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Global Output Feedback Stabilization for Switched Nonlinear Systems
Under Arbitrary Switching
Shuyan Zhan, Xianglei Jia* ■ , and Chengdi Xiang

Abstract: Global stabilization of a class of switched nonlinear systems with unknown arbitrarily switched output
function is achieved via output feedback. A couple of improved high-gain observer and output feedback control
law are proposed by using dual high-gain scaling technique. In the presence of non-differentiable output function, a
common dynamic output feedback controller is established, where a generalized Lyapunov inequality is introduced
with explicit calculation. By constructinga single Lyapunov function for all subsystems, it shows the closed-loop
switched systems are globally asymptotically stable under arbitrary switching. Ultimately, two examples are given
to illustrate the effectiveness of our control scheme.

Keywords: Common Lyapunov function, output feedback stabilization, switched nonlinear systems, unknown out-
put function.

1. INTRODUCTION

In the past decades, switched nonlinear systems have
been studied deeply due to their wide applications in phys-
ical factories in the real world, such as mobile robots,
chemical processes, automotive engineering and many
others [1-4]. In particular, it has been shown in [1] that
the existence of a common Lyapunov function is a suf-
ficient and necessary condition for the stability of a sys-
tem with arbitrary switching. For this reason, a lot of con-
trol design methods have been proposed based on con-
structing a common Lyapunov function. For example,
for a class of switched nonlinear systems in triangular-
structure form, a common Lyapunov function that for
closed-loop system stability under arbitrary switching was
constructed via backstepping technique in [5,6]. Simi-
lar results were extended to switched nonlinear feedfor-
ward systems with the help of integrator forwarding tech-
nique [7]. Also, triangular-structure systems under arbi-
trary switching were considered in [8-12], especially, [11]
and [12] addressed the adaptive fuzzy control problem
and presented observer-based output feedback schemes
for uncertain nonlinear systems with unknown nonlinear-
ities. In addition, average dwell-time method was exten-
sively used by introducing multiple Lyapunov functions,
see, e.g., [13-18]. Some other interesting results have also
been reported in [19-25] and the references therein.

On the other hand, output-feedback control problem for

switched nonlinear systems has been extensively studied
since only part of states, as system output, can be mea-
sured in many practical systems. As far as the author
knows, most of the existing results are about the situa-
tion where the output function is completely known (with
an ideal case y = x1), see, e.g., [7,8,14,16,17,23] and so
on. However, in practical applications, output-constrained
nonlinear control systems are often encountered [26-30].
In the presence of uncertain output function, only a few
results have been reported recently in [31-35]. To be spe-
cific, [31] concentrated on a class of switched nonlinear
time-delay systems under arbitrary switching and [32,33]
proposed respectively average dwell time control methods
for switched nonlinear systems with/without time-delay;
in [34] and [35], the output feedback control for switched
nonlinear systems was addressed with their output func-
tions unknown but differentiable. It is worth pointing out
that the results [31-35] have made the assumption that ei-
ther the output function is differentiable or the output pa-
rameter belongs to a small allowable interval.

In this paper, global output feedback asymptotic sta-
bilization for switched nonlinear systems with arbitrary
switching is achieved, where a new pair of high-gain
observer and output feedback controller are constructed.
Less restrictive output parameter is allowed, and our main
contributions lie in

1) Different from [7,8,14,23], an output feedback con-
trol scheme is proposed under the condition that the
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system output function is uncertain. Compared with
[31-35], the constraint on output function is less con-
servative, that is, the output function in this paper is
allowed to be non-differentiable and vary in a wider
range. Specifically, one removes the restrictive re-
quirement that the output parameter only varies in a
small admissible interval as assumed in [31].

2) An extension of Lyapunov inequality with an un-
known time-varying parameter is introduced with
the solution being calculated explicitly. With this in-
equality, the output feedback stabilization problem
for a class of switched nonlinear systems with non-
differentiable switched output function is success-
fully handled by combining with the dual-gain domi-
nation technique [26,28].

3) Compared with the average-dwell-time based results
[32,33], this paper presents a common Lyapunov
function method which can guarantee the resulting
closed-loop system is globally asymptotically stable
under arbitrary switching. In particular, a method to
construct a common Lyapunov function is presented
when there is any switching in the unknown output
function.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1. Problem formulation
Consider a class of switched nonlinear systems with un-

known switched output function

ẋ1 = x2 + f1σ(t)(t,x),

ẋ2 = x3 + f2σ(t)(t,x),
...

