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Improved Robust Passivity Criteria for Delayed Neural Networks

Yaqi Li, Yun Chen*(® , and Shuangcheng Sun

Abstract: This paper investigates the robust passivity problem for neural networks with uncertain system parame-
ters and a time-varying delay. Based on Lyapunov stability theory, ensuring the negative definiteness for the deriva-
tives of the developed Lyapunov-Krasovskii functional (LKF) is necessary in order to derive a passivity criterion. A
negative condition on the cubic polynomial over a certain interval is developed in this paper, which introduces some
slack matrices to obtain an advanced negative condition. Taking advantage of this condition, an augmented LKF
with more system state and delay function information, including several augmented vectors and a single-integral-
based term, is constructed. Then some improved passivity criteria for delayed neural networks are derived on top
of the proposed LKF and the negative condition. Finally, the effectiveness and superiority of the obtained passivity

criteria are validated on two numerical examples.
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1. INTRODUCTION

Since neural networks have been proposed to describe
how biological brains solve problems, extensive research
has been conducted on neural networks in many areas [1].
In the implementation of neural networks, time delays
are inevitable because of the finite switching speed of
amplifiers or internal neuronal communication, leading
to unstable neural networks [2]. Consequently, the anal-
ysis and synthesis of neural networks with time delays
have received considerable attention over the past few
decades [3-5].

The concept of passivity initially appeared in circuit
theory, which plays a key role in systems analysis [6]. Pas-
sivity theory changes the research framework of control
theory from traditional signal processing to energy trans-
mission. It provides a powerful framework for analyzing
the stability of nonlinear dynamical systems because the
passivity properties can ensure that the system is inter-
nally stable. Research on the passivity analysis of delayed
neural networks has made considerable efforts, and some
meaningful works were reported in [7-15].

Lyapunov-Krasovskii functional (LKF) approach is a
well-recognized tool for analyzing the passivity of delayed
neural networks. A suitable LKF is essential to derive less
conservative passivity criteria [16-18]. Various types of
LKF have been introduced, such as augmented LKEF, inte-
gral terms-based LKF, and delay product type (DPT) LKF.
A review paper related to constructing LKF can be found

in [19]. A new type of augmented single integral, includ-
ing vector-dependent integral, was presented to study the
stability of delayed neural networks in [20]. In [21], some
improved time-delay product auxiliary polynomial func-
tions were introduced into the LKF to study the stability
analysis of delayed neural networks. A DPT LKEF for sta-
bility analysis of the delayed neural network was proposed
in [22], which considers the delay change rate informa-
tion and achieves less conservative results. The passivity
criteria on the delayed neural networks based on the cou-
pled LKF were developed in [23], indicating that the aug-
mented LKF with delay-dependent matrices can help to
derive a good passivity criterion.

It is noted that some of the constructed LKF’s deriva-
tives are not linear with respect to the delay function,
such as the LKFs in [4,12,14,23]. It is a crucial issue to
find negativity conditions of the function with different
degrees of the delay function to obtain tractable passiv-
ity criteria. Some results on the negative condition of a
quadratic polynomial have been reported up to now. The
seminal negative condition on the quadratic polynomial
was deduced in [24], which has been frequently used in the
previous literature. Based on [24], some advanced suffi-
cient conditions [25-30] and sufficient and necessary con-
ditions [4,12,14,31-34] were proposed. Furthermore, as
augmented LKF is employed in recent years, the expres-
sion after the derivative of the augmented LKF may be
related to the cubic polynomial with respect to the delay
function. Thus, it is necessary to study the negative condi-
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tion of cubic polynomial. Very recently, a negative condi-
tion on cubic polynomial was put forward by utilizing the
Taylors formula in [35]. However, how to develop an ad-
vanced negative condition on cubic polynomial and apply
it to obtain less conservative passivity criteria for delayed
neural networks needs further research.

In this paper, the passivity analysis of delayed neural
networks is further investigated. Firstly, compared with
the negative condition on cubic polynomial in [35], a free-
matrix-based equality and more slack matrices are intro-
duced, and a new negative condition of the cubic poly-
nomial is developed. Secondly, a novel LKF with more
system state and delay function information is developed,
in which single-integral-based integral inequality and aug-
mented LKF philosophy are adopted. Finally, the con-
straint on the delay function is weakened. The condition
W < Ah(t) < uy is replaced by A(t) < u, where u;, i, and p
are real constants. Several improved passivity criteria are
derived using the proposed LKF and the negative condi-
tion, and the superiority of the proposed passivity criteria
is validated through two numerical examples.

