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Fixed Range Horizon MPPI-based Missile Computational Guidance for
Constrained Impact Angle
Ki-Pyo Kim and Chang-Hun Lee* �

Abstract: This paper presents a new computational guidance algorithm based on the model predictive path integral
(MPPI) control for missiles with the impact angle, seeker’s look angle, and acceleration constraints. The MPPI con-
trol is one of the optimization approaches using the stochastic process, and the optimal control input is determined
using sample trajectories generated by propagating the system model. Thus, the MPPI control can be considered as
a data-driven method for solving nonlinear and constrained optimization problems. The proposed guidance algo-
rithm consists of the proportional navigation (PN) guidance command with a time-varying gain to be optimized at
every guidance cycle by utilizing the iterative path integral technique in conjunction with the importance sampling
under the model predictive control (MPC) philosophy. Unlike existing approaches, this approach allows us to ef-
fectively solve nonlinear guidance problems without the convexification or linearization process. It can also adapt
to environmental changes by reflecting the current system state variables. Furthermore, unlike other computational
guidance approaches, the proposed algorithm does not rely on a dedicated solver for optimization problems. In
this study, numerical simulations are performed to investigate the effectiveness and applicability of the proposed
guidance algorithm.

Keywords: Computational guidance, impact-angle-control, missile guidance, model predictive path integral
(MPPI) control.

1. INTRODUCTION

Over the past several decades, in the guidance prob-
lems, impact angle control has been widely considered to
maximize the warhead effect for the anti-ship and anti-
tank missile systems. The most commonly used approach
for the impact angle control is to modify the conventional
proportional navigation (PN) [1] guidance by adding bias
terms or shaping the navigation constant. To this end, sev-
eral variants of PN guidance laws have been studied, such
as biased PN, gain-shaping PN, or switched-gain PN. In
[2], PN guidance with a time-varying term was proposed
to achieve the impact angle constraint. The authors in [3]
proposed a biased PN guidance providing the desired im-
pact angle without the time-to-go information. In [4], an
interception angle control guidance was developed based
on the PN guidance with the optimal bias term. The au-
thors in [5] introduced PN guidance in conjunction with a
gain shaping technique for impact angle control. In [6], a
switched-gain PN law was devised for impact angle con-
trol.

Another approach is to apply the optimal control theory
[7] to guidance problems with impact angle constraints.
This approach relies on the linear-quadratic (LQ) control

with the linear approximation of the nonlinear engage-
ment geometry in a near-collision course (NCC). In [8], an
optimal impact-angle-control guidance for arbitrary mis-
sile dynamics was proposed. A time-to-go weighted opti-
mal guidance providing the desired impact angle was de-
veloped in order to shape guidance command [9]. Gen-
eralized formulation of optimal guidance with impact an-
gle constraint was studied in [10]. This guidance law was
further extended by considering autopilot lag and varying
missile velocity in [11]. Recently, the physical meaning
of optimal guidance law with impact angle constraint was
investigated in [12].

The guidance problem with the impact angle constraint
is indeed a highly nonlinear control problem due to non-
linear kinematics, the requirement of high precision, and
the limitation of the control energy. In this context, the
nonlinear control approach has also been used for accom-
plishing impact angle control. In [13,14], the sliding mode
control (SMC) has been applied to impact angle control
problems. In [15], an impact angle control guidance law
based on the nonsingular terminal sliding mode control
was studied. In [16], a homing guidance with an impact
angle constraint while ensuring the finite-time conver-
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gence was studied. A nonlinear differential game-based
guidance law with an impact angle constraint was sug-
gested in [17]. In [18], an impact angle control guidance
was developed based on the feedback linearization control
methodology. In [19], the state-dependent Riccati equa-
tion (SDRE)-based approach has been applied to guidance
problems with the impact angle constraint.

The previous studies on the impact angle control guid-
ance are able to provide the desired impact angle, however
these approaches have limited scalability for considering
other important practical constraints, such as the seeker’s
field-of-view (FOV) limit or the maximum acceleration
limit. As violation of these constraints results in severe
miss distance at the terminal guidance phase, the satis-
faction of these constraints is also important as much as
achieving the impact angle control. Although some works
on impact angle control with the FOV limit have been re-
ported recently [20-23], they still provided only limited
solutions for other practical constraints. These PN-based
guidance laws can control the impact angle with the FOV
constraint, but they have a deficiency in effectively re-
sponding to the practical constraint on the maximum lat-
eral acceleration of the missile. Although there is a simple
method to react to large guidance commands by clipping
the commanded acceleration at the allowable bound, this
is unsuitable for severe saturation. In addition, for reliable
guidance performance even in inevitable uncertainties, the
guidance law should have the ability to adjust PN gains
appropriately in a closed-loop form. Here, the closed-loop
application means that guidance gains are adequately de-
termined online by solving the nonlinear guidance prob-
lem in each guidance cycle by utilizing the current states
as the initial values [24].

In this context, the computational guidance concept has
recently been introduced [25] with the rapid development
of embedded computational capability. The main char-
acteristics of the computational guidance framework are
summarized as numerical algorithms and onboard compu-
tation involving iterations [26]. One of possible enablers
for the computational guidance is the convex optimiza-
tion [27-30], and it has been recently applied to guidance
problems for various aerospace systems [31-33] includ-
ing missile systems [24,34-37]. An impact angle control
guidance with look angle constraint and maximum accel-
eration command limit was studied by utilizing the convex
optimization in [24]. In [34], successive convex program-
ming was applied to guidance problems for hypersonic
missile systems. A midcourse guidance algorithm for air-
to-ground missiles has been proposed based on the convex
programming in [35]. The authors in [36] proposed a mid-
course guidance algorithm for guided rockets using se-
quential convex programming. In [37], an impact time and
angle control guidance algorithm was studied based on
L1-penalized sequential convex programming. In the con-
vex optimization-based approach, it is required that non-

linear and nonconvex guidance problems are converted
into a special class of convex optimization problems such
as linear programming (LP), second-order cone program-
ming (SOCP), and semi-definite programming (SDP) by
applying appropriate convexification techniques [31]. As
the convexification procedure highly depends on types of
problems, it is not always possible for all types of prob-
lems. Namely, it implies that convex optimization-based
approaches can only handle a narrow type of problem with
specific performance index that can be transformed into
the convex programming problems. Furthermore, these
approaches require a dedicated solver to determine opti-
mal solutions for implementing them. This is still an open
and challenging issue in the convex optimization-based
approach.