ẋn = u+ fnσ(t)(t,x),

y = ϑσ(t)(t)x1,

(1)

where x = [x1, x2, . . ., xn]
T ∈ Rn, u ∈ R and y ∈ R de-

note the state vectors, system input and measurable out-
put, respectively; σ : [0, +∞)→P = {1, 2, . . ., m} is the
piecewise constant switching signal, and σ(t) = p (p∈P)
implies that the subsystem p has been activated. ϑσ(t) > 0
is a bounded switched function with ϑp being the mea-
surement sensitivity of the subsystem p which maybe non-
differentiable. Assume that the system states don’t jump at
any switching instants.

The control objective of this paper is to globally asymp-
totically stabilize system (1) under arbitrary switching via
designing a dynamic output feedback controller. To this
end, the following assumptions are required.

Assumption 1: For arbitrary switching σ(t), there exist
two known positive constants ϑ and ϑ such that

0 < ϑ ≤ ϑσ(t) ≤ ϑ .

Assumption 2: There exist a set of known constants
cp > 0, p ∈ P such that

| fip(t,x)| ≤cp(|x1|+ |x2|+ · · ·+ |xi|),
p ∈ P, i = 1, 2, · · · , n. (2)

Remark 1: A lot of work has been done in [31-35] to
address the influence of unknown measurement sensitiv-
ity. Compared with the existing work, Assumption 1 is
less conservative by noting the non-differentiable switch-
ing parameter. Assumption 2 is a switching version of the
commonly used linear growth condition [5-7].

Remark 2: The model (1) with Assumptions 1 and 2
contains the following switched nonlinear system

ẋi = δixi+1 + fi(·), i = 1, . . . , n−1,

ẋn = δnu+ fn(·),
y = ϑσ(t)(t)x1,

with unknown control coefficients δi’s satisfying

0 < δ0 ≤ δi ≤ δ∞, i = 1, . . . , n,

for two positive constants δ0 and δ∞. In fact, such system
can be changed into system (1) satisfying Assumptions 1
and 2 by introducing a coordinate change χi =

xi
δi···δn

, i =
1, . . . , n.

2.2. Preliminaries

Definition 1 (Common Lyapunov function) [1]: For a
switched system, if there exists a positive definite con-
tinuously differentiable function V : Rn → R and a pos-
itive definite continuous function W : Rn → R such that
∂V
∂x ẋ ≤−W (x), then we will say that V is a common Lya-
punov function.

In the following, an extension of Lyapunov inequality
is introduced which plays a central role in this paper.

Lemma 1: For a constant α > 0, there exist a set of
positive constants ℓi, i = 1, 2, . . ., n and a constant matrix
P = PT > 0 to satisfy

AT
ϑ P+PAϑ ≤−αI, (3)

where I ∈Rn×n is an identity matrix, Aϑ is defined as

Aϑ =


−ϑ(t)ℓ1 1 · · · 0

...
...

. . .
...

−ϑ(t)ℓn−1 0 · · · 1
−ϑ(t)ℓn 0 · · · 0

 ∈Rn×n,

with an unknown parameter ϑ(t) being bounded below by
ϑ > 0 and ℓi’s being design freedoms.

Proof: See Appendix A. □
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3. MAIN RESULTS

3.1. Design of high-gain observer-controller
With the help of Lemma 1, we construct an observer-

based controller as

˙̂x1 = x̂2 +L1ℓ1(y− x̂1),

˙̂x2 = x̂3 +L2
1ℓ2(y− x̂1),

...
˙̂xn = u+Ln

1ℓn(y− x̂1),

u =−
n

∑
i=1

(L2L1)
n+1−ikix̂i,

(4)

where L1 ≥ 1 and L2 ≥ 1 are scaling gains determined in
(17); the control gains ki’s are the coefficients of the Hur-
witz polynomial sn + knsn−1 + · · ·+ k2s+ k1; the observer
gains ℓi’s are explicitly calculated by Lemma 1 with the
following algorithm

Step 1: Initialize δ > 0, g1 > 0.