Throughout this paper, R"” and R™" are the n-
dimensional vector space and the set of all n xm real
matrices, respectively. N is the set of non-negative inte-
gers. I and O refer to the identity matrix and zero matrix,
respectively. £ > 0 represents the matrix £ is the sym-
metric and positive definition. Notations diag{--- }, *, and
Sym{ L} represent block-diagonal matrix, the symmetric
term in symmetric block matrix, and £7 + £, respectively.

2. PRELIMINARIES

Consider neural networks with uncertain system param-
eters and a time-varying delay, as described in [10]

x(t) = —(A+AA@))x(t) + (W + AW, (1))

x g(x(1)) + Wa+AWA(1))

x g(x(r—h(r))) +u(t), (1
y(t) = Cig(x(t)) + Cag(x(t — h(2))),
x(8)=9(8), —h<8<0,

where x(¢) € R" is the neuron state. y(t) € R” is the out-
put vector. u(z) € R”" is the input vector. g(-) € R? is the
neuron activation function vector. ¢(9) is the initial con-
dition. A(t) is the delay function. A = diag{a,, ay, ...,
ay} >0, Wi, Wy, Cy, and C, are known real matrices.
AA(t), AW, (1), and AW, (t) are unknown matrices, and
assumed as

[AA(1), AW (1), AWL(1)] = HF (1) [&1, &, &),
(2)

where H, &, &, and &3 are known matrices. Addition-
ally, the uncertainty parameter F(z) is assumed to satisfy
Frt)F@) <L

The following assumptions are made for both the delay
function and the neuron activation function.

Assumption 1: The time-varying delay function h(r)
satisfies the following condition

0<h(t)<h, h(t) < u, 3)

where i and u are real constants.

Assumption 2: The neuron activation function g(-)
meets the following condition

¢ gi(t) —gi(m)

-1

IN

S gi+7 (3 7é T, (4)

and g;(0) =0, where ¢~ and ;" are real constants.

The passivity analysis for the delayed neural net-
works (1) subject to (2)-(4) will be given in the next sec-
tion. The following definition and some useful lemmas are
necessary for deriving passivity criteria.

Definition 1 [6]: For all #; > 0, the delayed neural net-
work (1) with ¢(0) = 0 is called passive if there exists a
scalar ¥ > 0 such that

—y/otduT (D) u(t)dr < 2/()tduT (0)y () dr. )

Lemma 1 [29]: For given a scalar N € N, any scalars
a < b, an any vector 7, a positive matrix % € R™*", an
any matrix 7 € RW*+D7<k and a differentiable function x
in [a,b] — R", the following inequality holds
b -
- / i () 5 (s) ds < 2(By Wy Qu)THNY
+(b—an"H 'Ry Hn, (6)
where
Dy =[®F, ®T,..., ®I", NeN,
Oy =[®y, 0, ..., 0, NEN,

¢ [17 1]7 NZO?
N:
(A1, =X 0@, @M., @], N> 1,

() v

¥, — diag{I, I}, N=0,
N7 ) diag{®,, I, 21,..., NI}, N>1,
[XT(b), xT(a)}Tz NZO)

Qy = T 1 4T 1 71T
['Q‘Oa mglv ceey EZN] ’ N217

b op_
o’ = / (ﬁZ)N’IX(S)ds, NeN',

Ry = diag{#, 3%, ..., 2N+ 1)%Z}, N € N.
Remark 1: Compared with the Bessel-Legendre inte-

gral inequality in [16], estimating the integral inequal-
ity that appears after the derivation of the LKF does
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not involve an additional reciprocally convex approach.
It means that Lemma 1 is more suitable for the stability
analysis of a class of time-varying delay systems, and a
similar integral inequality can be found in [5].

