
International Journal of Control, Automation, and Systems 21(11) (2023) 3825-3831
http://dx.doi.org/10.1007/s12555-022-0947-1

ISSN:1598-6446 eISSN:2005-4092
http://www.springer.com/12555

A Modified Stochastic Gradient Descent Optimization Algorithm With
Random Learning Rate for Machine Learning and Deep Learning
Duk-Sun Shim* � and Joseph Shim

Abstract: An optimization algorithm is essential for minimizing loss (or objective) functions in machine learning
and deep learning. Optimization algorithms face several challenges, one among which is to determine an appropriate
learning rate. Generally, a low learning rate leads to slow convergence whereas a large learning rate causes the loss
function to fluctuate around the minimum. As a hyper-parameter, the learning rate is determined in advance before
parameter training, which is time-consuming. This paper proposes a modified stochastic gradient descent (mSGD)
algorithm that uses a random learning rate. Random numbers are generated for a learning rate at every iteration, and
the one that gives the minimum value of the loss function is chosen. The proposed mSGD algorithm can reduce the
time required for determining the learning rate. In fact, the k-point mSGD algorithm can be considered as a kind of
steepest descent algorithm. In a real experiment using the MNIST dataset of hand-written digits, it is demonstrated
that the convergence performance of mSGD algorithm is much better than that of the SGD algorithm and slightly
better than that of the AdaGrad and Adam algorithms.

Keywords: Deep learning, machine learning, modified stochastic gradient descent, random learning rate, steepest
descent algorithm.

1. INTRODUCTION

The purpose of training neural networks through deep
learning is to obtain weight parameters of the model that
minimize the value of the loss (or objective) function from
the dataset. An optimization algorithm is crucial in deep
learning because it determines how the parameters of the
model are adjusted during the training process and helps
to minimize the value of the loss function.

The gradient descent algorithm is the basic algorithm
used to perform optimization. There are many challenges
in achieving high performance in optimization; one of
these is choosing a proper learning rate. A low learning
rate leads to slow convergence, while a large learning rate
can cause the loss function to fluctuate around the min-
imum. Scheduling the learning rate or adaptive learning
rate is necessary to determine an appropriate learning rate.
The learning rate is one of hyper-parameters, and an opti-
mal value is selected in advance.

There are various optimization methods developed so
far to enhance the performance of gradient descent algo-
rithms, such as stochastic gradient descent (SGD) [1,2],
Momentum [1,3], AdaGrad [1,4], AdaDelta [1], RMSprop
[1], Adam [5], AdaMax [5], and so on [1,6,7]. However,

these popular optimization algorithms cannot provide a
good learning rate for the initial as well as final stages of
the optimization process.

Some papers propose a modified stochastic gradient
descent algorithm [8,9] aimed at improving the conver-
gence speed. The modified SGD algorithm in Mukher-
jee et al. [8] estimates those points on the loss function
of bowl-shaped surfaces that are approximately diametri-
cally opposite to each other, applies the SGD algorithm
for each point, and then takes the average. The modified
SGD algorithm in Valiente et al. [9] inputs several con-
straints in the SGD algorithm simultaneously in contrast
to the conventional SGD approach that processes only
one constraint independently at each iteration step. Here,
constraints denote the odometry and observation measure-
ment of sensors in the simultaneous localization and map-
ping (SLAM) system.

We propose a modified stochastic gradient descent
(mSGD) algorithm that uses a random learning rate. A few
random numbers are generated for a learning rate at each
iteration, and the one that gives the minimum value of the
loss function is chosen. The proposed mSGD algorithm
can be considered a numerical version of the steepest de-
scent algorithm. It is very simple, saves time, and shows

Manuscript received October 10, 2022; revised March 29, 2023; accepted June 14, 2023. Recommended by Associate Editor Lei Liu under
the direction of Senior Editor Guang-Hong Yang.

Duk-Sun Shim is with the School of Electrical and Electronics Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-Gu, Seoul
06974, Korea (e-mail: dshim@cau.ac.kr). Joseph Shim is with the Graduate School of Data Science, Seoul National University, 1 Kwanak-ro,
Kwanak-Gu, Seoul 08826, Korea (e-mail: ktshim@snu.ac.kr).
* Corresponding author.

c©ICROS, KIEE and Springer 2023

http://www.springer.com/12555
https://orcid.org/0000-0003-0141-9498

3826 Duk-Sun Shim and Joseph Shim

good convergence performance for the initial as well as
final stages of the optimization process.

