the input signal under closed-loop, so it is desired
to separate the forward channel and the feedback channel
for identification. In addition, different inputs may lead
to the same output results because of the feedback chan-
nel. So the closed-loop identification is more difficult than
the open-loop identification. In this regard, many closed-
loop identification methods have been developed such as
the subspace identification method [10,11], the recursive
identification methods [12], and the iterative identification
methods [13-15].

Most industrial processes are nonlinear systems with
complex structures in nature [16,17]. Hammerstein model
has become a widely used block-oriented model own-
ing to its computational efficiency and easy identifica-
tion [18]. Many methods have been investigated, such as
the blind identification methods [19], the recursive iden-
tification methods and the iterative identification meth-

ods [20]. For the fractional order Hammerstein nonlin-
ear systems, a multiple innovation Levenberg-Marquardt
algorithm hybrid identification method was proposed to
estimate the linear block parameters and fractional order,
and experiments were provided to verify the effectiveness
of the proposed method [21].

Based on the decomposition-coordination principle, the
hierarchical identification principle can be used to solve
the identification problems of large-scale system identifi-
cation with high dimensions and many variables [22]. The
key is to decompose the system into several fictitious sub-
systems and identify the parameters of their correspond-
ing parts respectively [23]. The hierarchical identification
method includes model decomposition, subsystem identi-
fication and coordination of the related items [18]. Dur-
ing identification, the unknown parameters and the related
terms are replaced with their previous estimates until sat-
isfactory parameter estimates are obtained [24].

Taking the output of the nonlinear block as the key
term can solve the bilinear parameter identification prob-
lem [18]. Then the model output can be expressed as a lin-
ear combination containing all unknown parameters with-
out redundant parameters [25,26]. Therefore, the compu-
tational cost is reduced, and the unknown key terms in the
information vector can be replaced with the estimates of
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the corresponding auxiliary model [27]. Because of good
statistical properties, the maximum likelihood methods
are extensively used [28,29].

This paper aims to explore a new least-squares optimal
estimation algorithm for the concerned feedback nonlin-
ear systems. The basic idea is to transform the nonlinear
system into two subsystems by using the hierarchical iden-
tification principle, to apply the key term separation tech-
nique for solving the identification difficulty of the associ-
ated terms, to identify the subsystem parameters interac-
tively. The main contributions are as follows:

1) The proposed method identifies the parameters of the
forward channel and the parameters of the feedback
channel interactively.

2) The proposed method has high estimation accuracy
and reduced computational burden.

This paper is structured as follows: Section 2 describes
the closed-loop nonlinear equation-error systems, gives
the sub-identification models after applying the hierarchi-
cal identification principle, and forms the identification
problem. Section 3 derives a maximum likelihood least
squares-based iterative algorithm. Section 4 gives numer-
ical examples to demonstrate the effectiveness of the pro-
posed methods. Finally, the conclusion is offered in Sec-
tion 5.

2. PROBLEM STATEMENT

Consider the following closed-loop input nonlinear
equation-error system

R(q)s(t) = B(q)ū(t)+G(q)v(t),

ū(t) = f (u(t))

= c1 f1(u(t))+ c2 f2(u(t))+ · · ·+ cγ fγ(u(t))

= fff (u(t))ccc,

with the system output s(t), the reference input r(t), the
control input u(t) = r(t)−s(t), the output of the nonlinear
block ū(t), the unknown coefficients ci (i = 1, 2, · · · , γ),
the known basis functions fi (i = 1, 2, · · · , γ), the noise
v(t), and measurable polynomials R(q), B(q) and G(q),
defined as

R(q) := 1+ r1q−1 + r2q−2 + · · ·+ rnr q
−nr ,

B(q) := b0 +b1q−1 +b2q−2 + · · ·+bnb q−nb ,

G(q) := 1+g1q−1 +g2q−2 + · · ·+gng q−ng .