Lemma 2 [35]: For given a constant # > 0 and I'; €
Sk (i =0, 1, 2, 3), the cubic polynomial function Z(s) =
[3s% +Tps? +Tyis+ o < 0 holds for s € [0, 4] such that

Z(0) <0, Z(h) <0, (7)
RT3 +Z(0) <0, ®)
— h*(3hT3 +T2) +Z(0) <0, )
I’T3 —h*(3hT3 +T5) +Z(0) < 0. (10)

Lemma 3: For given a constant & > 0, an integer k > 0,
and matrices I[; € Sk, the cubic polynomial Z(s) = I'ss® +
[as? + s+ T < 0 holds for s € [0, A] if there exist con-
stant matrices M € RVK, N € RF H, e R&K (j =1, 2)
such that

F() _Hl

* —H,—HI
Uiy T, —Hy +h(M —hN +HY)
* h(F3+N+NT)—H2—H2T

} <0, (11)
] <0, (12)
where Ty = h (Ty+Hy +H —h(M+M")) +T.
Proof: According to the truth that
0<s<h=s(s—h)<0=s*(s—h) <0,

and define ¢(s) = [I, sI]” for matrices M € Rk, N ¢ R
with M +MT > 0and N+ N7 > 0, one has

s(s—h)<0
= () =¢7(5)| ) Mg <o
s’ (s—h) <0

=M= 0|0 oS0 <o

Then
—M(s) =N (s)+Z(s) <0=Z(s) <0,

F() + SF] %Fz

where Z(s) = QT(S) { % sI3

J

Furthermore, for given two constant matrices H; € R¥<
and H, € R¥** we obtain

o) =2 j7] b1 -1

_ [S(Hl +HT)

—H, +sH! B
* —H, —H{] () =0.

Therefore, one has

=Z(s) <0,
then, Z(s) can be rewritten as follows:

Z(s) = ¢" (9T (s)g(s),
where
T(s) = I %FZ—HH—S(];/I—hN—I—H%) 7
x s(Is+N+N")—H,—Hj
Ty=s(Ty+H +H —h(M+M"))+T,.

If conditions (11) and (12) are satisfied. We obtain
Z(s) < 0 for Vs € [0, h], which completes the proof. [

Remark 2: Inspired by [4,30,33], a new negative
condition for the cubic polynomial can be obtained in
Lemma 3. Compared with the sufficient condition in
Lemma 2, a free-matrix-based equality H(s) and slack
matrices M and N can be introduced, which contributes
to derive an advanced negative condition.

Lemma 4 [36]: For given appropriate dimensions ma-
trices H, & and F(t), and F(t) satisfying F7 (t)F(t) < I.
If there exists any positive scalar k such that

HF(1)E+ (HF)E) <k "HHT +x&TE. (13)

3. MAIN RESULTS

For simplicity, the notations are defined following:

b _
é}(cf.w:/ (Z_;)Nx(s)ds, NEN,

N}

m(e) = [xT(0).x" (e = ), (0), <7 ()]
ma(e) = [nf (), 6] (0]

Ma(s) = [ ()47 (5)] ",

Ma(s) =[x (5),8" (x(s))] ",

ns(s) = [ (9),n] ()] "
Me(r,5) = [ (1), 27 (s), J{x"(0)d6]"

T T
;%&%wﬁﬁgﬁﬂmﬂv—mMﬂmﬁ

Ly =diag{g.¢,....6 },

Ly =diag{G; Gy s 161 } s

e = [Onx(ifl)m Iy, 0n><(13*i)"] yi=12,...,13.

In the following, we establish a robust passivity crite-
rion for the delayed neural networks (1).
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Theorem 1: For given positive scalars 4, U, k, and = [ef, el +(h—h(1))e ]T,
7, the delayed neural networks (1) with (2)-(4) is robust
passive if there exist symmetric matrices P, > 0, Q; > 0,
R > 0, diagonal matrices QjT> 0,I;>0, gkl > 0, and any = [XT, —el +n(r)el + (h—h(t))e }T,
matrices My, Hk,. G, D+D .> 0,F+F" >0(k= 1, 2; [Ng, /’12( 88 +/’l( )(h*/’l( ))6‘9
1=2,3(>k);i=k, 3; j=1i,4), such that the following

