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Controller Design Based on Interval-observer for Switched Systems With
Observer-state-dependent Switching
Chuanjing Wu, Yue-E Wang* � , and Di Wu

Abstract: In this paper, we study the problem of interval-observer based controller design for switched linear sys-
tems with disturbance and measurement noise. First, we propose the definition of finite-time interval-observers
for switched systems and construct finite-time interval-observers for switched linear systems with observer-state-
dependent switching strategy by giving the ranges of the external disturbance and the measurement noise. Then,
by using multiple Lyapunov functions method, some sufficient conditions are provided to guarantee the existence
of the finite-time interval-observers under maximum constraints, and at the same time, based on the proposed suf-
ficient conditions, the observer gains are given and the corresponding sliding motion issue is also solved. After
that, we design an interval-observer-based feedback controller for the switched systems. Different from the tradi-
tional observer-based controller with state-dependent switching signal designed in most literatures, the controller
designed in the paper is based on interval-observer with observer-state-dependent switching signal. Compared with
the traditional observers, the interval-observers are robust to large uncertainties and can provide the ranges of the
system states in any time. Finally, the feasibility of the proposed method is verified by two numerical examples.

Keywords: Multiple Lyapunov functions, observer-state-dependent switching, state observer, switched systems.

1. INTRODUCTION

Because both discrete and continuous dynamics are in-
volved, the dynamic behavior of switched systems is very
complex and attracts much attention [1-5]. Just a couple of
examples, reference [1] gave stability and L2 gain analy-
sis for switched nonlinear systems. Reference [2] designed
a dwell-time-based observer for unknown input switched
linear systems without requiring strong detectability of the
subsystems. Reference [4] addressed the problem of ro-
bust switching design, which sought a switching signal
that makes the switched system exponentially stable and
robust against switching perturbations. The stability for a
class of systems with time-varying delay subject to con-
troller failure was discussed in [5]. Generally speaking,
the research on switched system related problems mainly
involves switching signals dependent on time or state. The
signal for switching that is dependent on time refers to the
resident time switching signal and its various more opti-
mized extension forms [6-8]. State-dependent switching
signals mainly involve maximum switching [9] and mini-
mum switching [10]. For these two kinds of switching just
mentioned, the multiple Lyapunov function method is the

most important research tool. Many literatures prove their
conclusions by using multiple Lyapunov function, such as
reference [11] investigated a new approach for the bipar-
tite (cooperative competitive) consensus control design for
a class of nonlinear agents with Lipschitz dynamics under
directed switching topologies by utilizing multiple Lya-
punov functions, and reference [12] studied the problem
of H∞ control of switched nonlinear systems in p-normal
form in this technical note under using the generalized
multiple Lyapunov functions method.

Often, however, the state information of a switched
system cannot be measured directly and needs to be es-
timated. Interval-observer is a recently proposed robust
observation method for estimating the state of a system
[13]. When the uncertain ranges are known, the interval-
observer can monitor the upper and lower bounds of the
state at any time. Therefore, the interval observer can
estimate the state of systems with large delays better
than the general state observer. Due to this advantage,
interval-observer has got more and more scholars’ atten-
tion [14-17]. However, due to the complexity of switched
system structure and the requirement of upper and lower
observer and system positivity, few scholars pay attention
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to the construction of switched system interval observer
[18-20].

In addition, we are concerned with the dynamic behav-
ior of a system in a fixed time interval in many practical
issues. For instance, we need to observe that some values
cannot exceed the preset parameters during rocket launch-
ing; or in chemical experiments, the temperature and pres-
sure shall not exceed the preset value [21]. For this pur-
pose, in [22], the relevant definitions and conclusions of
both finite-time stability and finite-time boundedness were
given. While FTS is not concerned with disturbances, FTB
is used to analysis the transient performances of a sys-
tem involving external disturbances within a finite time
interval. In recent years, both FTS and FTB have gained
a lot of achievements [23-29]. For example, the FTS for
nonlinear multiagent systems with input delay was stud-
ied in [30]. Reference [31] dealt with finite-time obsre-
vers for time-varying switched systems. What we want to
emphasize here is that no literatures have been reported
for finite-time interval-observers of switched systems with
observer-state-dependent switching scheme.

In this paper, we study the design of controller based
on interval-observer for a class of switched systems
subject to observer-state-dependent switching. By giv-
ing the range of external disturbances and measure-
ment noise, we propose the design method of finite-time
interval-observers for the considered switched systems
with observer-statedependent switching. Then, by using
multiple Lyapunov functions method, some criteria are
given and used to derive the observer gains and the cor-
responding sliding motion issue is also solved. After that,
the feedback controller based on the designed interval-
observer is further designed. Finally, two examples are
given to demonstrate the effectiveness of the proposed
method. A preliminary version of part of the results was
presented in [32].