For the computational guidance, another potential
framework would be the model predictive path integral
(MPPI) control. This is mainly based on the information-
theoretic interpretation of optimal control using Kullback-
Leibler (KL)-divergence and free energy [38], while it was
previously based on the linearization of Hamilton-Jacobi-
Bellman (HJB) equation and application of Feynman-Kac
lemma [39]. The main idea of MPPI control is to sample
thousands of trajectories in real-time from the system dy-
namic model and update the control inputs based on the
cost of sampled trajectories by utilizing the importance-
sampling technique within the context of stochastic opti-
mal control [40]. After evaluating each sampled trajectory
according to the predefined cost function, the control se-
quence is updated at each guidance cycle. In that sense, the
MPPI control can be considered as a data-driven method
for solving nonlinear and constrained optimization prob-
lems. One of the merits of the MPPI control is that there is
no need for derivative information of the system because
it is a sampling-based open-loop method. In addition, non-
linear optimal control problems with nonconvex objective
and constraint functions can be solved without lineariza-
tion or convexification [38] process. Moreover, it does
not require any dedicated solver for solving optimization
problems, unlike the convex optimization-based method.
Last but not least, the MPPI control can be thought of as
a more efficient approach to take advantage of the par-
allel nature of sampling by using a graphics processing
unit (GPU) to sample thousands of trajectories from the
nonlinear dynamics [41]. Accordingly, the MPPI con-
trol could be a potential approach for complementing
the convex optimization-based approach. Recently, there
are some studies applying the MPPI control to various
autonomous systems such as an aggressive autonomous
driving car [42,43], a fixed-wing aircraft for complex
maneuvers [44], a quadrotor navigation in 2D clustered
environments [45], and a landing guidance for rotorcraft
[46]. On the contrary, few papers applying the MPPI con-
trol to missile guidance problems [47,48] are reported in
open literature. More specifically, the use of the MPPI
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control in missile guidance application is still in the early
stage compared to other approaches, including the convex
optimization-based method. We still need to study how to
make it work.

In this context, this paper aims to investigate the feasi-
bility and potential capability of the MPPI control frame-
work in the missile guidance applications. To be more spe-
cific, we establish a procedure and describe the detailed
formulation of missile guidance problems to be solved by
the MPPI control method. The optimal guidance prob-
lem considered is to perform the impact angle control
against a stationary target while satisfying the practical
limits (i.e., the seeker’s FOV limit and the maximum ac-
celeration bound) and minimizing the control energy. To
this end, a guidance command is first assumed as the pro-
portional navigation with a time-varying navigation gain
(or PN gain) in the proposed method. Using the impor-
tance sampling, an iterative path integral optimizes the PN
gain under the model predictive control (MPC) setup. The
obtained PN gain is then updated using a stochastic opti-
mal approach at every guidance cycle. In order to address
the issue of trajectory lengths that vary while always in-
cluding the target’s terminal point, we utilize the relative
range as a new independent variable. This approach, re-
ferred to as fixed range horizon MPPI, guarantees consis-
tent trajectory lengths at every iteration. For clarity, it is
worth mentioning that the objective of this study is not
to replace the existing approaches, including the convex
optimization-based method in the missile guidance appli-
cations, but to extend the methodology with an appealing
new addition.

The main contributions of this study can be summarized
as fourfold: 1) For solving nonlinear and constrained guid-
ance problems, we propose a new computational guidance
algorithm based on the MPPI control that does not require
any dedicated effort for convexification or linearization
compared to other computational guidance approaches. 2)
This study establishes a procedure and presents a detailed
formulation for solving nonlinear missile guidance prob-
lems using the MPPI control scheme. 3) The proposed
method is implementable in a closed-loop fashion to re-
act to unexpected situations or uncertainties by iteratively
solving the nonlinear guidance problem at each guidance
cycle using the current states as the initial values. Thus, the
proposed method would potentially improve the guidance
performance compared to existing approaches. 4) We pro-
pose a generalizable computational guidance strategy for
optimization problems that does not require any dedicated
solver.

This paper is organized as follows: Section 2 describes
the problem formulation, including the engagement kine-
matics, objective function, and constraints for guided mis-
siles intended to apply the MPPI control. Section 3 briefly
reviews the basic MPPI algorithm. In Section 4, a guid-
ance algorithm based on the MPPI control is discussed.

The simulation results are presented in Section 5. Finally,
the conclusions are offered in Section 6.

2. PROBLEM DEFINITION

This section explains the optimal guidance problem
considered in this study. First, the nonlinear engagement
kinematics against a stationary target is discussed. In-
spired by [24], the guidance problem is formulated in a
way to optimize a time-varying PN gain to satisfy the prac-
tical constraints in this study.

2.1. Nonlinear engagement kinematics
Fig. 1 illustrates the planar homing engagement geom-

etry against a stationary target. In this figure, the notation
X−Z represents the inertial reference frame. The points M
and T denote the missile and target, respectively. The vari-
ables r and σ denote the relative range and line-of-sight
(LOS) angle between the missile and target, respectively.
The notation VM denotes the missile speed, and the vari-
able aM represents the normal acceleration. aM is acting
perpendicular to the velocity vector of the missile, which
contributes to altering its direction. The parameter γ f is
the desired impact angle. The variables λM and γM are the
look angle and flight path angle. By definition, the look
angle is given by

λM , γM−σ . (1)

The sign of the angles is defined as positive for the coun-
terclockwise direction and negative for the clockwise di-
rection. From Fig. 1, the nonlinear engagement kinematics
in the polar coordinate system is written as

ṙ =−VM cosλM, (2)

rσ̇ =−VM sinλM, (3)

γ̇M =
aM

VM
. (4)

Note that the normal acceleration aM can be considered as
the control input (i.e., u = aM) in the nonlinear engage-
ment kinematics.

Reference Line

O

Fig. 1. Engagement geometry.
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2.2. Formulation of optimal guidance problem
In this study, we consider an energy optimal guidance

problem providing the desired impact angle and zero miss
distance while meeting the seeker’s FOV limit and max-
imum acceleration bound. The final boundary conditions
for the interception and impact angle control can be writ-
ten as

r (t f ) = 0, γM (t f ) = γ f , (5)

where t f is the final time. From (1) and (3) with (5), the
final boundary conditions can be equivalently written as

λM (t f ) = 0, σ (t f ) = γ f . (6)

To maintain the lock on condition, the look angle should
be lied in the seeker’s FOV limit. This constraint can be
expressed as

|λM| ≤ λM max, (7)

where λM max < π/2 is the maximum allowable look angle.
In addition, the constraint on the maximum acceleration
bound is given by

|aM| ≤ aM max. (8)

In this study, the seeker’s FOV limit λM max and maximum
acceleration bound aM max are assumed to be known be-
cause those can be readily obtained from the missile sys-
tem. Finally, the optimal guidance problem with the prac-
tical constraints can be formulated as follows:

P1 : min
aM

J =
∫ t f

t0
aM(t)2dt,

subject to (1)-(5), (7)-(8),

where t0 is the initial time. For convenience, the above
problem is called P1 in this study. In the above optimal
problem, the normal acceleration aM can be regarded as a
free variable to be optimized.