= [elTl’ 612’ el eST]Tv

linear matrix inequalities (LMIs) hold: + (h—h(t )) e 10]T7
Yo+xk0!0, —H ViM, ©, = [ef, el\]", ®o=Tef, el]",
: _H2*—H2T _OE 8 <0, (14) = [ef +ely. el —el]",
i * * x  —xl = el —ef, el - esz] Ko = [ef, eg]T=
311+ k010, 31, VAM, O, Kio = [ef, ef]", ®u=[e]y, o] €]
* 32 Oﬁ 8 <0, (15) R = [efy, ef, fs] X3 = [ef, el 0],
. e xm—kie, I (h=h(e)ef]",
where Ris = [helT’ h(t h h(t))e ,
h h(t) (h h(r))eg) — H*(1)es,

RIT Zh(T|+H1+H]T—h(D+DT))+TO7 ( T
h(t)(h—h(t))es — (h—h(1)) elo} )

h
Si==Y,—H +h(D—hF +H]),
2 Ri6 = [e]}, 0, 61] , X7 = Grey + Gaery + Gsepa,

— T T —
Sn=h(Y3+F+F")—H—H,, To=1(0), Nig = —eq —Aer + Wiea + Waey +ei3,
1 . _
Ty = £[=20(=1) = 37(0) +6Y(1) - Y(2)], R = diag{R, 3R, 5R}, G, = ®,¥,Q4,
1 Gr = D, 05,
Y, = = [Y(—1)—2Y(0)+Y(1)],
2= 5[X(=1) =27(0) +Y(1)] 0 o
1 &= |1 I 20 0|,¥Y,=diag{l, I,1I,2I}
Y3 = —[-Y(—1)+3Y(0) —3Y(1) + Y(2)], 2 12 s L 4y 2
3= g[=T(=1)+31(0) = 3Y(1) + 1(2)] I el 6

Y == =
(h(t); 1(A(1)) +Ea, Qf = [el, el el eg] Qb [eg, el el elTO}T

Ei(h(t)) = Sym{RTh(t)Py Xo 4+ RI Py X, 4+ RTSKg
+ X503 R 16+ ((e7 —ef £2)Q X
+ (el L1—e3)Q)en + ((eg —e5£2)Qs V()= Y Vi(0), (16)
+ (el L1 —ef)Qu)ern+ G My +Gi M, =

Proof: The LKF constructed as follows:

+ N% Nig— (Clez +C264)T613} where

FuXTP R, +hRTSNs — hRTSNRg Vi(e) = nf (0)h(6)Pimi (1) + 13 (1) Pama (),
1

+ RO — (1 - 1) XG0 X1 V(1) :h/ 0 (5)Sma(s)ds
-

+ R0 Xy — R0 N o+ X505 3 ¢ —

- N1T4Q3 P +helT1R€11 - @{371913» N (/,_h n3(s)ds) S(/,_h n3(s)ds),

32 = Sym{(ez — Lzel)Tl“l (Elel — 62)
+ (e4 — L2e3) T (L1e3 — eq) !
+ (e — Laes) T3(L1es —es) +/ . nd (s)Qans(s)ds

-

o= [ nlomsds

+((e2—es) — La(er —e3)) Tia(L1(e1 —e3) -
—(e3—es) + ((e2— e6) +/,,h”6 (5)Q3Me(s)ds
_Ez(el _65))TF13(£1 (61 — 65) V4([) _ zi/x(t) [Gliﬁl (s) n (yzl-fl-z(s)]ds
—(62—66)+((64—66)—62(63—65))T i=1 .
x Ta3(Ly(e3 —es) — (es—es)}, +22/ - )[03;ﬁ1(s) + 04ifia(s)]ds
0

O = [l GiH +el,GoH +e],G3H] " , =l .
T .
@2 = [E{C%T +€g(§2T +€££§T] 4 5 V5 ([) - ~/lfh 0 X (S)R)C(S)dsde,
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with
fa(s) =6 s —gi(s), fiols) =8i(s) — ¢ s.
Taking the time-derivative of the LKF V (¢) yields

Vi(r) < ET(0)[Sym{XTh(r)P X2+ XIP Xy}

+uRTPRE(), (17)
Va(t) = ET (1) [hRISRs —hRI SR
— Sym{ X7 SRg}E(1), (18)

