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Nonsingular Fast Terminal Sliding Mode Control for Uncertain Nonlin-
ear Systems Based on Adaptive Super-twisting Sliding Mode Disturbance
Observer
Dao-Gen Jiang* � , Long-Jin Lv, Wei Jiang* � , and Xiao-Dong Zhu

Abstract: This paper presents a new nonsingular fast terminal sliding mode back-stepping control (BSC) for uncer-
tain nonlinear systems subjected to unknown mismatched disturbance based on an adaptive super-twisting sliding
mode nonlinear disturbance observer (ASTSM-NDO). The proposed algorithms utilize BSC technique to manage
high-order uncertainty systems by compounding the dynamic surface control (DSC) architecture to get rid of ‘com-
plexity explosion’. To cope with the unknown upper-bound mismatched disturbance, an adaption law is devised
by finite time stability ASTSM-NDO designation. Besides, in the last step, the actual control scheme is designed
by an integral nonsingular fast terminal sliding mode control algorithms combined with disturbance estimation and
uncertainty adaption law to eliminate the influence of modeling error and mismatched interference on systems. Lya-
punov stability theory is applied to prove that the tracking deviation of the whole system is uniformly and ultimately
bounded. Finally, two examples are simulated by comparing the derived outcomes with existing method to verify
the effectiveness and feasibility of the devised methodology.

Keywords: Adaptive super-twisting sliding mode observer, dynamic surface control, filtered back stepping control,
integral nonsingular sliding mode control, mismatched uncertainty, nonlinear systems.

1. INTRODUCTION

1.1. Background and motivation

Sliding mode control (SMC) is well known features
characterizing of robustness to handle nonlinear systems
suffered from matched bounded external disturbances,
system uncertainties and perturbations [1,2]. Because of
good transient control performance such as strong robus-
tness to parameter variations, order reduction and insensi-
tivity to disturbance, SMC has been widely studied and
successfully used in plenty of engineering application
[3-6]. While the most commonly used sliding surface is
linear in conventional SMC, which can only guarantee
asymptotic stability of the system in the sliding phase that
the system states cannot converge to the equilibrium in fi-
nite time [7]. In order to achieve finite time convergence
of the system states in the sliding phase, terminal sliding
mode control (TSMC) based on nonlinear sliding surface
has been proposed by Venkataramanet et al. and Man et
al. [8,9]. However, the conventional TSMC has two main
drawbacks: 1) TSMC suffers from a singularity problem

which can cause the unboundedness of the control input,
2) when the system states are far away from the equilib-
rium, TSMC has slower convergence rate than the conven-
tional SMC [10-13].

The super-twisting control law is one of the most pow-
erful second order continuous sliding mode control al-
gorithms that handle systems of a relative degree equal
to one. It generates the continuous control function that
drives the sliding variable and its derivative to zero in a fi-
nite time. A novel adaptive super-twisting control law that
continuously drives the sliding variable and its derivative
to zero in the presence of the bounded disturbance with
the unknown boundary had been proposed in [14]. In [15],
the authors presented a novel strategy regarding the sta-
bilization control problem for plants with unmatched un-
certainties based on adaptive smooth super twisting slid-
ing mode control. While in many real engineering ap-
plications, the unknown disturbance boundary cannot be
easily estimated, there exsits effected control methods to
cope with it, such as predefined-time nonsigular TSM C
approach [16,17], fractional-order sliding mode approach
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of mismatched disturbances and so on [18,19]. Therefore,
the adaptive-gain control law was developed, which han-
dled the perturbed plant dynamics with the additive dis-
turbance/uncertainty of certain class with the unknown
boundary [20].

To deal with mismatched uncertainty of the disturbance
item in the high-order model plant, BSC method is a
powerful technique which is based on the Lyapunov sta-
bilization theory. While in conventional BSC technique,
there exists a ‘deferential complexity explosion’ draw-
back, which restricts its application in the high order sys-
tem. However, Dynamic surface control (DSC) technol-
ogy can manage handling this problem with the aid of a
first-order low-pass filter (FOLPF) [21-24]. Morever, the
signal BSC method has not been able to ensure the robust
performance to counteract lumping perturbations and un-
certainties, the most effective methods are adding the ro-
bust performance control technique such as SMC, ASMC
and nonlinear disturbance observer to cope with the un-
certainness item [25,26].

Motivations: From the above discussions, in the area
of disturbance observer on SMC technique, the ASTSM-
NDO is designed for a class of nonlinear system in the
present work. The ASTSM-NDO is used in adaptive man-
ner, in which observer gains are able to adapt themselves
to various uncertainties online. Compared with the exist-
ing pieces of reference, the upper-bound of the interfer-
ence signal and its first derivative are unnecessary. The
presented method synthesizes BSC technique by com-
pounding dynamical surface control (DSC) architecture to
avoid the defect of ‘complexity explosion’ concerned in
BSC approach for mismatched uncertain high-order non-
linear systems.

1.2. Contributions of the paper

The main contributions regarding this paper are sum-
marized as follows:

1) A new ASTSM-NDO is used to accurately estimate
the unmatched uncertain external disturbance. Com-
pared with the traditional STSM-NDO, the observer-
gain does not depend on the disturbace’s first deriva-
tive upper-bound, and the gain adaption law can
achieve the effect of accurate estimation of the dis-
turbance signal in a finite time.

2) A nonsingular integral terminal sliding mode surface
is constructed to design the actual control law and the
modeling error adaption law in order to make the state
tracking deviation converge to zero in a finite time.
Besides, FOLPF is used to eliminate the complexity
defect of ‘differential explosion’ caused by the high-
order derivation of virtual control law in the BSC
algorithm to solve the influence of mismatch uncer-
tainty.