Step 2: Determine parameters ρ , ai, gi, ā by

ρ = 0.5δ
2,

ai =
n

∑
j=i

δρ
(n− j), i = 2, 3, · · · , n,

gi = aigi−1, i = 2, 3, · · · , n,

ā =

{
0.75, n = 2,

max{a3, · · · , an}, n ≥ 3.

(5)

Step 3: Check whether the parameters ρ , ā, g1 meet the
following constraints

ρ ≤ 1,

ā ≤ min
{

0.75
n−1

,
0.25

(n− i)ρ + i−1

∣∣∣∣
i = 2, . . . , n−1

}
,

g1 ≥
1

2ϑ

[
0.75δ +

a2
2

ā
(n−1)δρ +2ρa2

]
.

(6)

Step 4: If it is true in Step 3, the parameters ℓ̄CT =
T GCTT −1 with

C = [1, 0, · · · , 0]T ,

T = diag{1, ρ, ρ
1+2, · · · , ρ

1+2+···+(n−1)},
ℓ̄= [ℓ1, · · · , ℓn]

T ,

G = [g1, · · · ,gn]
T .

(7)

Remark 3: In essence, the control scheme (4) is a
switching system by noting the switched output func-
tion y = ϑσ(t)(t)x1. However, we do not directly use any

switching information in the controller design and its im-
plementation. As a result, our controller is suitable for ar-
bitrary switching and a common Lyapunov function can
be found as shown in Subsection 3.2.

3.2. Stability analysis
Based on the above output feedback controller, we can

draw a conclusion as follows:
Theorem 1: Under Assumptions 1 and 2, the closed-

loop system comprised of (1) and (4) with arbitrary
switching is globally asymptotically stable.

Proof: First, introduce a dual-scaling change of the
form

εi =
xi − x̂i

Li−1
1

:=
ei

Li−1
1

, zi =
xi

Li−1
1

,

ẑi =
x̂i

(L2L1)i−1 , i = 1, . . . , n. (8)

From (4), (5) and y− x̂1 = ϑσ e1 +(ϑσ −1)x̂1, we get

ε̇ = L1Aϑ ε +L1ℓ̄(1−ϑσ )ẑ1 +F ,

˙̂z = L2L1Bẑ+ϑσ L1Mε1 +(ϑσ −1)L1Mẑ1, (9)

where ε = [ε1, ε2, . . . ,εn]
T , ẑ = [ẑ1, ẑ2, . . . , ẑn]

T , ℓ̄= [ℓ1, ℓ2,
. . ., ℓn]

T , F = [ f1σ , f2σ

L1
, . . ., fnσ

Ln−1
1

]T , M= [ℓ1, ℓ2
L2

, . . ., ℓn
Ln−1

2
]T ,

Aϑ is given in Lemma 1, and matrix B is defined by

B =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

−k1 −k2 · · · −kn

 ∈Rn×n.

Note that B is a Hurwitz matrix. Thus, there exists a
matrix Q = QT > 0 to satisfy (see [36])

BT Q+QB ≤−β I, (10)

for a constant β > 0. Then, by choosing a common Lya-
punov function candidate

V = ε
T Pε + ẑT Qẑ, (11)

with P > 0 satisfying (3), we take its derivative along sys-
tem (9) and arrive at

V̇ ≤−αL1∥ε∥2 −βL2L1∥ẑ∥2

+2ε
T PL1ℓ̄(1−ϑσ )ẑ1 +2ε

T PF
+2ϑσ L1ẑT QMε1 +2(ϑσ −1)L1ẑT QMẑ1.

(12)

In what follows, we will estimate the redundant terms
in (9). First, from Assumption 2, one has

∥F∥ ≤
n

∑
i=1

∣∣∣∣ fiσ

Li−1
1

∣∣∣∣
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≤
n

∑
i=1

i

∑
j=1

c̄
(
|e j + x̂ j|

Li−1
1

)
≤

n

∑
i=1

c̄(n+1− i)(|εi|+Li−1
2 |ẑi|), (13)

where c̄ = max{c1, c2, . . ., cm}. Further, it follows from
the complete square formula that

2ε
T PL1ℓ̄(1−ϑσ )ẑ1 +2ε

T PF
≤ 0.5αL1∥ε∥2 + c̄0L1ẑ2

1 + c̄1∥ε∥2 + c̄2∥ẑ∥2, (14)

where c̄i’s are known positive constants.
Since L2 ≥ 1, we arrive at

∥M∥ ≤ ∥ℓ̄∥,

which together with Assumption 1 leads to

2ϑσ L1ẑT QMε1 +2(ϑσ −1)L1ẑT QMẑ1

≤ 2ϑσ L1∥ẑ∥∥Q∥∥M∥|ε1|
+2|ϑσ −1|L1∥ẑ∥∥Q∥∥M∥|ẑ1|

≤ m1L1ε
2
1 +m2L1∥ẑ∥2, (15)

where m1 > 0 and m2 > 0 are suitable constants indepen-
dent of L1 and L2.