The remainder of the paper is organized as follows: Sec-
tion 2 gives problem formulation, followed by main re-
sults in Section 3. Two examples are presented to illustrate
the results in Section 4. Section 5 ends the paper.

Notations: Ep is the vector of (p×1) whose elements
are all 1. Matrix P > 0 means that matrix P is positive
definite, λmax(P)(λmin(P)) denotes the maximum (mini-
mum) eigenvalue of matrix P. x and x̄ are used to repre-
sent the lower and the upper bounds of a variable x and
satisfy x ≤ x ≤ x̄. | · | denotes the element-wise absolute
value of a vector x ∈ Rn. For a matrix A ∈ Rm×n, define
A+ = max{0,A} and A− = A+−A. Let M = {1, 2, · · · ,
N}. ∗ means the elements below the main diagonal of a
symmetric matrix. He(A) = AT +A. We assume that the
state of the systems considered in the paper do not jump at
the switching instants and that only finitely many switches
can occur in any finite interval.

2. PROBLEM STATEMENT AND
PRELIMINARIES

Consider the switched linear systems as follows:{
ẋ(t) = Aσ x(t)+Eσ u(t)+ k(t),

y(t) =Cσ x(t)+o(t),
(1)

where x(t)∈Rn, y(t)∈Rp, u(t)∈Rq, k(t)∈Rn, o(t)∈Rp

are the state vector, the measurement output, the control
input, the exogenous disturbance, and the measurement
noise, respectively. Switching signal σ(t) : R+ → M is a
piecewise constant function. For any i ∈M, Ai, Ei, Ci are
constant real matrices with appropriate dimensions. In ad-
dition, for any i ∈M, we presume that the pair (Ai,Ci) are
observable.

Assumption 1: The disturbance and the measurement
noise are assumed to be unknown but bounded with pri-
ori known bounds such that −k̄(t) ≤ k(t) ≤ k̄(t), |o(t)| ≤
ŌEp, are verified for ∀t ∈ R+, where, Ō > 0 and k̄(t) ∈
Rn is a non-negative vector and is assumed to satisfy∫ T

0 k̄T(s)k̄(s)ds≤ d1, d1 ≥ 0 for a fixed T > 0.
Assumption 2: There exist gains Li such that the matri-

ces Ai = Ai−LiCi are Metzler for all i ∈M. The matrices
Li(i ∈M) denote the observer gains associated with each
subsystem i.

A candidate observer for the estimation of x̄ and x is
expressed as{

˙̄x =Aix̄+Eiu+Ki +Liy,

ẋ =Aix+Eiu−Ki +Liy,
(2)

where Ki = k̄+ |Li|ŌEp.
Let η =

[
x̄T xT

]T. We construct the feedback con-
troller

u =
[
Ki Ki

]
η , (3)

where Ki and Ki are controller gains.
Let ē(t) = x̄−x and e(t) = x−x be the upper estimation

error and the lower estimation error, respectively. There-
fore, the error systems can be established as{

˙̄e(t) =Aiē(t)+ϖui,

ė(t) =Aie(t)+ϖli,
(4)

where ϖui =Ki− k+Lio(t) and ϖli =Ki + k−Lio(t).
Let ξ =

[
ηT xT

]T. We have

ξ̇ = Ăiξ + k̃i, (5)

where

Ăi =

[
Āi C̄i

K̃i Ai

]
, Āi =

[
Ai +EiKi EiKi

EiKi Ai +EiKi

]
,

k̃i =

[
k̄i

k

]
, C̄i =

[
LiCi

LiCi

]
,
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K̃i =
[
EiKi EiKi

]
, k̄i =

[
Ki +Lio(t)
−Ki +Lio(t)

]
.

According to Assumption 1,∫ T

0
oT(s)o(s)ds≤

∫ T

0
pŌ2 ds

= pŌ2T.