1.3. Structure of the paper
The rest of this paper is organized as follows: In Sec-

tion 2, the control problems are described, some assump-
tions and lemmas are proposed. Section 3 gives the main
methodological results concerning a new ASTSM-NDO.
The validation of the devised algorithm is expounded in
Section 4. Simulation studies verify the effectiveness of
the proposed controller in Section 5. Some conclusions
are drawn in Section 6.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1. Problem description
Consider a class of n-dimensional high-order uncertain

nonlinear systems with modeling errors and unknown dis-
turbances described by

ẋi = xi+1 +di(t), i = 1, 2, · · · , n−1,

ẋn = f (x̄n)+g(x̄n)u+F(x̄n)+dn(t),

y = x1,

(1)

where x̄n = (x1, x2, · · · , xn−1, xn)
T ∈ Rn is the system

state vector(assumed available for measurement); u ∈ R,
y ∈ R denote the control input and the system output
variables, respectively; f (x̄n) is sufficiently smooth non-
linear function vector fields; g(x̄n) is the control input
gain and satisfies g(x̄n) 6= 0, which [g(x̄n)]

−1 is existing.
F(x̄n) = ∆ f (x̄n)+∆g(x̄n)u is the lumped system modeling
error function, ∆ f (x̄n), ∆g(x̄n)u are the system states mod-
eling error function and the control input modeling error
function, respectively; di(t), i = 1, 2, · · · , n is the external
mismatched unknown disturbance items. Make the system
output reference track signal as xd .

Remark 1: System in (1) is practical systems in the
engineering project, such as dynamic equation of angular
displacement tracking of multi joint robot system suffered
by the comprehensive disturbance and magnetic susp-
ension systems and so on.

Remark 2: Unlike previous research literature, it is
generally assumed that the external mismatched uncertain
disturbance is continuous and the first derivative of the dis-
turbance exists the prior known boundary, i.e., there are
unknown positive constants Di and Li, which has

|di(t)|< Di,
∣∣ḋi(t)

∣∣< Li, i = 1, 2, · · · , n. (2)

And it generally assumed that when the interference term
di(t) is a slow time-varying signal, it supposed that ḋi ≈ 0
[27], but which is not satisfied in many cases.

Remark 3: This paper further relaxes the interference
condition in Remark 2, meanwhile it also discusses the
high order mismatched uncertain nonlinear systems, so it
has more universal value.

Assumption 1: The lumped system modeling error
function F(x̄n) is continuous and derivable Ḟ(x̄n)≈ 0.
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Assumption 2: The reference trajectory signal xd is
bounded and exists two order derivative with respect to
t.

Control objective: The control target is to design a
nonsingular fast terminal adaptive BSC based on a finite
time stable ASTSM-NDO for a class of n-dimensional
high-order nonlinear systems with mismatched uncertain
external disturbances and modeling errors shown in (1), so
as to eliminate the influence of disturbances and modeling
errors on the systems and make the systems output sig-
nal y track the given reference trajectory signal xd quickly
and accurately. To this end, the following preliminaries are
presented in the design procedure.

2.2. Preliminaries
Lemma 1: For n-th order controlled systems described

by

˙̂xi = usti(t)+di(t), i = 1, 2, · · · , n−1, (3)

where x̂i is the system states vector, di is the unknown mis-
matched disturbance satisfying the condition of Remark
2, when the super twisting sliding mode control law is de-
signed as (4), then the system (6) would be stability and
the states would converge to equilibrium in a finite time.

usti(t) = u1i(t)+u2i(t),

u1i(t) =−γi |x̂i|1/2 sgn(x̂i),

u2i(t) =
∫ t

0
(−δi)sgn(x̂i)dτ,

(4)

where sgn(·) is the symbolic function, γi > 0, δi > 0 and
they satisfy the condition of

γi > 2,

δi >
γi

4−8γ
−1
i

+L2
i γ
−1
i .

(5)

where Li is prior to known shown in (2). From (5), we
can easily get that the traditional super-twisting observer
gain values are depended on the upper-bound of the dis-
turbance’s derivation, but the exact upper-bound value in
the real engineering environment is hard to get it, so we
will explore the ASTSM-NDO shown in Lemma 4.{

˙̂xi = u1i(t)+χi,

χ̇i = u̇2i(t)+ ḋi(t).
(6)

The proof of Lemma 1 is provided in Appendix A.
Lemma 2 [28]: If the continuous function V (t) satisfies

the following conditions as

V̇ (t)≤−aV (t)−bV ς (t),∀V (t0)≥ 0, t ≥ t0. (7)

V (t) would converge to zero in a finite time and the con-
vergence time is

t = t0 +
1

a(1− ς)
ln

aV 1−ς (t0)+b
b

. (8)

If a = 0, then V̇ (t)≤−bV ς (t), V (t) will also converge to
zero in a finite time.

Lemma 3 [29]: If p ≥ 1, q ≥ 1 and 1
p +

1
q = 1, for any

real vector x, y and β > 0. Thus,

xTy≤ β ‖x‖p +
1
q
(pβ )−

q
p ‖y‖q . (9)

For example, when p = q = 2, β = 1, (9) is expressed as
xTy≤ ‖x‖2 + 1

4 ‖y‖
2.

3. DESIGNATE OF ASTSM-NDO

It is obvious that the mismatched unknown disturbance
is a great challenge in the control filed. Therefore, the dy-
namics and steady performance of the observer-designing
play a significant role in the control process. STSM-NDO
is a continuous second-order sliding mode observer. The
observer not only has integral of the signum function in-
stead of discontinuous signum function but also consists
of continuous switching function, which gives the guaran-
tee of nonchattering effect. Therefore, the unwanted chat-
tering effect can be reduced and it promise accurate robust
control in the presence of mismatches and external distur-
bances. The designation of the ASTSM-NDO is stated by
Lemma 4.