2. PROPOSED MODIFIED STOCHASTIC
GRADIENT DESCENT ALGORITHM

2.1. Existing SGD, AdaGrad, and Adam algorithms
In this section, several optimization algorithms are de-

scribed. Later, we will compare their performance with
that of the proposed mSGD algorithm.

The notations in the following algorithms are as fol-
lows: gt is the gradient of loss or objective function L at
time t with respect to θ , θ is the parameter to be estimated,
η is the learning rate, � denotes elementwise multiplica-
tion, {x(1), x(2), · · · , x(m)} denotes the m training sets (or
mini-batch), y(i) is the corresponding target for x(i), fηηη(η)
is a probability density function, and p[•] is the probability
for the corresponding event.

Several optimization algorithms are described as fol-
lows:

The SGD algorithm:

gt =
1
m

∇θ

m

∑
i=1

L
[

f
(

x(i);θt−1

)
,y(i)

]
,

θt = θt−1−ηgt . (1)

The AdaGrad algorithm:

gt =
1
m

∇θ

m

∑
i=1

L
[

f
(

x(i);θt−1

)
,y(i)

]
,

ht = ht−1 +gt �gt ,

θt = θt−1−
η√

ht + ε
�gt . (2)

Here, the division and square root in the third equation is
applied elementwise.

The Adam algorithm:

gt =
1
m

∇θ

m

∑
i=1

L
[

f
(

x(i);θt−1

)
,y(i)

]
,

mt = β1mt−1 +(1−β1)gt ,

vt = β2vt−1 +(1−β2)gt �gt ,

m̂t =
mt

(1−β t
1)
,

v̂t =
vt

(1−β t
2)
,

θt = θt−1−
ηm̂t√
v̂t + ε

. (3)

Here, β1 = 0.9, β2 = 0.999, ε= 10−8.

2.2. Proposed modified SGD (mSGD) algorithm
The proposed mSGD algorithm focuses on the learning

rate η∗t , which comes from the randomly generated num-
bers.

The mSGD algorithm can be described using the fol-
lowing equations:

The mSGD algorithm:

gt =
1
m

∇θ

m

∑
i=1

L
[

f
(

x(i);θt

)
,y(i)

]
,

θt+1 = θt −η
∗
t gt . (4)

Here, the learning rate η∗t is determined as follows:

η
∗
t = argmin

ηti

L[θti+1], (5)

θti+1 = θt −ηti gt , i = 1, · · · , k, (6)

ηti ∼ fηηη (η) , i = 1, · · · , k. (7)

In (7), ηti is a random number generated from a probability
density function (pdf) fηηη (η) . A typical pdf is the uniform
density function as follows:

fηηη (η) =
1
a
(u(η)−u(η−a)) , (8)

where η is a random variable, u(η) is the unit step func-
tion, and the parameter a should be chosen in advance as
constant or time-varying like at .

Definition 1: When k random numbers are used for the
candidate learning rates ηti as {ηt1 , ηt2 , · · · , ηtk} in (6) and
(7), it is called the k-point mSGD algorithm.

2.3. Convergence of mSGD algorithm
In this section, we discuss the convergence property of

the mSGD algorithm in Lemma 1 and Theorem 1. Lemma
1 shows the convergence property of SGD algorithm with
a time-varying learning rate.

Lemma 1 [10]: Consider a differential function f (θ) :
Rn→ R and a gradient descent sequence of θt such that

θt+1 = θt −ηt∇θ f (θt),

for some ηt ∈ (0, η t), then the following inequality holds

f (θt+1)< f (θt), if ∇θ f (θt) 6= 0.

Proof: Define a function φt (ηt) as follows:

φt (ηt) = f (θt+1) = f (θt −ηt∇θ f (θt)) , (9)

then φt(0) = f (θt). We can obtain the derivative for
(9) d

dηt
φt(ηt) = ∇θ f (θt − ηt∇θ f (θt))(−∇θ f (θt)) and

d
dηt

φt(ηt) |ηt=0=−|∇θ f (θt)|2 < 0 if ∇θ f (θt) 6= 0.
There exists a constant η t such that

f (θt+1) = φt(ηt)< φt(0) = f (θt),

for some ηt ∈ (0, η t), which is f (θt+1)< f (θt). �
Theorem 1: Consider the SGD algorithm in (1) and the

k-point mSGD algorithm in (4)-(8) and Definition 1. Sup-
pose that the parameter a in (8) is chosen appropriately.