2.3. Alternative formulation of optimal guidance
problem

A direct finding of the optimal control history of aM in
the problem P1 might cause a slow convergence because
possible solution space of aM is generally huge. In other
words, aM is unstructured in that case. Thus, by taking the
structured form of the basic PN guidance command, we
can mitigate the problem complexity, which helps improve
the convergence characteristic. Furthermore, the previous
studies on the trajectory shaping or the command shaping
guidance [49-52] provide an insight that all guidance laws
can be expressed as an alternative form of PN guidance
with a free variable to be determined, as follows:

aM = N (t)VMσ̇ , (9)

where the variable N (t) denotes the time-varying gain.
This fact implies that the free variable aM can be struc-
tured as given in (9), and the time-varying gain can be
defined as a new control input.

u = N. (10)

Note that the time dependence of variables is suppressed
for simplicity. By augmenting the structured aM with u
into the problem P1, the solution space of aM can be re-
duced. In order to exploit this favorable property of the
structured aM , we reformulate the optimal guidance prob-
lem with respect to u. Substituting (3), (9), and (10) into
(4) gives

γ̇M =
aM

VM
=−VM sinλM

r
u. (11)

By combining (1), (3), and (11), we have

λ̇M =−VM sinλM

r
(u−1) . (12)

In addition, by substituting (3) into (9), the maximum ac-
celeration bound can be rewritten as

|aM|=
∣∣∣∣uV 2

M sinλM

r

∣∣∣∣≤ aM max. (13)

Accordingly, the alternative formulation of the optimal
guidance problem with the practical constraints can be
stated as follows:

P2 : min
u

J =
∫ t f

t0
aM(t)2dt

=
∫ t f

t0

V 4
M sin2

λM (t)

r (t)2 u(t)2dt,

subject to (1)-(5), (7), (12)-(13).

For convenience, the above problem is called P2 in this
study. In the above optimal problem, the time-varying gain
(N = u) can be regarded as a free variable to be optimized.
In the next section, the MPPI control will be used to solve
the problem P2 instead of the problem P1.

3. GENERIC MPPI FRAMEWORK

For the completeness of the paper, this section describes
the general MPPI framework that is an essential ingre-
dient of the proposed algorithm. The MPPI control is a
probabilistic MPC method. As it is a sampling-based and
non-derivative approach, it can be applied to the optimal
control problems expressed by nonlinear and nonconvex
equations without reformulation or convexification. The
central idea of MPPI is to sample thousands of trajecto-
ries based on Monte-Carlo (MC) simulations using the
stochastic system dynamic model. To get optimal control
variations of the nominal control sequence, the trajectory
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of each sample is then analyzed using specified cost func-
tions. This process is repeated at each guidance cycle [45].

In the MPPI control framework, it is assumed that the
discrete-time stochastic dynamical system is given as fol-
lows:

xt+1 = F (xt ,vt) ,

vt = ut + ε(t), where, ε(t)∼ N (0,Σu) , (14)

where t ∈ {0, 1, 2, · · · , T −1} represents the index of dis-
crete times, in which 0 and T represent the indexes of the
start and final time, respectively. xt ∈ Rn and vt ∈ Rm de-
note the state and the stochastic control input vectors at
time t. The stochastic control input vt is defined as the
element-wise sum of ut ∈ Rm and ε(t) ∈ Rm, where ut is
the nominal control input vector, and ε(t) is the diffusion
of control input vector given by the zero-mean Gaussian
noise with a variance Σu.

Given a finite time-horizon t ∈ {0, 1, 2, · · · , T − 1},
we can define a sequence of control and noise inputs over
some number of time steps T as

V = {v0,v1, · · · ,vT−1},
U = {u0,u1, · · · ,uT−1},
E = {ε0, ε1, · · · , εT−1}. (15)

The elements in V are the actual control input at time t and
its distribution will be vt ∼ N(ut , Σu). If we define Ω as
the sample space, the sequence is also a random variable
defined as mapping V : Ω→ ΩV where ΩV = Rm×{0,
1, · · · , T − 1}. By changing the control input U , we can
alter the probability distribution of V [38]. The ultimate
goal of the stochastic optimal control is to find a control
sequence V ∈ Rm×T , which minimizes the expectation of
the cost function over all sampled trajectories produced by
the dynamic model as given in (14).

There are interesting probability distributions created
by V . First, there is P as the probability distribution in the
uncontrolled system i.e., (U ≡ 0). Second, there is Q as the
probability distribution in the controlled system. Lastly,
Q∗ denotes an abstract optimal distribution. The probabil-
ity density functions for these distributions are denoted as
p, q, and q∗, respectively [38]. The density functions of p
and q have simple forms as follows [39,53]:

p(V ) =
T−1

∏
t=0

Z−1 exp
(
−1

2
vT

t Σ
−1
u vt

)
,

q(V ) =
T−1

∏
t=0

Z−1 exp
(
−1

2
(vt −ut)

T
Σ
−1
u (vt −ut)

)
,

Z−1 = ((2π)m |Σu|)
1
2 . (16)

Given an initial state x0, V can produce the system state
trajectories through the system model F . Accordingly, we
can define the space of all state trajectories as

Gx0 : ΩV →Ωτ ,

where τ denotes the state trajectories of space we can ex-
press Ωτ ⊂ Rn × {0, · · · ,T − 1}. Now, we can define a
state-dependent cost function of the trajectory as follows:

C (x1,x2, · · · ,xT ) = φ(xT )+
T−1

∑
t=1

q(xt), (17)

where φ is a terminal cost and q is an instantaneous state
cost. To define the cost of the state trajectories, we de-
fine S : ΩV →R+ over input sequences by the composition
[38] S = C ◦Gx0 . Now, let λ be a positive scalar variable.
Then, we can express the free-energy of the control system
as follows:

F(V ) =−λ log
(
EP

[
exp
(
− 1

λ
S(V )

)])
. (18)

In (18), the expectation can be rewritten with respect to Q
by adding the likelihood ratio p(V )/q(V ) and its bound
by Jensen’s inequality as follows [40,54]:

F(V ) =−λ log
(
EQ

[
p(V )

q(V )
exp
(
− 1

λ
S (V )

)])
≤−λEQ

[
log
(

p(V )

q(V )
exp
(
− 1

λ
S (V )

))]
.