Lemma 4: An nth order ASTSM-NDO in (10) is pro-
posed and the observer gain adaption law is adopted
shown in (11), then the ASTSM-NDO would be stability.

d̂1(t) = γ1 |x1− x̂1|
1
2 sgn(x1− x̂1)−υ1,

υ̇1 =−δ1sgn(x1− x̂1),

...

d̂i(t) = γi |xi− x̂i|
1
2 sgn(xi− x̂i)−υi,

υ̇i =−δisgn(xi− x̂i), i = 2, 3, · · · , n−1,

d̂n(t) = γn |xn− x̂n|
1
2 sgn(xn− x̂n)−υn,

υ̇n =−δnsgn(xn− x̂n),

(10)

where xi, x̂i are the original system states and the ob-
server system states, respectively; d̂i is the estimation of
di, d̃i = d̂i− di is the deviation of the ASTSM-NDO; the
NDO gain-adaption laws are designed as

γ̇i =

{
κi

√
εi/2, xi 6= 0,

0, xi = 0,

δi = ρi +
θ 2

i + γiθi

4
,

(11)

where θi > 4, εi, ρi, κi are positive constants. Therefore, in
order to tackle with the mismatched unknown disturbance,
when the ASTSM-NDO is adopted, then the estim-ation
systems will be stability and d̃i would converge to zero
exponentially, it is proved in Appendix B. Also the proof
of Lemma 4 is provided in Appendix B.
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Remark 4: The ASTSM-NDO proposed in this pa-
per can be used to precisely estimate the mismatched un-
known upper-bound disturbance. Compared with the ex-
isting pieces of literatures, ASTSM-NDO gain-adaption
laws can further relaxes the condition of Remark 2, which
has great practical significance in engineering application.
It is presented as the Theorem 1.

Theorem 1: For the mismatched unknown upper-bound
disturbance nonlinear system in (1), the ASTSM-NDO
and the n-dimensional observer are designed as (10), (11)
and (12), then the estimated disturbance d̂i and the ob-
server states variables x̂i would fast precisely track the ac-
tual signals di, xi, respectively and all the estimation devi-
ation would converge to zero in a finite time.

˙̂x1 = x2 + d̂1(t),
˙̂x2 = x3 + d̂2(t),

...
˙̂xn = f (x̄n)+g(x̄n)u+F(x̄n)+ d̂n(t).

(12)

Proof: The states deviation between the disturbance ob-
server and the original system is defined as

x̃i = xi− x̂i, i = 1, 2, · · · , n. (13)

Substituting the first subsystem of (1), (10) and (12) into
(13), one can get

˙̃x1 = d1(t)− d̂1(t)

= d1(t)− γ1 |x̃1|
1
2 sgn(x̃)+

∫ t

0
−δ1sgn(x̃)dτ. (14)

γ1, δ1 can be obtained according to the adaption law shown
in (11). According to Assumption 1, one can get{

˙̃x1 =−γ1 |x̃1|
1
2 sgn(x̃1)+Ξ1,

Ξ̇1 =−δ1sgn(x̃1)+ ḋ1(t).
(15)

According to Lemma 1, it can be known that the estima-
tion error x̃1 and its derivation ˙̃x1 will be convergence to
zero in a finite time.

Similarity, the deviation of i-th, (i = 2, 3, · · · , n− 1)
subsystem is{

˙̃xi =−γi |x̃i|
1
2 sgn(x̃i)+Ξi,

Ξ̇i =−δisgn(x̃i)+ ḋi(t).
(16)

γi, δi can be also obtained according to the gain adap-
tion law shown in (11). According to Lemma 1, it can be
known that the estimation error x̃i, ˙̃xi would be conver-
gence to zero in a finite time.

Make recursion according to this method, until the n-th
subsystem, one can obtain{

˙̃xn =−γn |x̃n|
1
2 sgn(x̃n)+Ξn,

Ξ̇n =−δnsgn(x̃n)+ ḋn(t).
(17)

Then the deviation of the last subsystem x̃n, ˙̃xn will con-
verge to zero in a finite time. So the whole system states
would converge to zero in a finite time.

Until now, the proof of Theorem 1 is finished. �

4. CONTROL DESIGN METHODOLOGY AND
STABILITY ANALYSIS

4.1. Proposed procedure
The proposed control technique is devised mainly by

BSC strategy compounding the finite time convergence
features of a nonsingular fast integration terminal slid-
ing mode control, mismatched uncertainty disturbance
estimation of ASTSM-NDO without pre-acknowledging
upper-bound of its first-derivation. Besides, in order to
overcome the defect of “differential explosion” caused by
mult-iple derivation of virtual control quantity in BSC
strategy, DSC method through a FOLPF is utilized. Ac-
cording to the existing pieces of literatures [21-24], DSC
method incorporates a FOLPF with an aid of properly
chosen bandwidth to accommodate the influence of mis-
matched unknown disturbance.

Control design procedure is divided into n-steps, before
initiating the designate procedure; let us define the states
tracing deviation of system (1){

e1 = x1− xd ,

ei = xi−αi−1, i = 2, 3, · · · , n,
(18)

where αi is the ideal virtual control of i-th subsystem.
Step 1: The first subsystem virtual control schemes des-

ignate and stability analysis.
From (18), taking derivation of e1 = x1−xd with t, sub-

stituting (1), one can get

ė1 = ẋ1− ẋd = x2 +d1− ẋd

= e2 +α1 +d1− ẋd . (19)

The virtual control law of the first subsystem is de-
signed as

β1 =−(κ1e1 + d̂1− ẋd), (20)

where κ1 > 0, d̂1 is the estimation of d1 and is obtained by
ASTSM-NDO. In order to overcome the defect of ‘differ-
ential explosion’ phenomenon, the FOLPF is introduced
as

τ1α̇1 +α1 = β1, α1(0) = β1(0), (21)

where τ1 is the time parameter of FOLPF. Define the first
subsystem filter error of FOLPF as

ω1 = α1−β1. (22)

Substituting (20) and (22) into (19), it can be obtained

ė1 =−κ1e1 + e2 +ω1− d̃1. (23)
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From (21) and (22), one can get α̇1 = −ω1/τ1. Taking
derivation of (22) with time, it gets

ω̇1 =
−ω1

τ1
− β̇1 =

−ω1

τ1
+(κ1ė1 +

˙̂d1− ẍd). (24)

According to (24), one can obtain∣∣∣∣ω̇1 +
ω1

τ1

∣∣∣∣≤ }1(ė1, d̂1, ẋd , ẍd), (25)

where }(e1, d̂1, ẋd , ẍd) is an unknown continuous bounded
function.