V3(1) < &M (1)[R§Q1Ro — (1= )R]y 01 Ryg
+ RO Ry — X[, X p+ X503K3
— R0 X1+ Sym{R[503 X 16}]E (1), (19)
V(1) =287 (1)[((e3 —e] L2)Q1+(e] L1—€3)Qa)en
+ ((ef —el x £5)Q;3
+(e5 L1 —e5)Qq)en]é (1), (20)

V(1) = hE" (1)e] Ren (1)~ /:hm  (s)Ri(s)ds

rt—h(r)
- / ) 17 (s)Ri(s)ds, (21)
.
where Q; = diag{oy, ..

s GZn} >0, Q3 = diag{631, cees
diag{0'41, ceey 0'4,,} > 0.

Using Lemma 1 with N =2 to estimate the above inte-
gral terms, we obtain

< 61”} > 0, Qz = diag{crz],
O3, >0, and Q4 =

- / t T OR)s

< &7(0)207 My + h()MTR

_ /, ;h(’)xT (s)Ri(s)ds
<&T(1)[2G3 My + (h—h(t))

R™'MyJE (1), (22)

MyR'MO)E(D).  (23)

Considering inequality (4), there exist positive diagonal
matrices I; >0andIy; >0(=1,2,3;k=1,2;1=2,3
(I > k)), we have

2[Lipi—g(p)]" Ti [2(pi) — Lapi] >0, (24)
2[L1(px—p1) — (8(pe) — &(p1))] " T
x [(g(px) —g(p1)) — La(px — p1)] =0, (25)

where p; = x(t), po = x(t — h(t)), and p3 = x(t —h). Then,
we obtain

28T (1)E26 (1) > 0. (26)

Furthermore, for given any matrices G; (j =1, 2, 3), we
can obtain the following zero equation

0=2x"(t)G +x" (t)Gy +x" (¢
— (A+AA()x() +

—h)Gs][—i(r)
(Wi + AW (1)) g(x(1))

+ (Wa+ AW (1)) g (x(t — (1)) +u(1)]
=287 (R (R15+D))E(1), 27)

where D = Hf(l) [(5016‘1, 5262, (%64] .
By Lemma 4, there exists a scalar k > 0, we obtain

287 (1)}, DE (1)
< E7(1) (k' ©,0] + KO 0,)E (). (28)

To sum up, one has

V() =2y (t)u(r) -

where

yu (t)u(r) < ET(1QE(r), (29)

Q="(h(t))+x'®,0! +h(t)M'R"'M,
+ (h—h(t)) MR M,.

Finally, it can be seen that Y (h(¢)) is a cubic polynomial
concerning the delay function A(¢), Using Lemma 3 and
Schur complement, {7 (£)Q& (1) < 0 holds if LMIs (14)-
(15) are satisfied, which means delayed neural networks
(1) is robust passive. This completes the proof. d

Remark 3: The Wirtinger-based inequality and the re-
ciprocally convex approach in [7,8], the free-matrix-based
inequality in [10], the extended free-weighting matrices
inequality in [11], and the DPT LKF in [13] were used to
investigate the robust passivity problem for delayed neu-
ral networks (1). However, these methods remain conser-
vative. To obtain a less conservative passivity criterion,
the augmented LKF (16) and the generalized inequality
in Lemma 1 are used to derive the passivity condition.
Then, the cubic polynomial inequality of the criterion is
addressed by Lemma 3. Finally, an improved robust pas-
sivity condition for delayed neural networks (1) is pre-
sented in Theorem 1.

Remark 4: If applying the high polynomial in-
equalities in [4,33] to handle the cubic polynomial,
it will place the nonlinear terms h(r)MTR~'M; and
(h — h(t))MIR~'M, on the non-diagonal of the block
matrix. It is not easy to address the two nonlinear terms.
However, Lemma 3 shows the ability to subtly transfer
two nonlinear terms to the diagonal of the matrix.

Remark 5: Motivated by the first-order Bessel-
Legendre inequality in [16], the LKF V,(¢) is proposed.
The LKF V,(¢) as one of LKF to analyze passivity for
delayed neural networks is the first attempt work, which
is actually an extension of single-integral-based LKF.

We apply Lemma 2 to address the cubic polynomial re-
garding the delay function in the proof of Theorem 1, and
the following corollary can be obtained.