Assume that the degrees nr, nb and ng are known, and
s(t) = 0, r(t) = 0, v(t) = 0 for t ⩽ 0. Let n = nr +nb +ng.
Introduce the parameter vectors rrr, bbb, ggg, ϑ , ccc and θ

rrr := [r1, r2, · · · , rnr ]
T ∈ Rnr ,

bbb := [b1, b2, · · · , bnb ]
T ∈ Rnb ,

ggg := [g1, g2, · · · , gng ]
T ∈ Rng ,

ϑ := [rrrT, bbbT, gggT]T ∈ Rn,

ccc := [c1, c2, · · · , cγ ]
T ∈ Rγ ,

θ := [rrrT, bbbT, gggT, cccT]T ∈ Rn+γ ,

with the information vectors ϕ(t) and fff (t)

ϕ(t) := [−s(t −1), · · · , −s(t −nr), ū(t −1), · · · ,
ū(t −nb), v(t −1), · · · , v(t −ng)]

T,

fff (t) := [ f1(u(t)), f2(u(t)), · · · , fγ(u(t))]T ∈ Rγ .

From the above derivation, we have

s(t) =−
nr

∑
l=1

rlq−ls(t)+
nb

∑
l=0

blq−l ū(t)

+
ng

∑
l=1

glq−lv(t)+ v(t), (1)

or

v(t)

= G−1(q)

[
nr

∑
l=0

rlq−ls(t)−
nb

∑
l=0

γ

∑
i=1

ciblq−l fi(u(t))

]
.

(2)

Clearly, there contain the products of the parameters bl of
the linear block and ci of the nonlinear block. To identify
the model, we assume that b0 = 1 and choose ū(t) as a
separated key term. Then (1) becomes

s(t) =−
nr

∑
l=1

rlq−ls(t)+
nb

∑
l=1

blq−l ū(t)+
γ

∑
i=1

ci fi(u(t))

+
ng

∑
l=1

glq−lv(t)+ v(t).

The measured output s(t) in (1) can be represented as

s(t) = ϕ
T(t)ϑ + fff T(t)ccc+ v(t). (3)

Here, by using the hierarchical identification princi-
ple [30-33], it gives rise to the following two fictitious
sub-identification models:

S1 : s1(t) := s(t)− fff T(t)ccc = ϕ
T(t)ϑ + v(t), (4)

S2 : s2(t) := s(t)−ϕ
T(t)ϑ = fff T(t)ccc+ v(t). (5)

The parameter vector ϑ of the linear block and the pa-
rameter vector ccc of the nonlinear block are in the above
subsystem models respectively. They are the interrelated
items. The proposed parameter estimation algorithms in
this paper are based on these two identification models
in (4) and (5). Many identification methods are derived
based on the identification models of the systems [34-37]
and these methods can be used to estimate the parameters
of other linear systems and nonlinear systems [38-41] and
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can be applied to other fields [42-46] such as chemical
process control systems.

Remark 1: The key term separation technique is used
to separate the parameters of the linear block from the
parameters of the nonlinear block for reducing computa-
tional cost.

Remark 2: The hierarchical identification principle is
adopted to decompose the original system into two sub-
identification models for reducing computational com-
plexity.

3. THE MAXIMUM LIKELIHOOD LEAST
SQUARES-BASED ITERATIVE ALGORITHM

This section derives a maximum likelihood least
squares-based iterative (ML-LSI) algorithm to obtain the
estimates of ϑ and ccc in (3). The hierarchical identification
principle is utilized to estimate the associated items of ϑ

and ccc interactively.
Observing (4) and according to the maximum likeli-

hood principle, the maximum likelihood estimation of ϑ

can be obtained by minimizing the following cost function

J1(ϑ)

∣∣∣∣
ϑ̂ML

=
1
2

t

∑
k=1

v2(k)
∣∣∣∣
ϑ̂ML

.