ω1ω̇1 ≤
ω2

1

τ1
+ |ω1| |}1| ≤

(
1− 1

τ1

)
ω

2
1 +

}2
1

4
. (26)

Then, we define the first subsystem stability Lyapunov
function as

V1 =
1
2

e2
1 +

1
2

ω
2
1 . (27)

Taking derivation of V1 with t, it can be obtained

V̇1 = e1ė1 +ω1ω̇1

=−κ1e2
1 + e1e2 + e1ω1− e1d̃1 +ω1ω̇1. (28)

Substituting (26) into (28), using the absolute inequality
scaling technique, it leads

V̇1 ≤−κ1e2
1 + e1e2 + e1ω1− e1d̃1(1−

1
τ1
)ω2

1 +
}2

1

4

≤−κ1e2
1 + e1e2 + |e1||ω1|+ |e1||d̃|+(1− 1

τ1
)ω2

1

+
}2

1

4
. (29)

According to Lemma 3, the items |e1||ω1|, |e1||d̃| in
(29) can be amplified to the following inequality expres-
sions |e1||ω1| ≤ e2

1 + ω2
1/4, |e1||d̃| ≤ e2

1 + d̃2/4 respec-
tively, then (29) can be expressed as

V̇1 ≤−κ1e2
1 + e1e2 + |e1||ω1|+ |e1||d̃|+(1− 1

τ1
)ω2

1

+
}2

1

4
≤−κ1e2

1 + e1e2 +(e2
1 +ω

2
1/4)+(e2

1 + d̃2/4)

+(1− 1
τ1
)ω2

1 +
}2

1

4

≤−(κ1−2)e2
1 + e1e2 +

d̃2
1

4
+

5τ1−4
4τ1

ω
2
1 +

}2
1

4
,

(30)

where κ1 > 2.
Step iii: The virtual control schemes designate and sta-

bility analysis of i-th subsystem.

Taking derivation of the i-th subsystem states tracking
error with t, substituting the i-th subsystem states dynam-
ical equation in (1), it leads

ėi = ẋi− α̇i−1, (i = 2, 3, · · · , n−1)

= xi+1 +di− α̇i−1

= ei+1 +αi +di− α̇i−1. (31)

The virtual control law of the i-th subsystem is designed
as

βi =−(κiei + d̂i− α̇i−1), (32)

where κi > 0, d̂i is the estimation of di and obtained by
ASTSM-NDO. In order to overcome the defect of ‘dif-
ferential explosion’ phenomenon in (32), according to
FOLPF, thus α̇i−1 is acquired by α̇i−1 =−ωi−1/τi−1. The
i-th subsystem FOLPF is introduced to get βi.

τiα̇i +αi = βi, αi(0) = βi(0), (33)

where τi is the time parameter of FOLPF. Define the i-th
subsystem filter error of FOLPF as

ωi = αi−βi. (34)

Substituting (32) and (34) into (31), it can be obtained

ėi =−κiei + ei+1 +ωi− d̃i. (35)

From (33) and (34), one can get α̇i = −ωi/τi. Taking
derivation of (34) with time, it gets

ω̇i =
−ωi

τi
− β̇i =

−ωi

τi
+(κiėi +

˙̂di− α̈i−1). (36)

According to (36), one can obtain∣∣∣∣ω̇i +
ωi

τi

∣∣∣∣≤ }i(ėi, d̂i, α̇i−1, α̈i−1), (37)

where }i(ėi, d̂i, α̇i−1, α̈i−1) is an unknown continuous
bounded function.

ωiω̇i ≤
ω2

i

τi
+ |ωi| |}i| ≤ (1− 1

τi
)ω2

i +
}2

i

4
. (38)

Then, i-thsubsystem stability Lyapunov function is de-
fined as

Vi =Vi−1 +
1
2

e2
i +

1
2

ω
2
i =

i

∑
j=1

(
1
2

e2
j +

1
2

ω
2
j ). (39)

Taking derivation of Vi with t, using the absolute inequal-
ity scaling technique, it leads

V̇i =
i

∑
j=1

(e j ė j +ω jω̇ j)
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=
i

∑
j=1

(−κ je2
j + e je j+1 + e jω j− e jd̃ j +ω jω̇ j)

≤
i

∑
j=1

(−κ je2
j + e je j+1 + e jω j− e jd̃ j(1−

1
τ j
)ω2

j

+
}2

j

4

≤
i

∑
j=1

(−κ je2
j + e je j+1 + |e j| |ω j|+ |e j|

∣∣d̃ j
∣∣

+(1− 1
τ j
)ω2

j +
}2

j

4
). (40)

According to Lemma 3, when i = n− 1, (40) can be
expressed as

V̇n−1 ≤ en−1en−
n−1

∑
i=1

(
κie2

i + |ei| |ωi|+ |ei|
∣∣d̃i
∣∣

+

(
1− 1

τi

)
ω

2
i +

}2
i

4

)
≤ en−1en−

n−1

∑
i=1

(κi−2)e2
i

+
n−1

∑
i=1

[
d̃2

i

4
+

5τi−4
4τi

ω
2
i +

}2
i

4

]
, (41)

where κi > 2, if we make en convergence to zero, then it
should get

V̇n−1 ≤−ξVn−1 +Θ, (42)

where µ , Θ are positive constants chosen by

ξ = min
1≤i≤n−1

{
2(κi−2), − (5τi−4)

2τi

}
,

Θ =
n−1

∑
i=1

[
d̃2

i

4
+

}2
i

4

]
.