Let d2 = pŌ2T . Thus
∫ T

0 oT(s)o(s)ds≤ d2 and∫ T

0
(Ki +Lio(s))T(Ki +Lio(s))ds

=
∫ T

0
ς

T(s)Sς(s)ds

≤ 3
∫ T

0
(k̄Tk̄+ET

p Ō|Li|T|Li|ŌEp+oT(s)LT
i Lio(s))ds

≤ 3
∫ T

0
(k̄Tk̄+ c3 + c4oT(s)o(s))ds

= 3d1 +3c3T +3c4d2,

where ς T(s) =
[
k̄T Ep

TŌ|Li|T oT(s)LT
i

]
, S =

1 1 1
* 1 1
* * 1

,

c3 = max
i∈M
{ET

p Ō|Li|T|Li|ŌEp}, c4 = max
i∈M
{λmax(LT

i Li)}.
Similarly, we can derive that∫ T

0
(−Ki +Lio(s))T(−Ki +Lio(s))ds

≤ 3d1 +3c3T +3c4d2.

Thus∫ T

0
k̃T

i k̃ids≤ 7d1 +6c3T +6c4d2 = d. (6)

Set

W =
{

k̃i(t)|
∫ T

0
k̃T

i (t)k̃i(t)dt ≤ d
}
. (7)

Define the switching law in this paper based on the fol-
lowing largest region function strategy:

σ(t) = argmax
i∈M

ξ
T(t)B̃iξ (t), (8)

where B̃i =

[
Bi 0
0 P

]
,with BT

i =Bi ∈R2n×2n and P> 0,P∈

Rn×n.
It is supposed that there are N regions Ψi and the re-

gions correspond to the observer subsystems one by one,
that is, when the observer subsystem i is activated, the ob-
server system state is in the region Ψi, and the regions Ψi j

represent the set of jumping from the observer subsystem i
to the observer subsystem j. The following two properties
can meet our well-defined switched system.

Covering property: Ψ1
⋃

Ψ2
⋃
...
⋃

ΨN = R3n.

Switching property: Ψi j ⊆Ψi
⋂

Ψ j, i, j ∈M.

The first property means that each region has a corre-
sponding active observer subsystem. The second property
says that the switching from the observer subsystem i to
the observer subsystem j occurs only at the intersection of
the region Ψi and the region Ψ j. Therefore, based on the
matrices B̃i mentioned above, region Ψi and region Ψi j are
defined as follows:

Ψi = {ξ ∈ R3n|ξ TB̃iξ ≥ 0}, i ∈M, (9)

Ψi j = {ξ ∈ R3n|ξ TB̃iξ −ξ
TB̃ jξ = 0}, i, j ∈M.

(10)

The description of the main result requires the follow-
ing lemmas and definitions.

Lemma 1 (Covering property) [9]: If for every ξ ∈R3n,
θ1ξ TB̃1ξ +θ2ξ TB̃2ξ + ...+θNξ TB̃Nξ ≥ 0, where θi > 0,
i ∈M, then Ψ1

⋃
Ψ2
⋃
...
⋃

ΨN = R3n.
Lemma 2 [19]: The system ẋ(t) = Ax(t)+u(t),x(0) =

x0 is said to be cooperative if A is a Metzler matrix and
u(t)≥ 0, and for any initial condition x0 ≥ 0 and t ≥ 0, its
solution satisfies x(t)≥ 0.

Lemma 3 [18]: Let x ∈ Rn be a vector satisfying x ≤
x ≤ x̄ and A ∈ Rm×n be a constant matrix, then A+x−
A−x̄≤ Ax≤ A+x̄−A−x.

Definition 1 [19]: Consider a switched system

ẋ = fσ (t,x(t),kσ (t)), x ∈ Rn, ki ∈ Rl , (11)

with fi, i ∈ M of class C1. The disturbance ki are Lips-
chitz continuous and such that there exist ku(t), kl(t)∈W,
Lipschitz continuous, and such that, for all t ≥ 0, kl(t) ≤
ki(t) ≤ ku(t). Moreover, the initial condition x(0) = x0 is
assumed to be bounded by known bounds: x0 ≤ x0 ≤ x̄0.

Then, the dynamical system

Ż = ϕσ (t,Z, k̃(t)), Z0 = G(t0, x̄0,x0) ∈ Rnz , (12)

associated with k̃(t) = (ku(t),kl(t)) ∈ R2l , and bounds for
the solution x: x̄ = Hu(t,Z), x = Hl(t,Z) with ϕi (i ∈M),
Hu, Hl , G Lipschitz continuous of appropriate dimension,
is called a FTS interval-observer for (11) if

(i) for all k̃(t), all the solutions of (12) are defined over
R+;

(ii) the solutions x(t) and Z(t) of the systems (11) and
(12) satisfy x =Hl(t,Z)≤ x(t)≤Hu(t,Z) = x̄, ∀t ≥ 0;

(iii) the system (12) is FTS with respect to (c1,c2,T,R,d)
under the switching signal σ when k̃ ≡ 0.