Let k = 1, 2, 3, · · · be an iterative variable, and ϑ̂ k be
the iterative estimate of ϑ . Thus the estimates of R̂k(t,q),
B̂k(t,q) and Ĝk(t,q) can be recast as

R̂k(t,q) = 1+ r̂1,k(t)q−1 + r̂2,k(t)q−2 + · · ·
+ r̂nr ,k(t)q

−nr ,

B̂k(t,q) = 1+ b̂1,k(t)q−1 + b̂2,k(t)q−2 + · · ·
+ b̂nb,k(t)q

−nb ,

Ĝk(t,q) = 1+ ĝ1,k(t)q−1 + ĝ2,k(t)q−2 + · · ·
+ ĝng,k(t)q

−ng ,

ˆ̄uk(t) = ĉ1,k(t) f1(u(t))+ ĉ2,k(t) f2(u(t))+ · · ·
+ ĉγ,k(t) fγ(u(t)).

Let ϑ̂ k(t), ĉcck(t) and ϕ̂k(t) be the estimates of ϑ , ccc(t) and
ϕ(t) at iteration k, respectively, which can be represented
as

ϑ̂ k(t) := [r̂rrT
k(t),b̂bb

T

k(t),ĝgg
T
k(t)]

T

= [r̂1,k(t), · · · , r̂nr ,k(t), b̂1,k(t), · · · , b̂nb,k(t),

ĝ1,k(t), · · · , ĝng,k(t)]
T ∈ Rnr+nb+ng ,

ĉcck(t) := [ĉ1,k(t), ĉ2,k(t), · · · , ĉγ,k(t)]T ∈ Rγ ,

ϕ̂k(t) := [−s(t −1), · · · ,−s(t −nr), ˆ̄uk(t −1), · · · ,
ˆ̄uk(t −nb), v̂k(t −1), · · · , v̂k(t −ng)]

T.

Observing (3), v̂k(t) can be computed by replacing ϑ , ccc(t)
and ϕ(t) with their corresponding estimates ϑ̂ k(t), ĉcck(t)
and ϕ̂k(t), that is

v̂k(t) = s(t)− ϕ̂
T
k(t)ϑ̂ k(t)− fff T(t)ĉcck(t).

The partial derivatives of v(t) in (2) relative to rl , bl and gl

at the point ϑ̂ k−1(t) can be computed by

∂v(t)
∂ rl

∣∣∣∣
ϑ̂k−1(t)

= [Ĝk−1(t,q)]−1q−ls(t) =: q−l ŝf,k(t),

∂v(t)
∂bl

∣∣∣∣
ϑ̂k−1(t)

=−[Ĝk−1(t,q)]−1q−l ˆ̄u(t) =: −q−l ˆ̄uf,k(t),

∂v(t)
∂gl

∣∣∣∣
ϑ̂k−1(t)

=−[Ĝk−1(t,q)]−1q−l v̂(t) =: −q−l v̂f,k(t).

Define the filtered information vector

ϕ f(t) :=−∂v(t)
∂ϑ

∣∣∣∣
ϑ̂k−1(t)

=−


∂v(t)
∂rrrl

∂v(t)
∂bbbl

∂v(t)
∂gggl


ϑ̂k−1(t)

.

Then ϕ̂ f,k(t) can be presented as

ϕ̂ f,k(t) = [−ŝf,k(t −1), · · · , −ŝf,k(t −nr),

ˆ̄uf,k(t −1), · · · , ˆ̄uf,k(t −nb),

v̂f,k(t −1), v̂f,k(t −2), · · · , v̂f,k(t −ng)]
T.