Step nnn: The actual control schemes designate and sta-
bility analysis of n-th subsystem.

In order to make en converge to zero in a finite time
and avoid the singular defects of traditional terminal slid-
ing mode control, a nonsingular integral terminal sliding
mode surface is utilized in this study, which is designed asσ =

∫ t

0
endτ,

s = σ +ησ̇
p/q,

(43)

where η > 0, p, q are positive odd constants and 1 <
p/q < 2. Supposing that the sliding surface shown in (43)
converges to zero at tr, it can be seen from (43) that the
integral and derivative of tracking error will converge to
zero in a finite time, and the convergence time is

ts = tr +η
q/p p

p−q
|σ(tr)|(p−q)/p . (44)

Design the actual control law as

ueq =−[g(x̄n)]
−1
[

fn(x̄n)+ F̂ + d̂n− α̇n−1

+
p

ηq
σ̇

2−p/q
]
,

usw =−[g(x̄n)]
−1[h1 tanh(µs)+h2s],

u = ueq +usw.

(45)

Meanwhile, design the system modeling error uncer-
tainties estimation law as

˙̂F = sζ η
p
q

σ̇
p/q−1, (46)

where h1 > |d̃n|, h2 > 0, µ > 0 are predesigned parameters,
ueq is equivalent control and uswis the switching control. F̂
is the estimation of F .

Remark 5: In order to suppress the chattering defect
in the sliding mode control law, the continuous hyperbolic
tangent function tanh(µs) is used to replace the symbolic
function sgn(s) in the traditional sliding mode control
law, when regulation parameter µ → ∞, then tanh(µs)→
sgn(s), so as to ensure the smoothness of the sliding mode
control signal and weaken the chattering defect. Similar
to the previous steps, FOLPF technique is used to gener-
ate −ωn−1/τn−1to replace α̇n−1 in the actual control law.

4.2. Stability proof
The actual control scheme of the nonsingular fast ter-

minal sliding mode control based on ASTSM-NDO is
stated as Theorem 2.

Theorem 2: For a class of n-dimensional high-order
uncertain nonlinear systems with modeling errors and
mismatched unknown disturbances, satisfying Assump-
tions 1 and 2, design the ASTSM-NDO as (10) and (11)
to tackle with the nonlinear disturbance and design an
adaptive nonsingular integral terminal sliding mode con-
trol scheme as (45) and (46), then the tracking deviation en

would convergence to zero in a finite time and all systems
states error e1, e2, · · · , en−1 would be uniformly ultimately
bounded.

Proof: Mark the estimated value of the system un-
molded error item F as F̂ , F̃ is the deviation between
the estimated value and the real value, and then it has
F̃ = F − F̂ . According to Assumption 2, one can get
˙̃F ≈− ˙̂F . Taking derivative of (43) with t, it leads

ṡ = σ̇ +(η p/q)σ̇ p/q−1
σ̈

=
η p
q

σ̇
p/q−1

(
q

η p
σ̇

2−p/q + σ̈

)
. (47)

Define the n-th subsystem Lyapunov function as

Vn =
1
2

s2 +
1
η

F̃2. (48)
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Taking derivation of (48) with t, one can obtain

V̇n = sṡ− F̃ ˙̂F/η

= sη
p
q

σ̇
p/q−1

(
q

η p
σ̇

2−p/q + σ̈

)
− F̃ ˙̂F/η . (49)

From (43), it has σ̇ = en, σ̈ = ėn, with

σ̈ = ėn = ẋn− α̇n−1

= f (x̄n)+g(x̄n)u+F(x̄n)+dn(t)− α̇n−1. (50)

Substituting (45), (46) and (50) into (49), one can get

V̇n−1 = η
p
q

σ̇
p/q−1(−h1|s|−h2s2− sd̃n)

≤ η
p
q

σ̇
p/q−1[−(h1−|d̃n|)|s|−h2s2]. (51)

1) When σ̇ 6= 0, it also leads V̇n−1 = 0 in a finite time
from (51), because 1 < p/q < 2 and p, q are positive
odd constants.

2) When σ̇ = 0 but s 6= 0, reference [30] has proved that
the system states converge to the sliding mode sur-
face s= 0. When the system states converge to sliding
mode surfaces = 0, σ and σ̇would converge to zero,
then en would converge to zero in a finite time.

When en converges to zero, by multiplying eηt on both
sides of (42) and making integration on [0, t], one can ob-
tain

d(Vn−1eηt)

dt
≤ eηt

Θ⇒
∫ t

0

d(Vn−1eηt)

dt
≤
∫ t

0
eηt

Θ

⇒Vn−1 ≤
Θ

η
+

[
Vn−1(0)−

Θ

η

]
e−ηt . (52)

Then the whole system Lyapunov function satisfies the
following equations

V =Vn−1 +Vn

=
n−1

∑
i=1

(
1
2

e2
i +

1
2

ω
2
i )+

1
2

s2 +
1
η

F̃2 ≤ 0. (53)

From the above proof process, it can obtain the follow-
ing conclusions:

1) Under the proposed control algorithms, all the states
deviation ei (i = 1, 2, · · · , n) can converge to zero in
a finite time and all the system states are uniformly
ultimately bounded, because the virtual control law
αi (i = 2, 3, · · · , n− 1) and βi (i = 1, 2, · · · , n) are
bounded. Meanwhile, the tracking error e1 = x1− xd

is uniformly ultimately bounded obviously, because
the reference tracking signal xd is bounded, thus the
system state x1 is bounded.

2) ASTSM-NDO can fast accurately estimate the un-
known upper-bound mismatched disturbance, and the
estimation error d̃i (i = 1, 2, · · · , n) would converge to
zero in a finite time.