In the likelihood ratio term, q(V ) is controllable by U as
shown in (16). Thus, it is possible to find q∗(V ) minimiz-
ing the cost function S(V ) by choosing appropriate U . If
we make the likelihood ratio p(V )/q(V ) be proportional
to the inverse of exp

(
− 1

λ
S (V )

)
, the term inside the loga-

rithm will be a constant. Accordingly, the cost over input
sequence S(V ) is bounded by the free energy of system.
When the bound is tight with an optimal control distribu-
tion, the optimal distribution Q∗ can be defined with the
probability density function q∗(V ) as follows [38]:

q∗ (V ) =
1
η

exp
(
− 1

λ
S(V )

)
p(V ), (19)

where η is the normalizing factor. In other words, we can
get the optimal distribution by minimizing a gap between
the controlled distribution Q and the optimal control dis-
tribution Q∗. We can use the definition of KL divergence
to measure the closeness between the controlled distribu-
tion and the optimal one. Therefore, we can rewrite this
optimal control problem as follows:

U∗ (V ) = argmin
U

DKL (Q∗ ‖Q) ,

where the KL divergence is expressed as

DKL (Q∗ ‖Q)

=
∫

ΩV

q∗(V ) log
(

q∗(V )

q(V )

)
dV

=
∫

ΩV

q∗(V ) log
(

q∗(V )p(V )

p(V )q(V )

)
dV
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=
∫

ΩV

q∗(V ) log
(

q∗(V )

p(V )

)
−q∗(V ) log

(
q(V )

p(V )

)
dV.

(20)

From (16) and (19), it can be readily observed that the first
term of (20) does not depend on U since p(V ) and q∗(V )
are independent of U . Therefore, U∗ can be expressed as
follows:

U∗(V ) = argmax
U

∫
ΩV

q∗(V ) log
(

q(V )

p(V )

)
dV. (21)

In (21), we can calculate the term q(V )/p(V ) by using
(16). Then, we have∫

ΩV

q∗(V ) log
(

q(V )

p(V )

)
dV

= Σ
T−1
t=0

(
−1

2
uT

t Σ
−1
u ut +uT

t

∫
q∗(V )Σ−1

u vtdV
)
.

(22)

Equation (22) is a concave function with respect to ut .
Therefore, by calculating the gradient of (22) with respect
to ut , we can get the optimal u∗ as follows:

u∗t =
∫

q∗ (V )vtdV. (23)

As shown in (23), if we could sample from the optimal
distributions Q∗, we could compute u∗ by averaging them.
Since sampling from the optimal distribution Q∗ is not
available directly, the MPPI framework uses the impor-
tance sampling method. To this end, we rewrite (23) with
respect to Q as follows:

u∗t =
∫

q(V )
q∗(V )p(V )

p(V )q(V )
vtdV.

For convenience, the importance sampling weight w(V )
can be defined as

w(V ),
q∗(V )p(V )

p(V )q(V )
.

Finally, the optimal control input can be rewritten as the
expectation with respect to Q as follows [38]:

u∗t =
∫

q(V )w(V )vtdV = EQ [w(V )vt ] . (24)

Because V is equal to U +E and U is a given nominal con-
trol sequence, w(V ) becomes w(E). The importance sam-
pling weight w(E) can be expressed by using (16) and (19)
as follows:

w(E) = 1
η

exp
[
− 1

λ

(
S (U +E)

+λ

T−1

∑
t=0

1
2

utΣ
−1
u (ut +2εt)

)]
. (25)

In the above equation, η can be approximated using the
Monte-Carlo estimate

η =
K

∑
k=1

exp
[
− 1

λ

(
S (U +Ek)

+λ

T−1

∑
t=0

1
2

utΣ
−1
u

(
ut +2εk

t

))]
,

where k denotes the index of sampling and K is the num-
ber of random samples. From (24) and (25), we can have
the optimal control input in the form of an iterative update
law

ui+1
t = ui

t +
K

∑
k=1

w(Ek)ε
k
t . (26)

According to the previous studies [38,40,45,54], the state
trajectory cost considering the likelihood ratio is denoted
by S̃. We can rewrite (26) with S̃ as follows:

ui+1
t = ui

t +
∑

K
k=1 exp

(
− 1

λ
S̃k(V )

)
εk

t

∑
K
k=1 exp

(
− 1

λ
S̃k(V )

) ,

where

S̃k(V ) = Sk(V )+λ

T−1

∑
t=0

1
2

uT
t Σ
−1
u

(
ut +2εk

t

)
.

Algorithm 1 summarizes the iterative MPPI control up-
date law, in which the optimization and execution progress
simultaneously. The state trajectory is optimized, and a
single control u0 is then executed with SendToActuators().
In the next loop, the trajectory is optimized based on the
unexecuted portion of the previous control sequence for a
warm start.

4. PROPOSED GUIDANCE ALGORITHM

In this section, the MPPI control framework is applied
to the problem P2. To this end, the free-final-time problem
is first converted into a fixed-final-range problem by in-
troducing the range as an independent variable. The cost
functions for the MPPI control are designed in order to
accomplish the prescribed guidance operational goal. Fi-
nally, the problem P2 is solved by the MPPI control in con-
junction with the receding horizon control scheme.

4.1. Fixed-final-range problem formulation
In general, the guidance problems, including the prob-

lem P2, are inherently characterized as the free-final-time
problem. It means the final time t f will be varying depend-
ing on engagement scenarios. Moreover, for a fixed time
step ∆t, the length of the time sequence t ∈ {0, 1, 2, · · · ,
T − 1} will also be different. It could be an obstacle for
determining the terminal cost function for the MPPI con-
trol. Accordingly, to handle the free-final-time aspect of
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Algorithm 1: Iterative MPPI control update law
[38].
Given: F: Transition Model;
K: Number of samples;
T: Number of timesteps;
(u0,u1, ...uT−1): Initial control sequence;
Σu,φ ,q,λ : Control hyper-parameters;
while task not completed do

x0← GetStateEstimate();
for k← 0 to K−1 do

x← x0;
Sample Ek = {εk

0, ε
k
1, · · · , εk

T−1};
for t← 1 to T do

xt ← F
(
xt−1,ut−1 + ε

k
t−1

)
;

S̃
(
Ek
)
+=

q(xt)+
λ

2 ut−1Σ−1
u

(
ut−1 +2εk

t−1

)
;

S̃
(
Ek
)
+= φ (xT );

β ←mink
[
S̃
(
Ek
)]

;
η ← ∑

K−1
k=0 exp

(
− 1

λ

(
S̃
(
Ek
)
−β

))
;

for k← 0 to K−1 do
w
(
Ek
)
← 1

η
exp
(
− 1

λ

(
S̃
(
Ek
)
−β

))
for t← 0 to T −1 do

ut += ∑
K−1
k=0 w

(
Ek
)
εk

t ;