Collect N input and output data, and define

SSS(N) := [s(N),s(N −1), · · · ,s(1)]T ∈ RN ,

VVV (N) := [V (N),V (N −1), · · · ,V (1)]T ∈ RN ,

Φ(N) := [ϕ(N),ϕ(N −1), · · · ,ϕ(1)]T ∈ RN×n,

F (N) := [ fff (N), fff (N −1), · · · , fff (1)]T ∈ RN×γ ,

Φf(N) := [ϕ f(N),ϕ f(N −1), · · · ,ϕ f(1)]
T ∈ RN×n.

Equation (3) becomes

SSS(N) =Φ(N)ϑ +F (N)ccc+VVV (N).

For submodel S1, the cost function can be restated as

J2(ϑ)

∣∣∣∣
ϑ̂ML

=
1
2
∥VVV (N)∥2

ϑ̂ML
.

Minimizing the above cost function J2(ϑ) and letting its
gradient with respect to ϑ at ϑ = ϑ ML be zero yield

∂J2(ϑ)

∂ϑ

∣∣∣∣
ϑ̂ML

=
∂VVV (N)

∂ϑ
VVV (N)

∣∣∣∣
ϑ̂ML

= 0.

Summing up the above, we have

∂J2(ϑ)

∂ϑ

∣∣∣∣
ϑ̂ML

=ΦT
f (N)[SSS(N)−Φ(N)ϑ −F (N)ccc]ϑ̂ML

= 0.

That is

ΦT
f (N)Φ(N)ϑ̂ ML =ΦT

f (N)[SSS(N)−F (N)ccc].
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Provided that Φf(N) and Φ(N) are persistently exciting.
Using the maximum likelihood least-squares estimate of
submodel S1 to update the parameter estimates yields

ϑ̂(t) = [ΦT
f (N)Φ(N)]−1ΦT

f (N)[SSS(N)−F (N)ccc]. (6)

Define the estimates of VVV (N), Φ(N) and Φf(L) at iteration
k as

V̂VV k(N) := [v̂k(N), v̂k(N −1), · · · , v̂k(1)]T ∈ RN ,

Φ̂k(N) := [ϕ̂k(N), ϕ̂k(N −1), · · · , ϕ̂k(1)]
T ∈ RN×n,

Φ̂f,k(N) := [ϕ̂ f,k(N), ϕ̂ f,k(N −1), · · · , ϕ̂ f,k(1)]
T.

Thus, according to the hierarchical identification princi-
ple, (6) can be restated as

ϑ̂ k(t) = [Φ̂T
f,k(N)Φ̂k(N)]−1Φ̂T

f,k(N)

× [SSS(N)−F (N)ĉcck−1(t)].

Observing (5), applying the least-squares iterative method
for the cost function

J(ccc) :=
N

∑
t=1

∥s2(t)− fff T(t)ccc∥2,

the iterative estimate of ĉcck(t) can be acquired. To sum
up, we can obtain a maximum likelihood least squares-
based iterative (ML-LSI) algorithm. The proposed estima-
tion methods in this paper can combine some identifica-
tion algorithms [47-50] to explore parameter estimation
issues of linear and nonlinear stochastic systems [51-56]
and can be applied to other areas [57-63] such as engineer-
ing application systems.

Remark 3: The input and output signals of the closed-
loop systems are usually assumed to satisfy the following
conditions. Firstly, r(t) is a stationary stochastic process.
Secondly, the noise v(t) is statistically uncorrelated with
r(t).

Remark 4: Owning to sufficient use of all the measured
data {r(t), s(t) : t = 0, 1, 2, · · · , N}, the improved param-
eter estimation accuracy can be obtained.

Remark 5: ϑ̂ k(t) and ĉcck(t) are acquired by using the
input and output data with a window of length N. Since
the data window changes with time t, the proposed algo-
rithm can be used to track time-varying parameters, so as
to realize online identification.

4. EXAMPLES

Example 1: Consider the following closed-loop input
nonlinear system

R(q)s(t) = B(q)ū(t)+G(q)v(t),

u(t) = r(t)− s(t),

R(q) = 1+ r1q−1 + r2q−2
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Fig. 1. The RELS parameter estimation errors δ versus t
under σ 2 = 0.102.