Until now, the control algorithm proof is finished. �

5. NUMERICAL EXAMPLE AND SIMULATION
STUDY

In this section, two examples are taken to verify the pri-
ority and effectiveness of the proposed control technique
in this paper: the classical example in many pieces of lit-
erature and the real engineering, respectively.

Example 1: Consider the following three-order non-
linear system in forms of system (1) as

ẋ1 = x2 +0.5sin(2t)+ sin(t),

ẋ2 = x3 + te−0.5t ,

ẋ3 = x1x2x3 + x1 sin(x1)+5u+0.01x2e−0.5x1

+0.8sin(t),

y = x1,

(54)

where d1(t) = 0.5sin(2t)+ sin(t), d2(t) = te−0.5t , d3(t) =
0.8sin(t), f (x) = x1x2x3 + x1 sin(x1), g(x) = 5, F(x) =
0.01x2e−0.5x1 . xd(t) = 0.5sin(t)+0.5sin(0.5t) is the refer-
ence signal. The main control object of Example 1 is to use
the proposed control technique to achieve the following
target: 1) All the signals in closed-loop system of (54) are
bounded; 2) d̂i can precisely estimate the unknown mis-
matched disturbance di by ASTSM-NDO; 3) The system
output tracking error converges to zero in a finite time.

The system intimal values are x1(0) = 0.5, x2(0) = 0.5,
x3(0) = 0.5. ASTSM-NDO parameters are κ1 = 0.5, κ2 =
0.5, κ3 = 0.5, ε1 = 2, ε2 = 2, ε3 = 2, ρ1 = 1, ρ2 = 1, ρ3 =
1, θ1 = 5, θ2 = 5, θ3 = 5. The parameters of FOLPF are
τ1 = 0.01, τ2 = 0.01. The parameters of controller in (45)
(46) are p = 7, q = 5, η = 0.01, ξ = 10, h1 = 0.5, h2 = 8,
µ = 500. With the MATLAB routine, the simulation step
is 0.001 and simulation results are illustrated in Figs. 1-7.

As revealed in Fig. 1, the system output signal y= x1can
trace the desired trajectoryxdwith a good tracking perfor-
mance. Fig. 2 reflects the system states deviation under
the action of the controller. From the enlarged scope, it
can be seen that the system tracing error e1 is within the
desired steady preset and the dynamic quantity is ideal,
which verifies the robustness of the controller. The BSC
method compounding with the DSC technique can make

Fig. 1. System trajectory under of the controller.
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Fig. 2. System states deviation of the controller.

Fig. 3. Mismatched disturbance and ASTSM-NDO esti-
mation disturbance.

the whole system states bounded and trace the actual states
under the proposed control schemes.

Fig. 3 demonstrates the estimation effects of unknown
mismatched disturbance under the ASTSM-NDO. As dis-
cussed in Lemma 4, without the exact upper-bound value
of the disturbance’s derivation, the ASTSM-NDO can ef-
fectively trace the disturbance signals in a finite time and
the estimation deviation will converge to zero in a finite
time. Fig. 4 exhibits the evolution of ASTSM-NDO states.
This figure suggests that the estimation states of ASTSM-

Fig. 4. System states and estimation states of ASTSM-
NDO.

NDO can accurately track the actual states with the refer-
ence signal. As stated in Section 3, the main contribution
of the ASTSM-NDO is to suppress the mismatched dis-
turbance.

The adaption laws are illustrated in Fig. 5, from the
adaption law curves, it can get the conclusion that the
adaptive-gain control law of ASTSM-NDO can adapt it
due to the actual control effects, which intelligently han-
dled the perturbed plant dynamics with the unknown
boundary. The designed adaptive parameters have realized
the actual application with the disturbance and have a real
practice engineering meanings. Fig. 6 reveals the adaption
law of modeling error of the system. The curve manifests
the mismatched uncertainty of the system is estimated by
the designed adaption law precisely, which realizes the es-
timation deviation stability and boundeness.

Fig. 7 presents the actual control signal u under the
proposed control technique. The figure implies that the
control signal is bounded and totally smooth. From (45),
one can get that the control scheme is constructed by
the equivalent control item and switching control item
for disturbance compensation, which are both bounded
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Fig. 5. Adaptive-parameters law of ASTSM-NDO.

Fig. 6. Matched uncertainness of the modeling error.

Fig. 7. Actual control signal of the proposed controller.

and stability. Moreover, the tanh(µs) function is utilized
to replace the traditional symbolic function sign(s)in the
switching control item. That is the main reason why the
actual control law signal is smooth in such the sophis-
ticated systems control, which contributes to reduce the
energy-consumption of the controller. Thus, it especially
has a greater practical application value.

Example 2 [31]: In order to test the engineering appli-
cation value of the designed control algorithm, the mag-
netic levitation model is verified. The magnetic levitation
dynamic model given in reference [31] is shown as

ẋ1 = x2 +d1,

ẋ2 = x3 +d2,

ẋ3 = f (x, t)+g(x, t)u+d3,

(55)

where x1, x2, x3 denote the system’s position, the system
velocity, and the current in the coil of the electromagnet,
respectively; f (x, t) = −6x1 − 2.92x2 − 1.2x3 + x2

1 is the
sy-stem function, g(x, t)= 1 is the control input gain. u de-
notes the input variable. d1, d2, d3 indicate the mismatched
unknown disturbance marked in (56). The objective of the
control schemes is to drive the states x1, x2 and x3 to their
desired constant values x1d , x2d , x3d , respectively.

d1 = 0.04sin(t),

d2 = 0.03cos(2t)+0.01,

d3 = 0.02sin(2t)−0.01cos(t).