Corollary 1: For given positive scalars s, U, k, and
7, the delayed neural networks (1) with (2)-(4) is robust
passive if there exist symmetric matrices P, > 0, Q; > 0,
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R > 0, diagonal matrices ; > 0,I; > 0, I';; > 0, and any
matrices My, G;, (k=1,2;1=2,3((>k);i=k,3; j=1,
4), such that the following LMIs hold

[Y(0) +xk@I®, VM, © ]
* -R 0 | <0, (30)
L * * —xl |
_Y(h> + K@g@Z \//lel 0, i
* —-R 0 | <0, (31)
* * —xl |

(735 +Y(0) + k@@, VM, ©,
* —-R 0 | <0, (32

L *  —Kl
_Hl + K@%-@z \/EMZ 0, i

* -R 0 | <0, (33)
L * * —KI |
[T, + k010, VM, O, ]

* -R 0 | <0, (34
L * * —xI |

where

I, = —h*(3hY3+Y,) + Y(0),
I, = I°Y3 — h*(3hY3 +Y3) +Y(0),

and other notations are same as Theorem 1.

When the uncertainties are disappeared, i.e., AA(r) =
0, AW, (r) = 0, and AW, (¢) = 0 in the system (1). The
system model (1) can be rewritten as

x(t) = —Ax(t) + Wig(x(1))
+Whg(x(t —h(t))) +u(t),

y(t) = Cig(x(t)) + Cag(x(t — h(t))),

X(8)=(8), —~h<8<0.

(35)

Next, the following passivity criterion for delayed neu-
ral networks (35) based on Theorem 1 can be presented.

Theorem 2: For given positive scalars /, 1 and ¥, the
delayed neural networks (35) satisfies conditions (2)-(4) is
passive if there exist symmetric matrices P, > 0, Q; > 0,
R; > 0, diagonal matrices ; > 0,I'; > 0, Iy, > 0, and any
matrices My, Hy, G, D+DT >0, F+FT >0 k=1, 2;
1=2,3(>k);i=k, 3;j=1i,4) such that

(Yo —-H VM,

x —Hy—HI 0 <0, (36)
| * * R
(S S VM,

« Sp» 0 | <O, (37)
. . R

where all notations are same as Theorem 1.

Proof: The proof is omitted since this proof is same as
Theorem 1. U

Remark 6: Theorem 2 offers a criterion to check the
passivity of delayed neural networks (35) with (2)-(4).
Compared with the work in [7,9,10,13,15,23], an aug-
mented LKF, including the delay-product term and the
single-integral-based term, and a new negative condition
of the cubic polynomial with slack matrices are adopted
to reduce the conservatism of the resulting criterion.

Applying Lemma 2 instead of Lemma 3 to deal with the
cubic polynomial inequality in Theorem 2, the following
corollary can be established.

Corollary 2: For given positive scalars 4, i, and ¥, the
delayed neural networks (35) satisfies conditions (2)-(4) is
passive if there exist symmetric matrices P, > 0, Q; > 0,
R; > 0, diagonal matrices Q; > 0, I, > 0,1y > 0, and any
matrices My, G; (k=1,2;1=2,3(>k);i=k,3; j=1,
4) such that

Y(0) VhM,

] <o -

[Y(h) VhM,

R o ”

(175 +Y(0) VhM,

<o v

[~ (3005 +12) +Y(0) VAM:) _ o (41

L * 7FRE/ |

(W35 — h*(3hY3 4+ Y,) +Y(0) \/ﬁﬂilz} <0, (42
* —R ’

where notations are same as Theorem 1 and Corollary 1.

Remark 7: Since some slack matrices Hy, D and F are
added, it is clear to observe that the presented passivity
criteria in Theorems 1 and 2 require more decision vari-
ables. However, with the rapid development of computer
technology, solving the matrix conditions for such levels
of decision variables in Theorems 1 and 2 is no longer a
problem for high-performance computers.