A Modified Stochastic Gradient Descent Optimization Algorithm With Random Learning Rate for Machine ... 3827

Then, the k-point mSGD algorithm always provides better
convergence than the SGD algorithm as k→ ∞.

Proof: Consider an error function f (θt), a pre-
determined constant η in (1) for the SGD algorithm,
and the k random numbers {ηt1 , ηt2 , · · · , ηtk} generated as
ηti in (6)-(8) for the k-point mSGD algorithm.

Define a variable δt which is the distance as follows:

δt = f (θt)− f (θt+1),

which is a positive value from Lemma 1.
Define two δ ′t s as follows:

δ
SGD
t (η) = f (θt)− fSGD(θt+1),

where fSGD(θt+1) = f (θt −η∇θ f (θt)), and

δ
mSGD
t (η∗t) = f (θt)− fmSGD(θt+1),

where fmSGD(θt+1) = f (θt −η∗t ∇θ f (θt)).
Note that δ mSGD

t (η∗t)=max{δ SGD
t (ηt1), · · · , δ SGD

t (ηtk)},
where ηti , i= 1, · · · , k, is a random number generated from
(8).

Suppose that the equality below holds by choosing an
appropriate parameter a in (8)

p
[
δ

SGD
t (ηti)≤ δ

SGD
t (η)

]
= p

[
δ

SGD
t (ηti)≥ δ

SGD
t (η)

]
=

1
2
, i = 1, · · · , k,

where p[•] is a probability and the above property is in-
dependent for various i and j among {1, · · · , k}. Then,
the event {δ SGD

t (ηti) ≤ δ SGD
t (η)} for all i ∈ (1, · · · , k) is

only one case among 2k cases, and the following inequal-
ity holds

p[δ mSGD
t (η∗t)≥ δ

SGD
t (η)]≥ 1− 1

2k . (10)

As k→∞ in (10), we obtain p{δ mSGD
t (η∗t)≥ δ SGD

t (η)}→
1, which means that the k-point mSGD algorithm always
provides better convergence than the SGD algorithm as
k→ ∞. �

Considering all iterations together, we can say that the
k-point mSGD algorithm almost provides better conver-
gence than the SGD algorithm with using only finite value
of k. Section 4 describes how even a 3-point mSGD al-
gorithm provides much better convergence than the SGD
algorithm for the MNIST dataset. The k-point mSGD al-
gorithm can be considered as a numerical version of the
steepest descent algorithm comparing the mSGD algo-
rithm and Definition 2 below.

Definition 2 [10]: Consider an objective function (9).
The steepest descent algorithm is a gradient descent al-
gorithm where the step (or learning rate) ηt is chosen to
achieve the maximum amount of decrease of an objective
function at each individual step, i.e.,

η
∗
t = argmin

ηt

f (θt −ηt∇θ f (θt)).

3. COMPARISON OF PERFORMANCE FOR
VARIOUS OPTIMIZATION ALGORITHMS

USING TWO OBJECTION FUNCTIONS

In this section, we compare the performance of three
popular optimization algorithms with that of the proposed
mSGD algorithm. Two objective functions in (11) and
(12) will be used for the performance comparison with the
parameter to be estimated θ = (x y)T :

L = f (x,y) =
1

20
x2 + y2, (11)

L = f (x,y) = re−r, r = 2x2 + y2. (12)

We use the 3-point mSGD algorithm with the uniform
density function on the interval [0, 1] for fηηη(η) in (7).
For two objective functions (11) and (12), we compare the
performance of optimization algorithms SGD, AdaGrad,
Adam, and mSGD. In each figure, the left side shows the
position of θ = (x y)T with level curves of the objective
function, while the right one shows the error, i.e., the dis-
tance from the minimum point (0, 0). One hundred iter-
ations are run for each optimization algorithm. In the left
figures, the red dot is the initial point, the red cross is the
minimum point (0, 0) of objective functions (11) and (12),
and the black dot is plotted every five iterations.

3.1. Objective function of f (x,y) = 1
20 x2 + y2

The level curve of the objection function (11) is a long
and thin ellipse. The performance of four optimization al-
gorithms is plotted in Figs. 1-4, where the red dot is the
initial point of (−5, 3) and the red cross is the global min-
imum point of (0, 0).

3.1.1 SGD performance
When the learning rate (lr) is 0.9, the objective function

shows a zig-zag pattern while the case of lr = 0.2 shows
an example of slow convergence in Fig. 1.