SendToActuators(u0);
for t← 1 to T −1 do

ut−1← ut ;

uT−1← Initialize(uT−1);

the problem, a new independent variable is used in this
study. From (2) with a given condition λM max < π/2, it
can be predicted that the range is monotonically decreas-
ing during the engagement as follows:

ṙ =−VM cosλM < 0. (27)

This fact implies that the range r can be used as the inde-
pendent variable instead of time t. If the range is chosen
as the independent variable, the final range can be always
fixed as r(t f ) = 0. Additionally, the length of the range
sequence can be fixed as well. These are beneficial for
determining the terminal cost function in the MPPI con-
trol framework. To leverage these favorable characteris-
tics, the nonlinear engagement kinematics for the problem
P2 can be rewritten with respect to r. From (2), (3), and
(12), we have

σ
′ =

dσ

dr
=

dσ

dt
dt
dr

=
tanλM

r
,

λ
′
M =

dλM

dr
=

dλM

dt
dt
dr

=
tanλM

r
(u−1) . (28)

Note that u in (28) becomes N(r) in that case. If the state
variables are defined as x , [σ , λM]

T and x′ represents

dx/dr, the nonlinear engagement kinematics with respect
to r can be rewritten as follows:

x′ = f (x)+G(x)u, (29)

where

f (x),
[ tanλM

r
− tanλM

r

]
, G(x),

[
0

tanλM
r

]
. (30)

From (6), the final boundary conditions with respect to r
can be rewritten as

λM (r f ) = 0, σ (r f ) = γ f . (31)

Likewise, the look angle and acceleration bound can also
be rewritten in terms of r as

|λM(r)| ≤ λM max, (32)∣∣∣∣∣u(r)VM (r)2 sinλM (r)
r

∣∣∣∣∣≤ aM max. (33)

Finally, the fixed-final-range problem can be formulated
as follows:

P3 : min
u(r)

J =
∫ r f

r0

aM(r)2 (−dr)

=
∫ r f

r0

R(r)u(r)2 (−dr),

subject to (29)-(33), (34)

where R(r) =
(

VM (r)3 tanλM (r)sinλM (r)
)
/r2. For con-

venience, the above problem is called P3 in this study.

4.2. Range discretization
As the MPPI control framework is suited in a discrete

domain problem, a continuous domain problem P3 needs
to be transformed into a discrete domain problem. Assum-
ing that the range r is discretized into Nh evenly distributed
points as

rh = r0 +h∆r, ∀h ∈ [0,Nh] ,

with

∆r ,
r f − r0

Nh
, (35)

where r0 and r f represent the initial and final range, re-
spectively. h denotes the index of the discretized range
steps as shown Fig. 2. ∆r is a negative value due to the
condition of (27).

The control input sequence to be optimized at h is given
as

Uh = {u0,u1, · · · ,unc}. (36)

where nc is the number of control steps. As the missile
approaches the target, the range decreases. Therefore, the
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h
2r

Fig. 2. Range discretization.

Table 1. The control steps according to the range step h.

h nc Control steps
0 Nh−1 {0,1, · · · ,nc−1,nc}
1 Nh−2 {0,1, · · · ,nc}
...

...
...

Nh−2 1 {0,nc}
Nh−1 0 {nc}

number of control steps nc is also decreased. Table 1 ex-
plains the control steps according to the range step h.

In this study, the Euler method is used to perform the
numerical integration of the system equation in (29) and
(30).

xh+1 = xh + x′h∆r

= xh +[ f (xh)+G(xh)uh]∆r, ∀h ∈ [0, nc] . (37)

If we consider the diffusion adding directly through the
control input with variance Σu, the deviation of the state
x′h∆r in (37) can be expressed as follows:

x′h∆r = f (xh)∆r+G(xh)
(

uh∆r+
√

Σudω

)
= f (xh)∆r+G(xh)

(
uh∆r+ z

√
Σu∆t

)
, (38)

where dω ∈ Rp is a Brownian disturbance. If z denotes
a standard normal Gaussian random variable, we can ex-
press the Brownian disturbance with z

√
∆t after time step

∆t [39,40]. From (2), the time step ∆t becomes

∆t =− ∆r
VM cosλM

. (39)

By substituting (39) into (38), the deviation of the state
after ∆r can be rewritten as follows:

x′h∆r = f (xh)∆r+G(xh)

(
uh∆r+ z

√
− Σu∆r

VM cosλM

)

=

[
f (xh)+G(xh)

(
uh+z

√
− Σu

∆rVM cosλM

)]
∆r

= [ f (xh)+G(xh)(uh + εh)]∆r

= [ f (xh)+G(xh)vh]∆r.

We can define the discretized diffusion of the control input
εh in (15) as follows:

εh = z

√
− Σu

∆rVM cosλM
.

As given in (38), we can see the system dynamics to be
solved is affine in control and Brownian disturbance. Ac-
cordingly, by referring [40], we can determine the value
of λ in (18) to satisfy the linear PDE assumption BBT =
λGR−1GT in the state trajectory value equation, where B
denotes the diffusion matrix of the Brownian disturbance.
To get the expression for B, we rewrite the dynamics in
the following form:

x′h∆r = f (xh)∆r+G(xh)uh∆r+B(xh)dω. (40)

Here, B is equal to G
√

Σu as shown in (38) and (40). By
substituting B into the assumption, we can determine the
variable λh at rh as follows:

BBT = G
√

Σu

(
G
√

Σu

)T
= λGR−1GT ,

λh = RhΣu

=
V 3

M tanλM (rh)sinλM (rh)

r2
h

Σu,

where Rh is the weight of control uh, which is defined in
(34) [40].

4.3. Cost function design and normalization
This section describes the design procedure of the cost

function to apply to the guidance problem P3 in the MPPI
framework. The guidance objective is to guide the missile
to the target while satisfying the desired impact angle with
the look angle and acceleration constraints.