Plugging (14) and (15) into (12) yields

V̇ ≤− [(0.5α −m1)L1 − c̄1]∥ε∥2

− [(βL2 − c̄0 −m2)L1 − c̄2]∥ẑ∥2. (16)

In Lemma 1, we pick a sufficiently large constant α to
satisfy 0.5α > m1. Then, the design constants L1 and L2

can always be found such that{
(0.5α −m1)L1 − c̄1 ≥ γ1,

(βL2 − c̄0 −m2)L1 − c̄2 ≥ γ2,
(17)

for two suitable constants γ1 > 0 and γ2 > 0.
As a consequence, it gets from (16) and (17) that

V̇ ≤−γ1∥ε∥2 − γ2∥ẑ∥2. (18)

According to Lyapunov stability theory for switched
systems [1], it is easy to deduce the asymptotic stability
of the closed-loop system under arbitrary switching.

This completes the proof of Theorem 1. □

4. EXAMPLES AND SIMULATIONS

In this section, two examples are given to illustrate the
effectiveness of the control scheme in Theorem 1.

Example 1: Consider a switched nonlinear system

ẋ1 = x2 + f1σ (t,x1),

ẋ2 = x3 + f2σ (t,x1,x2),

ẋ3 = u+ f3σ (t,x1,x2,x3),

y = ϑσ (t)x1, (19)

where σi(t) ∈ {1,2}, i = 1, 2, f11 = −sin(x1), f12 =
3x1

1+x2
1
, f21 = 2cos(t) ln(1+x2

2), f22 =
3x1+5x2
1+x2

1+x2
2
, f31 = sin(x3),

f32 = x1+x2+x3
1+x2

1+x2
2+x2

3
, ϑ1(t) = 1+ |sin(2t)|, and ϑ2(t) = 1+

|cos(5t)|. Obviously, Assumption 2 is fulfilled with c1 =
2, c2 = 5, i.e.,

| f11|= |− sin(x1)| ≤ |x1|,
| f21|= |2cos(t) ln(1+ x2

2)| ≤ 2(|x1|+ |x2|),
| f31|= |sin(x3)| ≤ |x3|,

| f12|= | 3x1

1+ x2
1
| ≤ 3|x1|,

| f22|= | 3x1 +5x2

1+ x2
1 + x2

2
| ≤ 5(|x1|+ |x2|),

| f32|= | x1 + x2 + x3

1+ x2
1 + x2

2 + x2
3
| ≤ (|x1|+ |x2|+ |x3|).

By Theorem 1, we can design an observer-controller as

˙̂x1 = x̂2 +L1ℓ1(y− x̂1),

˙̂x2 = x̂3 +L2
1ℓ2(y− x̂1), (20)

˙̂x3 = u+L3
1ℓ3(y− x̂1),

u =−[(L2L1)
3k1x̂1 +(L2L1)

2k2x̂2 +L2L1k3x̂3],

where the design parameters are k1 = 0.2, k2 = 0.6, k3 = 1,
ℓ1 = 1, ℓ2 = 0.7, ℓ3 = 0.3, L1 = 10, and L2 = 16.

Notably, the control scheme (20) is applicable to any
switching signal by Theorem 1. Without loss of generality,
we choose the switching signals σi(t) as given in Figs. 1
and 2. Letting the initial condition x1(0) = 4, x2(0) =−1,
x3(0) =−5, x̂1(0) = 0, x̂2(0) = 0, x̂3(0) = 0, and perform-
ing the simulation, we get Figs. 3 and 4, which shows the

Fig. 1. The switching signal σ1.
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Fig. 2. The switching signal σ2.

Fig. 3. The closed-loop response under switching signal
σ1.