3.1.2 AdaGrad performance
The AdaGrad algorithm shows a smooth curve and

good convergence for lr = 0.8, but shows slow conver-
gence for low lr such as lr = 0.3 and 0.2 in Fig. 2.

3.1.3 Adam performance
The Adam algorithm shows a spiral-type convergence

when lr = 0.1 and 0.01 and shows a smooth convergence
when lr = 0.002 in Fig. 3. Adam also shows a slow con-
vergence for a low lr of 0.002.

3.1.4 Proposed mSGD performance
The 3-point mSGD algorithm uses a uniform density on

[0, 1] in (7) and shows good and consistent performance
for all three cases in Fig. 4.

3828 Duk-Sun Shim and Joseph Shim

Fig. 1. Result of SGD for the objective function (11).

Fig. 2. Result of AdaGrad for the objective function (11).

Fig. 3. Result of Adam for the objective function (11).

Fig. 4. Result of 3-point mSGD with uniform density for
the objective function (11).

A Modified Stochastic Gradient Descent Optimization Algorithm With Random Learning Rate for Machine ... 3829

3.2. Objective function of f (x,y) = re−r, r = 2x2 +y2

The objective function (12) gets the maximum value on
the curve of r = 2x2 + y2 = 1, which is shown as the level
curve with red color in Figs. 5-8. The performance of four
optimization algorithms is plotted in Figs. 5-8, where the
red dot is the initial point of (−0.4, 0.8) and the red cross
is the local minimum point of (0, 0).

3.2.1 SGD performance
When lr = 0.8, the objective function fluctuates and

does not converge, while the cases of lr = 0.4 and 0.2 show
good convergence in Fig. 5.

3.2.2 AdaGrad performance
The cases of lr = 0.6 and 0.1 show good convergence in

Fig. 6 while AdaGrad also shows a slow convergence for
a small lr of 0.02.

3.2.3 Adam performance
The cases of lr = 0.01 and 0.001 show good conver-

gence in Fig. 7, while Adam also shows a slow conver-
gence for a low lr of 0.0002.

3.2.4 Proposed mSGD performance
The 3-point mSGD algorithm uses a uniform density on

[0, 1] in (7) and shows good and consistent performance

Fig. 5. Result of SGD for the objective function (12).

Fig. 6. Result of AdaGrad for the objective function (12).

Fig. 7. Result of Adam for the objective function (12).

3830 Duk-Sun Shim and Joseph Shim

Fig. 8. Result of 3-point mSGD with uniform density for
the objective function (12).

even though the trajectories of three cases are different in
Fig. 8. All three cases of mSGD in Fig. 8 show better con-
vergence performance than the lr = 0.4 case of SGD algo-
rithm in Fig. 5.

4. COMPARISON OF PERFORMANCE FOR
VARIOUS OPTIMIZATION ALGORITHMS

USING A REAL DATASET OF MNIST

This section shows the convergence result of the loss
function for the MNIST [11] dataset when four opti-
mization algorithms, i.e., (1) through (4) are applied. The
MNIST dataset consists of handwritten digits as in Fig. 9
and associated labels describing which 0-9 is contained in
each image [7].

We used the Python code provided in Saito et al. [12]
to obtain Figs. 10-12. The input size of the MNIST train-
ing dataset is 784 and the output size is 10. The number of
neurons in the hidden layer is [100, 100, 100, 100] for the
5-layer fully connected neural network, and 100 for the 2-
layer fully connected neural network. Each hidden layer
consists of an affine layer and a ReLU. The output layer
uses SoftMax with loss. Then, 60,000 data with batch size
of 128 from MNIST is used for the training of the neural
network. The learning rate η is used as follows: η = 0.0
in (1) and (2) of SGD and AdaGrad algorithm, respec-

Fig. 9. Sample images from MNIST dataset [Wikipedia].

Fig. 10. Convergence result of some optimization algo-
rithms using MNIST dataset for 5-layer neural
network (3-point mSGD).

Fig. 11. Convergence result of some optimization algo-
rithms using MNIST dataset for 2-layer neural
network (3-point mSGD).

tively, and η = 0.001 in (3) of Adam algorithm. The 3-
point mSGD algorithm is used with the uniform density
function on the interval [0, 0.3] for fη(η) in (8).