In (17), the cost of the state trajectory is composed of
the terminal and instantaneous state costs. In other studies
[39,40], the instantaneous state costs are also called run-
ning costs. It is worth noting that the control costs do not
appear in the expression of (17). This means that the MPPI
framework optimizes the controls without ever referring to
the controlled dynamics of the system or the control costs.
This is because the controls in the MPPI framework are
linked together in passive dynamics through the assump-
tion of noise and controls. The optimization proceeds con-
sidering the control matrix G and the control costs, but
only implicitly [40]. Accordingly, we can design the ter-
minal cost function for the desired impact angle and the
running cost ones for the seeker’s FOV limit and the max-
imum acceleration bound as follows:

φ (xnc+1) = (xnc+1− x f )
2 ,

q(xh),

{
qmax, if |xh|> xmax,

(xh/xmax)
2 , otherwise,

(41)

where xnc+1 is the terminal state and x f is its desired state.
In (41), xh is the instantaneous state at h, and xmax is the
maximum limited value for the state x. qmax is the user-
defined constant cost value when xh is over xmax. Finally,
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we can express the cost vector ccck (x0,x1, · · · ,xnc) of the k-
th state trajectory for the guidance problem P3 as follows:

ccck (x0,x1, · · · ,xnc)

=

[
Φk

Q̃k

]
=


φ (λM (r f ))+φ (σ (r f ))

nc

∑
i=0

(
wλM q(λM (ri))+waM q(aM (ri))

+
λ k

i
2 u(ri)Σ−1

u {u(ri)+2ε(ri)
k}
)
 ,

(42)

where Φk denotes the terminal cost and Q̃k is the sum of
the instantaneous running cost with the likelihood ratio for
all control steps from 0 to nc. wλM and waM are the normal-
ized weights of each instantaneous running cost q(λM (ri))
and q(aM (ri)). As shown in (42), the cost values are given
by the function of the state variables which have signifi-
cantly different physical quantities. Accordingly, normal-
izing each cost value is required to reduce variability due
to individual physical characteristics. To this end, we de-
fine the normalization function as follows:

normalize(ccci) =
ccci− cmin

cmax− cmin
×SF, for i ∈ [1,2] ,

where ccci ∈ RK denotes the cost vector element for the K
state trajectories. cmin and cmax are the minimum and maxi-
mum values of ccci, respectively. SF denotes the scale factor
of the normalized values. To add the terminal and running
costs, the cost weight vector wc is defined. We also nor-
malize wc as follows:

wc =

[
wΦ

wλM +waM

]
1

wΦ +wλM +waM

, (43)

where wΦ is the weight of the terminal cost vector Φ. With
the normalized cost weight vector, we can construct the
cost vector S̃∈RK from the K state trajectories as follows:

S̃ = wT
c cccn = wT

c

[
Φn

Q̃n

]
,

where Φn and Q̃n are the normalized Φ ∈RK and Q̃ ∈RK ,
which are the cost vectors for K state trajectories.

4.4. MPPI-based computational guidance algorithm
Algorithm 2 describes the details of the MPPI-based

guidance algorithm. The number of range steps and sam-
ples need to be determined to implement the algorithm.
Additionally, we need to design the cost functions and de-
termine cost weight parameters for the guidance problem.
The variance of the input noise and the initial control se-
quences are the design parameters affecting the outcomes
of the guidance solution. In the proposed algorithm, at ev-
ery range step, we take the cost values of nc×K sampled
state trajectories with the initial state and controls. In the
fixed-final-range problem, nc is a variable updated as ex-
plained in Table 1. The K state trajectories are generated

Algorithm 2: MPPI-based guidance algorithm for
impact angle control.

Given f,G: Transition Model;
K: Number of samples;
Nh: Number of range steps;
U0 = {u0,u1, ...uNh−1}: Initial control sequence;
∆r,x0,Σu: Initial system variables;
φ ,q: Cost functions;
wΦ,wλM ,waM : Cost weights;
SGF: Savitzky-Golay Filter;
for h← 0 to Nh−1 do

nc = Nh−h−1;
for k← 0 to K−1 do

xh← x0;
Uh←U0;
Q̃k,L← 0;
Sample Ek = {εk

0, ε
k
1, · · · , εk

nc
};

for i← 0 to nc do
ri← r0 +(h+ i)∆r;
vi← ui + ε

k
i ;

xi+1← xi +{f(xi)+G(xi)vi}∆r;

L← λ k
i

2 uiΣ
−1
u {ui +2εk

i };
Q̃k += wλM q(λM,i)+waM q(aM,i)+L;

Φk← φ(λM(r f ))+φ(σ(r f )) ;
ccck = [Φk Q̃k]T ;

Φn← normalize(Φ) ;
Q̃n← normalize(Q̃) ;
S̃← wT

c cccn ;
β ←mink[S̃];
for i← 0 to nc do

ηi← ∑
K−1
k=0 exp

(
− 1

λ k
i

(
S̃k−β

))
;

for k← 0 to K−1 do
wk

i ← 1
ηi

exp
(
− 1

λ k
i

(
S̃k−β

))
ui += ∑

K−1
k=0 wk

i ε
k
i ;

Usys← SGF(Uh);
xsys,h+1←
xsys,h +{f(xh)+G(xh)clipping(usys,0)}∆r;

for i← 0 to nc−1 do
ui← usys,i+1;

x0← xsys,h+1;

with the noise εk
i . After adding the likelihood ratio to the

running cost, we obtain K normalized costs of the state
trajectory. Through the procedure of calculating the min-
imum value of the state trajectory costs, we can optimize
the current control sequence according to the MPPI algo-
rithm. Additionally, the stochastic nature of the sampling
procedure can lead to jittering in the resulting control,
so we adopt a Savitzky-Golay filter (SGF) to smooth the
output control sequence. Most control systems, including
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missiles, have acceleration limits that the controller must
take into account. The method used in this study is to de-
sign the cost function and clipping function that restricts
system input usys,0 to remain within an allowable accel-
eration range. For the next iteration, the initial state x0 is
updated with the system state xsys,h+1, and the remained
portion of the optimized system control input vector Usys

is assigned to U0 for the warm start.

5. SIMULATION RESULTS

In this section, numerical simulations are performed to
investigate the characteristics and feasibility of the pro-
posed algorithm. First, we verify that the proposed MPPI
control procedure is valid through a well-known energy-
minimization guidance problem. We then examine the ef-
fectiveness of the proposed algorithm for different impact
angle constraints with the look angle and acceleration con-
straints. We also perform the Monte-Carlo simulation and
computation time analysis. Finally, the simulation results
obtained under the proposed algorithm and other algo-
rithms are compared to investigate the characteristics of
the proposed method.

As a baseline engagement scenario in the simulation
study, we consider a ground-launched scenario against a
stationary target. It is assumed that the missile is flying
with a constant velocity of 200 m/s, and the initial flight
path angle is 15 deg. The number of sample trajectories
is chosen as K = 100. This study implements the MPPI-
based guidance algorithm by utilizing GPU on a desktop
with an Intel Core i5-8265U CPU@1.60 GHz device and 8
GB RAM. The NVIDIA GeForce MX250 GPU and MAT-
LAB R2018b software are used for parallel processing and
interface for GPU device memory.