(56)

In order to verify the progressiveness of the control al-
gorithm, the TSMC algorithm in reference [32] is used for
comparative experiments. Control algorithms in [32] were
based on two-order sliding surface with integral function
designed as (57) and the conventional nth order super-
twisting disturbance observer was utilized shown in (5)
and (10).

s = x3 +
∫ 20

0
(x1 + x2 +1.5x3)dτ,

σ = ṡ+2s+0.5s0.6,

u̇ =−1
c

{
(α +µβ sβ−1)(cu(t)+

3

∑
i=1

aixi)+ancu(t)

+
2

∑
i=1

aixi+1 +φξ + k2sgn(σ) |σ |β + k1σ

}
,

(57)

where

φ =
3

∑
i=1

aid̂i + ḟ (x, t)+ f (x, t)(α +an +µβ sβ−1)

+ ˙̂dn +and̂n +µβ d̂nsβ−1. (58)

α = 2, β = 0.6, µ = 0.5, a1 = 1, a2 = 1, a3 = 1.5, k1 = 0.1,
k2 = 6 ,c = 1. Conventional super twisting sliding mode
observer parameters are selected as γ = 2.5, δ = 3.5. The
simulation results are exhibited in Figs. 8-10.

From Fig. 8, we can clearly see that the traditional con-
trol algorithm in [32] takes a long time for the system
states to converge to the equilibrium position, and the sta-
bilization adjustment time is about 10 seconds. Moreover,
the system overshoot is large; there is a certain degree
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(a) The states stabilization effect in [32].

(b) States stabilization effect of the proposed method.

Fig. 8. The system states stabilization effects under two
control method.

of steady-state error. Compared with the proposed con-
trol method in this paper, it has a better control effects in
each control aspects. Fig. 9 reveals the system states stabi-
lization error between the two different control methods.
From two type curves, it can be seen clearly that the states
stability deviation performance is much better in the dy-
namic and steady aspects compared with the conventional
method. The tracking error converges to zero in a finite
time and it has not existed steady error.

Fig. 10 displays the controller output signals of the two
methods. Although chattering effect of the controller out-
put signals are eliminated and they are entirely smooth,
there exists a higher peak point in conventional method
in [32], which suggests that the proposed control method
has achieved a better control performance. This case im-
plies that the controller designed in this paper has a good
engineering case in application background.

From the simulation process, the main conclusion can
be summarized as follows:

1) The performance of the ASTSM-NDO is not affected
by the exact value of mismatched disturbance deriva-
tion as seen in (10) and (11), and it can estimate the
ideal mismatched disturbance signals (Fig. 3) and t-
he observer states is in the finite time tracing the real
systems states (Fig. 4). Meanwhile, the designed obs-
erver can adapt the gain value (Fig. 5) without preass-
igning, but it is affect by the parameters of θ , ρ .

(a) States stability deviation in [32].

(b) States deviation of the proposed control method.

Fig. 9. States stability deviation of two control methods.

(a) Controller output in [32].

(b) Controller output under the proposed control method.

Fig. 10. Controller signal u of two control methods.

2) The proposed control algorithm can guarantee the fast
convergence performance (Figs. 1, 2, and 8) and the
smooth control signals (Figs. 7 and 10).
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6. CONCLUSION

A new fast integral nonsingular terminal sliding mode
control algorithm is constructed to accurately track the
desired reference signals and ASTSM-NDO is pro-
posed to solve the influence of the unmatched unknown
upper-bound disturbance. Meanwhile, the BSC technique
compounded with FOLPF is utilized to cope with the
high-order nonlinear systems subjected to unknown mis-
matched disturbance. Moreover, hyperbolic tangent func-
tion is used to replace the traditional symbolic function
to reduce chattering in SMC technique. Finally, the effec-
tiveness and feasibility of the proposed control method
are verified with two examples, the derived results have
ren-dered much better performance. In the future, the
proposed control method will be improved from two as-
pects. First, it is a very worthy research direction to study
the influence of parameter selection on control accuracy.
Second, FOLPF is an effective technique to eliminate the
defect of “differential explosion”, but it is a low-pass filter,
which generates an equivalent signal of the virtual control
law. It also produce an equivalent error and the cumula-
tive error is getting bigger and bigger and it should not be
ignored to affect the control accuracy, so we will explore
a new error compensation DSC technology to compensate
the dynamic surface error effect on the systems. Thus, we
will focus on the improvement of the future work in the
next research.

APPENDIX A: PROOF OF LEMMA 1

Subsituting (4) into (6) and omitting states varaiable
subscript and parameters subscript, one can obtain{

˙̂x =−γ|x̂|
1
2 sgn(x̂)+χ,

χ̇ =−δ sgn(x̂)+ ḋ.
(A.1)

Let the symmetric positive matrix as

P =
1
2

[
4δ + γ2 −γ

−γ 2

]
. (A.2)

Construct a real vector described by

ς
T =

[
|x̂| 12 sgn(x̂) χ

]
. (A.3)

Then quasi quadratic Lyapunov function is tranformed as

V (x̂,χ) = ς
TPς . (A.4)

Let A =

[
−γ 1/2
−δ 0

]
, B =

[
0 1

]T, C =
[
1 0

]
, ¯̇d = |ς |ḋ.

Take derivation of ς with time, it can get

ς̇ =

[ 1
2|x̂|1/2 (−γ|x̂|1/2sgn(x̂))+χ

−δ sgn(x̂)

]
=

1
|ς1|

(Aς +B ¯̇d).

(A.5)

Take derivation of V along the system trajectory, one can
obtain

V̇ (x̂,χ)

=
1
|ς1|

[
ς

¯̇d

]T [
ATP+PA PB

BTP 0

][
ς

¯̇d

]
≤ 1
|ς1|

{[
ς

¯̇d

]T [
ATP+PA PB

BTP 0

][
ς

¯̇d

]
+L2

ς
2− ( ¯̇d)2

}

≤ 1
|ς1|

ς
T(ATP+PA+L2CT +PBBTP)ς . (A.6)

Let ATP + PA + L2CT + PBBTP = −Q < 0, then it has
V̇ (x̂,χ)≤ 1

|ς1|ς
TQς , where

Q =

[
γδ + γ2

2 −L2− γ2

4
γ−γ2

2
γ−γ2

2
γ−2

2

]
. (A.7)

Substituting (5) back into (A.7), it obviously get Q is sym-
metric positive.