= 1+1.72q−1 +1.02q−2,

B(q) = b0 +b1q−1 +b2q−2

= 1+1.05q−1 −0.61q−2,

G(q) = 1+g1q−1 = 1−0.30q−1,

ū(t) = f (u(t)) = 0.15u(t)+0.35u2(t).

The parameter vectors ϑ , ccc and θ can be presented below

ϑ = [r1, r2, b1, b2, g1]
T

= [1.72, 1.02, 1.05, −0.61, −0.30]T,

ccc = [c1, c2]
T = [0.15, 0.35]T,

θ == [1.72, 1.02, 1.05,−0.61,−0.30, 0.15, 0.35]T.

In simulation, the input r(t) is taken as an independent
persistent excitation signal sequence with zero mean and
unit variance, and v(t) is taken as an uncorrelated white
noise sequence with zero mean and variance σ 2.

Applying the RELS algorithm with the data length t =
3000 to estimate θ , the parameter estimates and their er-
rors δ := ∥θ̂(t)−θ∥/∥θ∥ under σ 2 = 0.102 are shown in
Table 1, and their estimation errors versus t are shown in
Fig. 1.

Taking σ 2
1 = 0.102, σ 2

2 = 0.202 and σ 2
3 = 0.302, respec-

tively, applying the proposed ML-LSI algorithm with the
data length t = N = 1000 to estimate the parameters of
this example system, the parameter estimates and their er-
rors δ := ∥θ̂ k(t)−θ∥/∥θ∥ are shown in Table 2, and their
estimation errors versus k are shown in Figs. 2-4.

Example 2: Consider another system

R(q)s(t) = B(q)ū(t)+G(q)v(t),

u(t) = r(t)− s(t),

R(q) = 1+ r1q−1 + r2q−2

= 1+0.96q−1 +0.90q−2,

B(q) = b0 +b1q−1 = 1+0.86q−1,

G(q) = 1+g1q−1 +g2q−2

= 1−0.31q−1 +0.33q−2,
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Table 1. The RELS estimates and errors of θ under σ 2 = 0.102.

t r1 r2 b1 b2 g1 c1 c2 δ (%)

100 1.71238 1.01449 0.71890 -0.09243 -0.08292 0.21172 0.31856 27.43055
200 1.71564 1.01792 0.83031 -0.27219 -0.16998 0.18998 0.30463 17.90317
500 1.71997 1.02000 1.01270 -0.46143 -0.12642 0.16497 0.33052 9.74386
1000 1.72000 1.02000 1.05412 -0.53429 -0.13728 0.15496 0.33317 7.54947
2000 1.72000 1.02000 1.08378 -0.57953 -0.16385 0.15108 0.34013 6.02234
3000 1.72000 1.02000 1.08058 -0.59322 -0.18764 0.15150 0.34178 4.93664

True values 1.72000 1.02000 1.05000 -0.61000 -0.30000 0.15000 0.35000

Table 2. The ML-LSI estimates and errors of θ with different noise variances.

σ 2 k r1 r2 b1 b2 g1 c1 c2 δ (%)

0.102

1 1.72000 1.02000 1.33521 -0.38455 -0.14426 -0.01249 0.00124 23.09478
2 1.72000 1.02000 -2.04282 5.61713 0.38733 0.09261 0.24627 292.47083
5 1.72000 1.02000 1.01175 -0.59790 -0.28584 0.11108 0.24515 5.00824

10 1.72000 1.02000 1.05354 -0.56979 -0.31194 0.12458 0.24410 4.88692
15 1.72000 1.02000 1.04016 -0.57442 -0.30871 0.11448 0.24557 4.88229
20 1.72000 1.02000 1.04685 -0.57017 -0.31060 0.12249 0.24474 4.87107