5.1. Validity of MPPI control procedure
According to reference [1,55,56], it has been well-

known that the PN guidance with N = 3 is the optimal
solution for the guidance problem with the control energy
minimization under certain assumptions such as a con-
stant closing velocity, a near-collision course, and more.
This fact is also valid even in the nonlinear problem if the
impact angle is not constrained. Therefore, in this sim-
ulation, the solution obtained by the proposed algorithm
for the same guidance problem will be compared to the
known optimal solution. This is to examine the validity of
the proposed algorithm to the guidance problems.

First, to confirm the fact that N = 3 is the optimal so-
lution under the energy minimization condition, the guid-
ance problem P3 without the impact angle, look angle, and
acceleration constraints is solved by a nonlinear optimiza-
tion algorithm called the interior point method [57]. In this
simulation, it is assumed that a stationary target is located
4 km away from the launch point. For the discretization in
(35), we set Nh = 400, r f = 0 m, and r0 = 4000 m. Fig. 3

shows the optimization results obtained by the nonlinear
optimization algorithm. From Fig. 3(c), we can readily ob-
serve that the optimized PN gain converges to 3. This re-
sult is consistent with the previously known result. In the
terminal phase of Fig. 3(c), N goes to a large value and
converges to zero. As shown in (11), aM depends on the
variable λM , r, and N(= u) . Because aM is not limited, the
system can use the large value of N when λM is very small.
Additionally, when the range-to-go approaches zero, aM

goes to the infinite value, so N has to be zero to mini-
mize the energy consumption. Next, the same guidance
problem is solved by the proposed MPPI control proce-
dure. In this case, the initial control input sequence in
(36) is set to constant values 5, 7, or 9 across the range
steps for each simulation. Additionally, the cost weight
vector (i.e., the design parameters) in (43) is chosen as
wT

c = [1, 0] where wλM and waM are 0. The variance Σu in
(38) is selected as 0.3. Fig. 4 provides the guidance results
determined by the proposed algorithm and the nonlinear
optimization algorithm. To be more specific, Figs. 4(a),
4(b), and 4(c) show the look angle profile, guidance com-
mand profile, and PN gain profile, respectively. As shown
in Fig. 4(c), it can be known that the optimization results
obtained by the proposed algorithms converge to the op-
timal solutions determined by the nonlinear optimization
algorithm, regardless of the initial control input sequence
setting. Fig. 4(a) shows that the look angle also gradually
converges to 0 from the initial value of 15 deg as the range-
to-go approaches 0. It means that the intercept condition
for a stationary target can be successfully achieved by the
proposed algorithm. The results obtained indicate that the
proposed MPPI control procedure is applicable to solving
the nonlinear optimal guidance problems.

5.2. Different impact angles with acceleration con-
straint

We apply the proposed guidance algorithm to the nonlin-
ear constrained impact angle guidance problem. In this
simulation, it is assumed that a stationary target is located
5 km away from the launch point. We set the desired im-
pact angles γ f from −30 to −150 deg at intervals of −15
deg. To test various desired impact angles, we set only
the acceleration bound aM max as 45 m/s2 without the FOV
limits. Accordingly, we set wT

c = [0.91, 0.09] with wλM = 0
in (43). In addition, qmax in (41) is set to 103 and the vari-
ance of control input (i.e., Σu) is set to 0.01. The initial
control input sequence U0 is chosen as shown in Fig. 5(e)
for all cases.

Fig. 5 shows the simulation results of each desired im-
pact angle case. In Fig. 5(a), we can readily see that the
final flight path angles approach their desired impact an-
gles from the initial 15 deg. The errors of the impact an-
gles are recorded under 0.001 deg for all cases. Addition-
ally, as shown in Fig. 5(b), the final look angle of each
case converges to 0, which means the missile successfully
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Fig. 4. The energy optimal guidance solution obtained by

the proposed algorithm.

intercepts the target. Fig. 5(f) shows the resultant trajec-
tories of each case. Fig. 5(d) depicts the acceleration used
to control the flight path angle of the missile, which are
under the value of aM max.

5.3. Different impact angles with look angle and ac-
celeration constraints

In this simulation, the proposed MPPI guidance algorithm
is tested with the nonlinear constrained optimal guidance
problems as given in (34). The same initial engagement
condition used in Subsection 5.2 is considered in this sim-
ulation. We set λM max = 35 deg and aM max = 50 m/s2, re-
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Fig. 5. MPPI simulation results for each desired impact angle with the acceleration constraint.

spectively. The desired impact angles are chosen as γ f =
−30, −45, −60, −75, and −90 deg. Additionally, qmax in
(41) is set to 103 and the variance of control input (i.e.,
Σu) is set to 0.01. The same initial control input sequence
U0 used in the previous section is considered as shown in
Fig. 6(e). In (43), we set wΦ, wλM , and waM as 0.67, 0.27,
and 0.06, respectively. Accordingly, we set the normal-
ized cost weight vector wT

c = [0.67, 0.33] and the normal-
ized weight values of the running costs wλM = 0.82, and
waM = 0.18.

Fig. 6 provides the simulation results for each impact

angle constraint under the proposed algorithm. As shown
in Fig. 6(a), it can be readily observed that the desired im-
pact angle constraints can be achieved in all cases. Figs.
6(b) and 6(d) show that the look angle limit and the ac-
celeration constraint are all met under the proposed algo-
rithm. Additionally, the results in Fig. 6(b) indicate that
the look angles converge to 0 as the missile approaches to
the stationary target. It implies that the proposed guidance
algorithm can successfully satisfy the intercept condition
in all cases as well. The acceleration profiles are plot-
ted in Fig. 6(d). It can be observed that the acceleration
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Fig. 6. MPPI simulation results for each desired impact angle with the acceleration and look angle constraints.

demands increase as the desired impact angles increase.
The corresponding PN gain profiles for different γ f are
depicted in Fig. 6(e). They have similar patterns: starting
with negative values, gradually increasing in the middle,
and converging to a specific value (i.e., 2) at the end. It is
worth pointing out that these gains profiles are optimized
onboard in a closed-loop fashion without relying on any
optimization solvers in the proposed algorithm. The simu-
lation results obtained indicate that the proposed computa-
tional guidance method can be applied to the challenging
issues of the impact angle control problems with the prac-

tical constraints.