This is the end of proof of Lemma 1. �

APPENDIX B: PROOF OF LEMMA 4

Using inequality d|x̂|/dt = ˙̂xsgn(x̂), From (A.1)
and (A.3), let ς̇1 =

(
− γ|x̂| 12 sgn(x̂) + χ

)
/
(
2|x̂| 12

)
,

ς̇2 = −δ sgn(x̂) + ḋ(t),
_

ḋ= |x̂| 12 ḋ, A =

[
−γ 1/2
−δ 0

]
,

B =
[
0 1

]T, C =
[
1 0

]
, respectively, we will get

ς̇ =
1

|x̂| 12
(Aς +B

_

ḋ ). (B.1)

Consider the following candidate Lyapunov function

V (ς ,γ,δ ) =V (x̂,χ)+(γ− γ
∗)2/2β1

+(δ −δ
∗)2/2β2, (B.2)

where V (x̂,χ) = ς TPς , β1, β2, γ∗, δ ∗ are positive con-
stants, P is shown as (A.2) and noting that P is a sym-
metric positive matrix. Take derivation of V (x̂,χ) with t,
it get

V̇ (x̂,χ)

= 2
1

|x̂| 12
(ς TA

T
+

_

ḋ B
T
)Pς

≤ 1

|x̂| 12
(2ς

TA
T
Pς +2

_

ḋ B
T
Pς +L|x̂|−

_

ḋ
2

)

=
1

|x̂| 12
(2ς

TA
T
Pς +2

_

ḋ B
T
Pς +L2

ς
TCTCς−

_

ḋ
2

)

≤ 1

|x̂| 12
(2ς

TA
T
Pς +L2

ς
TCTCς + ς

TPBBTPς)
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=
1

|x̂| 12
ς

T(A
T
P+PAT +L2CTC+PBBTP)ς . (B.3)

Let Q = A
T
P+PAT +L2CTC+PBBTP, then (B.3) can be

expressed as

V̇ (x̂,χ)≤− 1

|x̂| 12
ς

TQς . (B.4)

Substituting A, B, C, P, one can get

Q =

[
2γρ+ 2γθ 2−θ 2

4 −δθ−L2 −ρ− θ 2+γθ−2θ

4 +δ

−ρ− θ 2+γθ

4
θ−2

2

]
.

In order to make Q positive, let δ = ρ + θ 2+γθ

4 and substi-
tute it back to Q, it can get

Q− θ I
4

=

[
2γρ+ γθ 2−θ 3−θ 2−θ

4 −ρθ−L2 θ

2
θ

2
θ−4

4

]
.

(B.5)

According to Shur’s complement character, in order to
get Q− θ I

4 > 0, it meets the condition λmin(Q)> θ

4 , then,
it getγ >

( θ−4
4 )( θ 3+θ 2+θ

4 +ρθ +L2)+ θ 2

4

(2ρ + θ 2

4 )(
θ

4 −1)
,

θ > 4.

(B.6)

From (B.4), it can obtain

V̇ (x̂,χ)≤− 1

|x̂| 12
ς

TQς ≤− θ

4 |ς1|
ς

T
ς

=− θ

4 |ς1|
‖ς‖2 =−θ ‖ς‖

4 |ς1|
‖ς‖ . (B.7)

From ‖ς‖2
2 = ς 2

1 + ς 2
2 = |x̂|+ ς 2

2 , it can get ‖ς‖2 ≥ |ς1|,
then (B.7) can be written as

V̇ (x̂,χ)≤−θ

4
‖ς‖2 . (B.8)

According positive definite quadratic function

λmin(P)‖ς‖2
2 ≤V (x̂,χ) = ς

TPς ≤ λmax(P)‖ς‖2
2 ,
(B.9)

it will get ( V (x̂,χ)
λmax(P)

)
1
2 ≤‖ς‖2, combining (B.8), then we will

obtain

V̇ (ς)≤−rV
1
2 (ς), (B.10)

where r = θ

4λ

1
2

max(P)
, then taking derivation of (B.2), it leads

V̇ (ς ,γ,δ )

=−rV
1
2 (ς)+

(γ− γ∗)

β1
γ̇ +

(δ −δ ∗)

β2
δ̇

=−rV
1
2 (ς)− κ1√

2β1
|γ− γ

∗|− κ2√
2β2
|δ −δ

∗|

+
(γ− γ∗)γ̇

β1
+

(δ −δ ∗)δ̇

β2
+

k1√
2β1
|γ− γ

∗|

+
k2√
2β2
|δ −δ

∗|

≤ −min(r,k1,k2)

(
V (ς)+

(γ−γ∗)2

2β1
+
(δ−δ ∗)2

2β2

) 1
2

+
(γ− γ∗)

β1
γ̇ +

(δ −δ ∗)

β2
δ̇ +

k1√
2β1
|γ− γ

∗|

+
k2√
2β2
|δ −δ

∗| . (B.11)

If we choose (11) in Lemma 4, subsisting it in (B.11), it
will exist positive constants γ∗, δ ∗, which make (γ−γ∗)<
0, (δ −δ ∗)< 0. Then (B.11) can be expressed as

V̇ (ς ,γ,δ ) =−min(r,k1,k2)V
1
2 (ς)+ξ , (B.12)

where ξ =−
(

γ̇

β1
− k1√

2β1

)
|γ− γ∗|−

(
δ̇

β2
− k2√

2β2

)
|δ −δ ∗|.

According to Lemma 2, V (ς ,γ,δ )will converge to zero
in a finite time.

This is the end of proof of Lemma 4. �
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