Remark 8: If we take the input vector u(r) = 0 and
remove u(t) from &(¢), the passivity problem of de-
layed neural networks is easily transformed into a sta-
bility problem. In contrast to the existing stability results
in [4,5,14,18,20,21], this paper’s main differences and ad-
vantages are that the condition /(¢) < u is weaker than
W < h(t) < wpin [4,5,14,18,20,21], where y; and p, are
real constants. Moreover, this paper incorporates a class
of uncertain delayed neural networks. Then the consid-
ered delayed neural networks in this paper is more general.
Furthermore, in the case of y; < /(t) < U, the obtained
stability criterion will generally be less conservative by
considering augmented LKF with more delay information
in combination with the proposed negative condition of
the cubic polynomial.

Remark 9: It is worth pointing out that the proposed
method is generalized. The authors focus on extending the
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proposed idea to other control topics in the future, such as
H.. control [2] and state estimation [3,19].

4. NUMERICAL EXAMPLES

Two numerical examples are given to illustrate the im-
provement and the effectiveness of the proposed criteria in
this section.

Example 1: Consider the following uncertain delayed
neural networks (1) with parameters

2.2 0.0 1.0 0.6
A= {o.o 1.5] » Wi = {0.1 1.5]’

1.0 0.1 10 00
W= [0.1 0.2}’01: [0 1]’62: {o o}’
H=0.11, & =0.11, & =021, & =031,

and the nonlinear function g;(x;) = 0.5(|x; + 1| — |x; — 1])
(i=1, 2), one has

£1 zdiag{l, 1}, £2 =0.

For various p, the obtained maximum upper bounds
(MUBSs) by Corollary 1, Theorem 1 and some similar
methods are listed in Table 1. The results show that the
MUBs by Theorem 1 outperform others, illustrating that
the proposed robust passivity criterion is less conservatism
than existing robust passivity criteria. Moreover, the ob-
tained MUBs by Theorem 1 are larger than those by
Corollary 1, which means that the proposed negative con-
dition of the cubic polynomial is more advanced than that
in [35].

Example 2: Consider the following delayed neural
networks (35) with parameters:

A= {2.2 0.0] W, = [ 1.2 1.0}’

0.0 1.8 -0.2 03
0.8 0.4 10 00
W= {0.2 0.1} Ci= [0 1] G2 = {0 0}’

and the nonlinear function g;(x;) = 0.5(|x; + 1| — |x; — 1])
(i=1, 2), one has

£1 :diag{l, 1}, Ez =0.

Table 1. The MUBs h for various u (Example 1).

Table 2. The MUBs h for various u (Example 2).

1 03 0.5 0.7 1.0
[7] 1909 | 1900 | 1.895 | 1.887
8] 2135 | 2.054 | 1915 | 1.907
[10] 2411 | 2311 | 2233 | 2.186
[11] 2930 | 2.665 | 2.499 -
[13] 3.169 | 2910 | 2767 | 2562
Corollary 1 3541 | 2947 | 2781 | 2.697
Theorem 1 4163 | 3330 | 3.053 | 2.953

u 0.5 0.9 1.0
[7] 3.043 2.842 2.803
[15] 3.104 2.906 2.881
[9] 3.112 2.941 2.905
[10] 3.587 3.220 3.184
[13] 3.656 3.322 3.180
[23] 5.344 3.684 -
Corollary 2 4.863 3.578 3.542
Theorem 2 5.507 3.926 3.898
1
—xl(t)
0.5 —x,(0)
\
= -~ TN\
=0/ T
-0.5
-1 ! : : !
0 5 10 15 20 25 30 35 40 45

Time (s)

Fig. 1. State response of delayed neural networks (35).

For Example 2, by [7,9,10,13,15,23], Corollary 2, and
Theorem 2, the MUBs # for various p are listed in Ta-
ble 2. From Table 2, the obtained results by Theorem 2 are
extremely superior to other methods in [7,9,10,13,15,23],
and Corollary 2. Furthermore, given the initial state x(0) =
[1, —1])7 and a time-varying delay function /() = 23 4
3 '5207 sin (SSZW) . The state responses of delayed neural net-
works (35) are shown in Fig. 1, and the effectiveness of

the proposed method can be checked.

5. CONCLUSION

In this paper, the passivity analysis for delayed neural
networks has been studied. A sufficient condition on the
cubic polynomial inequality and a new augmented LKF
have been developed. Improved passivity criteria for de-
layed neural networks have been derived. Finally, the su-
periority of the improved passivity criteria has been veri-
fied through numerical examples.
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