5.4. Monte-Carlo simulation and computation time
analysis

In this subsection, we carry out the Monte-Carlo simula-
tion to verify the robustness of the proposed algorithm in
the presence of model uncertainties and disturbances. The
computation time for the proposed algorithm is also ana-
lyzed. For the Monte-Carlo simulation, we generate a total
of 100 simulation cases by disturbing the missile’s initial
relative range, initial velocity, and initial flight path an-
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Fig. 7. Monte-Carlo simulation results for γ f =−90 deg with the acceleration and look angle constraints.

gle using the normal distribution. Each variable’s 3-sigma
(standard deviation) is chosen as 2% (100 m), 10% (20
m/s), and 20% (3 deg), respectively. Furthermore, the ef-
fect of aerodynamic drag on missile velocity is consid-
ered. Additionally, when determining the guidance com-
mand, the drag coefficient is randomly altered by im-
posing 10% uncertainty using the normal distribution to
consider an aerodynamic error or disturbance. The time-
varying velocity is governed by

V̇M =−D/m,

where m is the mass, and D = 0.5ρV 2
MSrefCD represents

aerodynamic drag with the reference area Sref, drag coef-
ficient CD, and the air density ρ . In this simulation, the
desired impact angle is set to −90 deg, and the other sim-
ulation conditions are identical to those in Subsection 5.3.

As shown in Fig. 7, it can be observed that the de-
sired impact angles can be achieved even in the presence
of uncertainties. The look angle and acceleration limits
are all satisfied as well. The resultant mean and stan-
dard deviation values of the impact angles are recorded
as −90.03 deg and 0.05 deg, respectively.
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To examine the computational efficiency of the pro-
posed method, the computation time is measured at each
guidance cycle. Fig. 7(f) shows the resultant mean and
standard deviation values of the computation time for the
Monte-Carlo simulation. Considering the standard devia-
tion, the computation times are below 0.35 sec and mono-
tonically decrease as the range-to-go decreases. In [24,
58], the convex (CVX) optimization-based computational
guidance law was implemented for real-time guidance,
and the computation time for the CVX-based method was
recorded as 0.5 sec. Thus, the results show that the pro-
posed MPPI-based approach is comparable in terms of
computation time to the CVX-based approach, considered
the state-of-the-art method in the computational guidance
approach. In general, the computational efficiency consid-
erably depends on the hardware and software specifica-
tions. Therefore, the computational time will be further re-
duced if the proposed algorithm is implemented in an em-
bedded program language such as C with CUDA library
with more powerful computing devices and software. As
examples, it is worth pointing out that the real-time per-
formance of MPPI framework has already been verified
in [40,42,44,45,54] . This computational efficiency of the
proposed approach demonstrates its potential for real-time
feasibility.

5.5. Comparison with other approaches
In this subsection, the proposed algorithm is compared

with two other methods: the biased PN guidance (BPN)
[22] as an analytic method and the CVX approach as a
computational method [24]. In the CVX-based computa-
tional guidance, the software called MOSEK [59] (i.e.,
one of optimization solvers) is utilized to solve the given
guidance problem. In [22,24], each method is applied to
address impact angle control guidance (IACG) problems
considering the seeker’s look angle and acceleration lim-
its.

Fig. 8 provides the simulation results for the compar-
ison study. As shown in Figs. 8(a), 8(b), and 8(d), the
look angle limit, acceleration limit, and impact angle con-
straints are all satisfied in all methods. However, there are
several distinctive features. In Fig. 8(e), it can be observed
that the PN gain varies with time in the computational
guidance methods (i.e., the MPPI-based method and the
CVX-based method). However, the PN gain is constant at
3 under the BPN guidance. This is because the BPN guid-
ance introduces a biased command term to satisfy the con-
straints. According to reference [22], the guidance com-
mand for the BPN law is given by

γ̇ = Nλ̇ +b,

where b represents the biased command that can be cal-
culated analytically in a state feedback form with fixed
guidance parameters. Thus, this guidance law would be

vulnerable to unanticipated conditions or uncertainties. It
also requires a time-to-go estimation, which is difficult to
obtain precisely. Moreover, as shown in Fig. 8(d), abrupt
guidance command changes due to the reconfiguration of
the guidance command can be observed in the BPN guid-
ance. An abrupt command change is unfavorable for the
autopilot because it may cause autopilot instability due to
the actuator’s slew rate limit.

The performance index values (i.e., the energy costs) of
the BPN guidance, CVX-based method, and MPPI-based
method are recorded as 14,346 m2/sec3, 11,662 m2/sec3,
and 12,185 m2/sec3, respectively. The energy costs of the
BPN method and MPPI-based method are about 23% and
4% more than that of the CVX-based approach, respec-
tively. As the BPN guidance has not been devised using
the optimal control approach, it has a high energy cost.
As shown in Fig. 8, the MPPI-based approach and the
CVX-based approach have similar patterns. It can also be
observed that the MPPI-based approach and CVX-based
approach have similar energy costs compared to the BPN
guidance. It implies that the MPPI-based approach has al-
most equivalent performance to the CVX-based computa-
tional guidance. In other words, the MPPI-based guidance
can provide a near-optimal solution because the CVX-
based approach can be considered as the optimal solu-
tion. However, compared to the CVX-based guidance, it is
worth noting that the solution is determined onboard with-
out any dedicated optimization solvers in the MPPI-based
guidance. It can be regarded as a benefit for implementa-
tion. Last but not least, the MPPI-based guidance can also
provide more degrees of freedom in selecting the perfor-
mance index through several design parameters (i.e., the
selections of the running cost and terminal cost functions
are flexible) compared to the CVX-based guidance.

6. CONCLUSIONS

In this study, a new computational guidance algorithm
was proposed based on the model predictive path inte-
gral (MPPI) control framework, which is an approach sub-
stantially different from the previous studies. We also ex-
amined the feasibility and applicability of the MPPI con-
trol framework in the practical missile guidance problems
with the desired impact angle, seeker’s look angle, and
maximum acceleration constraints. In the proposed algo-
rithm, the guidance command was assumed as the form
of the proportional navigation (PN) guidance with a time-
varying navigation gain to be optimized by the MPPI con-
trol. A running cost function and a terminal cost function
for the guidance problem were proposed to achieve the
given path constraints, terminal conditions, and perfor-
mance index to be minimized. Extensive numerical sim-
ulation verified the effectiveness and features of the pro-
posed algorithm compared to other approaches. The re-
sults obtained indicate that the proposed algorithm can be
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Fig. 8. Comparison results between MPPI, CVX, and BPN methods for γ f =−90 deg.

applicable to the challenge issues of the guidance prob-
lems with the practical constraints. Additionally, it has
been shown that the proposed algorithm has the potential
to complement other computational guidance approaches
because of its favorable characteristics. The proposed al-
gorithm allows us to efficiently solve nonlinear guidance
problems without the effort of convexification and lin-
earization in a closed-loop fashion. It does not require any
dedicated solvers for optimization problems. Additionally,

the selection of performance index is more flexible than
other approaches.
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