The convergence result of this experiment is shown
in Figs. 10 and 11 for 5-layer neural network and 2-

A Modified Stochastic Gradient Descent Optimization Algorithm With Random Learning Rate for Machine ... 3831

Fig. 12. Convergence result of loss value using MNIST
dataset for 2-layer network (k-point mSGD).

layer neural network, respectively. We can observe that
the convergence of mSGD algorithm is much better than
that of SGD algorithm and slightly better than that of
the AdaGrad and Adam algorithms. The 5-layer network
shows better performance than the 2-layer network. Fig.
12 shows that the convergence performance of loss func-
tion improves as k increases from 2 to 5 for the k-point
mSGD algorithm.

5. CONCLUSION

We propose a modified stochastic gradient descent op-
timization algorithm for machine learning and deep learn-
ing. The proposed mSGD algorithm focuses on the ran-
dom learning rate in the SGD algorithm. A few random
numbers are generated as candidate learning rates, and one
among them, which provides the minimum value of the
loss function every iteration, is selected. It is proved that
the k-point mSGD algorithm always provides better con-
vergence performance than the SGD algorithm as k→ ∞.
The proposed mSGD algorithm can be considered as a nu-
merical version of the steepest descent algorithm.

The performance of mSGD algorithm is compared with
that of SGD, AdaGrad, and Adam algorithms for two
mathematical objective functions and a real dataset from
MNIST, which contains the images of handwritten dig-
its. For the MNIST dataset, the 3-point mSGD algo-
rithm shows much better convergence performance than
the SGD algorithm and slightly better convergence per-
formance than the AdaGrad and Adam algorithms for 5-
layer and 2-layer neural networks. Furthermore, the con-
vergence performance of the k-point mSGD algorithm im-
proves as k increases.

CONFLICT OF INTEREST

The authors declare that there is no competing financial
interest or personal relationship that could have appeared

to influence the work reported in this paper.

REFERENCES

[1] N. Fatima, “Enhancing performance of a deep neural net-
work: A comparative analysis of optimization algorithms,”
Advances in Distributed Computing and Artificial Intelli-
gence Journal, vol. 9, no. 2, pp. 79-90, 2020.

[2] H. Robinds and S. Monro, “A stochastic approximation
method,” Annals of Mathematical Statistics, vol. 22, pp.
400-407, 1951.

[3] N. Qian, “On the momentum term in gradient descent
learning algorithms,” Neural networks, vol. 12, no. 1, pp.
145-151, 1999.

[4] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,”
Journal of Machine Learning Research, vol. 12, pp. 2121-
2159, 2011.

[5] D. P. Kingma and j. L. Ba, “Adam: A Method for Stochastic
Optimization,” Proc. of the 3rd International Conference
on Learning Representations, pp. 1-15, San Diego, 2015.

[6] A. Zhang, Z. C. Lipton, and S. J. Smola, Dive into Deep
Learning, 2022.

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-
ing, The MIT Press, 2016.

[8] A. Mukherjee, K. C. Teh, and E. Gunawan, “Blind mul-
tiuser detector for DS/CDMA channels based on the mod-
ified stochastic gradient descent algorithm,” Proc. of the
IEEE International Conference on Communications, pp.
1431-1435, 2001.

[9] D. Valiente, A. Gil, L. Fernandez, and O. Reinoso, “A
modified stochastic gradient descent algorithm for view-
based SLAM using omnidirectional images,” Information
Science, vol. 279, 20, pp. 326-337, 2014.

[10] E. K.P. Ching and S. H. Zak, An Introduction to Optimiza-
tion, Wiley-Interscience, Hoboken, N.J., 2008.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient
based learning applied to document recognition,” Proceed-
ing of the IEEE, pp. 1-46, 1998.

[12] G. Saito, Deep Learning from Scratch (in Korean), Hanbit
Media, inc., 2017.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

https://doi.org/10.14201/ADCAIJ2020927990
https://doi.org/10.14201/ADCAIJ2020927990
https://doi.org/10.14201/ADCAIJ2020927990
https://doi.org/10.14201/ADCAIJ2020927990
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1109/ICC.2001.937157
https://doi.org/10.1109/ICC.2001.937157
https://doi.org/10.1109/ICC.2001.937157
https://doi.org/10.1109/ICC.2001.937157
https://doi.org/10.1109/ICC.2001.937157
https://doi.org/10.1016/j.ins.2014.03.122
https://doi.org/10.1016/j.ins.2014.03.122
https://doi.org/10.1016/j.ins.2014.03.122
https://doi.org/10.1016/j.ins.2014.03.122
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791