0.202

1 1.72000 1.02000 1.33867 -0.37695 -0.24568 -0.01323 0.00131 22.49366
2 1.72000 1.02000 -2.17622 5.80846 0.34703 0.09707 0.25838 301.91903
5 1.72000 1.02000 0.91837 -0.55236 -0.27511 0.11780 0.25691 7.36572

10 1.72000 1.02000 0.94802 -0.53172 -0.29374 0.12610 0.25607 6.74362
15 1.72000 1.02000 0.94462 -0.53386 -0.29267 0.12235 0.25645 6.80992
20 1.72000 1.02000 0.94707 -0.53325 -0.29317 0.12403 0.25616 6.75039

0.302

1 1.72000 1.02000 1.34213 -0.36935 -0.27949 -0.01397 0.00138 22.62073
2 1.72000 1.02000 -2.18076 5.63087 0.32187 0.10154 0.27053 295.30948
5 1.72000 1.02000 0.83152 -0.51289 -0.26542 0.12430 0.26877 10.72130

10 1.72000 1.02000 0.85295 -0.49657 -0.27936 0.12975 0.26814 10.18647
15 1.72000 1.02000 0.85216 -0.49759 -0.27896 0.12830 0.26821 10.19924
20 1.72000 1.02000 0.85327 -0.49761 -0.27912 0.12863 0.26807 10.16102

True values 1.72000 1.02000 1.05000 -0.61000 -0.30000 0.15000 0.35000
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Fig. 2. The parameter estimation errors δ versus k with
different noise variances.

ū(t) = f (u(t)) = 0.10sin(u(t))+0.23cos(u(t)2).

The simulation conditions are similar to those of Example
1. Applying the proposed algorithm to estimate this ex-
ample system, the simulation results are shown in Figs. 5
and 6.
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Fig. 3. The ML-LSI estimate ϑ̂ versus k.

From the simulation results of Tables 1-2 and Figs. 1-6,
we can draw the following conclusions.

1) Table 2 illustrate that the parameter estimation errors
through the ML-LSI algorithm are smaller under a
lower noise level.
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Fig. 4. The ML-LSI estimate ĉcc versus k.
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Fig. 5. The ML-LSI estimate ϑ̂ versus k of Example 2.
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ĉ2(t)

            k

P
a

ra
m

e
te

r 
e

s
ti
m

a
te

s

Fig. 6. The ML-LSI estimate ĉcc versus k of Example 2.

2) Fig. 2 witnesses that the ML-LSI algorithm can pro-
duce more accurate estimates after four iterations un-
der a lower noise level.

3) Figs. 3-4 and Figs. 5-6 declare that the ML-LSI pa-
rameter estimates are very close to their true values
with k increasing.

4) Figs. 2-4 and Figs. 5-6 demonstrate that the parame-
ter estimation errors of the ML-LSI method decrease
with the iteration k increases.

5) Tables 1-2 and Figs. 1-2 show that the parameter es-
timates of the ML-LSI algorithm is a little better than
those of the RELS algorithm under σ 2 = 0.102.

5. CONCLUSIONS

This paper presents an ML-LSI algorithm for identify-
ing the closed-loop input nonlinear equation-error system.
By applying the key term separation technique, the iden-
tification difficulty of the parameter interaction between
the linear and nonlinear blocks is solved. By means of
the hierarchical identification principle, the original sys-
tem is transformed into two sub-identification models for
reduced computational complexity. The iterative identifi-
cation theory is utilized to generate highly accurate param-
eter estimation by updating the estimate with a fixed data
batch under a finite length. The simulation results verify
theoretical findings. In the future, we will study the iden-
tification problems of time delay nonlinear system. The
proposed algorithms in this paper can joint other identifi-
cation methods [64-69] to study new parameter estimation
approaches of linear and nonlinear systems [70-73] and
can be applied to other literatures [74-79] such as infor-
mation processing and engineering application systems.
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