Fig. 4. The closed-loop response under switching signal
σ2.

resulting closed-loop system (19)-(20) is asymptotically
stable.

Example 2: A practical example, continuous stirred
tank reactor with the model borrowed from [38]

ĊA =
qσ(t)

V
(CA f σ(t)−CA)−a0 exp(− E

RT
)CA,

Ṫ =
qσ(t)

V
(Tf σ(t)−T )−a1 exp(− E

RT
)CA

+a2(Tc −T ), (21)

where the physical meaning of the system parameters are
the same to [38]. Under a coordinate transformation and
smooth feedback in [38], the new system is

ż1 = g1z2 +hσ(t)(z1),

ż2 = g2u,

y = ϑ(t)z1, (22)

where σ(t) ∈ {1, 2}, gi, i = 1, 2 are unknown bounded
control coefficients, bounded by gi ∈ [0.9, 1.5], and
h1(z1) = 0.5g1g2x1, h2(z1) = 2g1g2x1.

Defining the states x1 = 1
g1g2

z1, x2 = 1
g2

z2, fσ(t)(x1) =
1

g1g2
hσ(t)(z1), then system (22) can be written as the follow

form.

ẋ1 = x2 + fσ(t)(x1),

ẋ2 = u,

y = g1g2ϑ(t)x1, (23)

where f1 = 0.5x1, f2 = 2x1. It is clear that Assumption 2
is fulfilled with c1 = 0.5, c2 = 2. Then, the observer and
controller can be constructed as

˙̂x1 = x̂2 +L1ℓ1(y− x̂1),

˙̂x2 = u+L2
1ℓ2(y− x̂1),

u =−[(L2L1)
2k1x̂1 +L2L1k2x̂2], (24)

with the design parameters being chosen as k1 = 0.75,
k2 = 0.35, ℓ1 = 1, ℓ2 = 0.75, L1 = 3.5, and L2 = 8.

Fig. 5. The closed-loop response.
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To perform the simulation, we let the initial condi-
tion x1(0) = 1.5, x2(0) = 6.5, x̂1(0) = 2, x̂2(0) = −10,
ϑ(t) = 1+ |0.42sin(t)|, and the switching time between
the switched system on and off is 0.001 s. The simulation
results are shown in Fig. 5.

5. CONCLUSION

In this paper, an output feedback control method is pro-
posed to achieve global stabilization of a class of switched
nonlinear systems subject to non-differentiable output pa-
rameters. By constructing a common Lyapunov function
in the spirit of dual domination idea, it shows that the pro-
posed control scheme is applicable to arbitrary switching
signal and unknown switching output coefficient. In par-
ticular, we introduce a generalized Lyapunov inequality
and give an algorithm of its solution in Section 3.

Moreover, it seems that the linear growth condition is
restrictive, and how to further relax the assumption is the
direction of our future efforts. Also, the combination of
switched nonlinear systems and constraint control of non-
linear systems should be better studied in the future.

APPENDIX A: PROOF OF LEMMA 1

First, define a set of positive constants by (n ≥ 2)

ρ = 0.5δ
2, ai =

n

∑
j=i

δρ
n− j, gi = aigi−1,

i = 2, . . . , n, (A.1)

with the constants δ > 0, g1 > 0 and

ā =

{
0.75, whenn = 2,

max{a3, . . . , an}, whenn ≥ 3,
(A.2)

satisfying

ρ ≤ 1,

ā ≤ min
{

0.75
n−1

,
0.25

(n− i)ρ + i−1

∣∣∣∣
i = 2, . . . , n−1

}
,

g1 ≥ 0.5ϑ
−1

[
0.75δ +

a2
2

ā
(n−1)δρ +2ρa2

]
.

(A.3)

Next, let C = [1, 0, . . ., 0]T , G = [g1, . . ., gn]
T , ℓ̄ = [ℓ1,

. . ., ℓn]
T such that

ℓ̄CT = T GCTT −1,

T = diag{1, ρ, ρ
1+2, . . . , ρ

1+2+···+n−1}. (A.4)

As done in [28], we consider a system ω̇ =
T −1AϑT ω = Aω with ω = [ω1, . . ., ωn]

T , and define
a coordinate change

Ω1 = ω1, Ωi = ωi −aiωi−1, i = 2, . . . , n. (A.5)

By referring to the proof in [28,37], we immediately get
Lemma 1. □
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