3. MAIN RESULTS

This section gives the sufficient conditions of the exis-
tence of the FTS interval-observer subject to observer-
state-dependent switching strategy, and then designs
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the state feedback controllers based on the constructed
interval-observer.

Theorem 1: Let Assumptions 1 and 2 be satisfied. For
any initial condition x0 ≤ x0 ≤ x̄0 and any i, j ∈M, i 6= j, if
there exist matrices P> 0, Pii > 0, P̃i > 0, P̃j > 0, B̃i = B̃T

i ,
Xi, and constants θi > 0, ηi j > 0, α > 0, δ > 0, such thatΣi 0 XiCi

* Σi XiCi

* * ϒi

< 0, (13)

P̃i = P̃j +ηi j(B̃ j− B̃i), (14)
N

∑
i=1

θiB̃i ≥ 0, (15)

where ϒi = He(PAi) +
1
δ

P − α min
i∈M
{λmin(P)}I, Σi =

He(PiiAi)−He(XiCi)+
1
δ

Pii−α min
i∈M
{λmin(Pii)}I.

Then, the system (2) is a FTS interval-observer of the
switched system (1) with respect to (c1,c2,T,λ ,R) un-
der the switching signal (8), where λ = max

i∈M
{λmax(P̃i)}

with Pi = diag{Pii, Pii}, P̃i = diag{Pi, P}. Moreover, the
interval-observer gains are given by Li = P−1

ii Xi.
Proof: The proof of this result takes the following three

steps.
Step 1: We show that x(t) ≤ x(t) ≤ x̄(t) for any t ≥ 0.

From Assumption 2 and the definitions of ϖli and ϖui, it
is obvious that ϖli ≥ 0 and ϖui ≥ 0. Since the matrices Ai

are Metzler and ϖli ≥ 0, ϖui ≥ 0, by Lemma 3 and the
continuity of the states e(t) and e(t) of the system (16) at
the switching instants, for all t ≥ 0, e(0)≥ 0 and e(0)≥ 0
imply that e(t)≥ 0 and e(t)≥ 0, which gives x(t)≤ x(t)≤
x̄(t).

Step 2: Since we don’t care about the control input at
this stage, we can set u = 0 and the system (5) becomes

ξ̇ = Ãiξ + k̃i, (16)

where Ãi =

[
Āi C̄i

0 Ai

]
, Āi =

[
Ai 0
0 Ai

]
.

Now, we prove the FTS of the system (16). For this
purpose, we consider the multiple Lyapunov functions
V (ξ ) =Vσ (ξ ) with Vi(ξ ) = ξ TP̃iξ .

For any i ∈M, we deduce

V̇i(ξ ) = ξ
THe(P̃iÃi)ξ +2ξ

TP̃ik̃i

< ξ
T(He(P̃iÃi)+

1
δ

P̃i)ξ +δ k̃T
i P̃ik̃i. (17)

According to (13), it has

V̇i(ξ )< αξ
T min

i∈M
{λmin(P̃i)}Iξ +δλ k̃T

i k̃i

≤ αVi(ξ )+δλ k̃T
i k̃i. (18)

Let tk denote the switching instant, for any t ∈ [tk, tk+1),
integrating from tk to t on both sides of (18), we have

V (ξ (t))< eα(t−tk)Vσ(ξ (tk))(ξ (tk))

+δλ

∫ t

tk
eα(t−s)k̃T

i k̃i ds. (19)

Note that ξ (tk) = ξ (t−k ) then Vσ(ξ (tk))(ξ (tk)) =
Vσ(ξ (t−k ))(ξ (t

−
k )) from (14). Therefore, it follows from

(19) that

V (ξ (t))≤ eαtVσ(ξ (0))(ξ (0))+δλ

∫ t

0
eαt k̃T

i k̃i ds

≤ eαTV (ξ (0))+δλeαT
∫ T

0
k̃T

i k̃i ds. (20)

Let P̄i = R−
1
2 P̃iR−

1
2 , we have

V (ξ (0)) = ξ
T(0)P̃σ(ξ (0))ξ (0)

< λmax(P̄σ(ξ (0)))ξ
T(0)Rξ (0)

< λ1ξ
T(0)Rξ (0), (21)

and

V (ξ (t)) = ξ
T(t)P̃σ(ξ (t))ξ (t)

= ξ
T(t)R

1
2 P̄σ(ξ (t))R

1
2 ξ (t)

≥ λmin(P̄σ(ξ (t)))ξ
T(t)Rξ (t)

≥ λ2ξ
T(t)Rξ (t), (22)

where λ1 = max
i∈M
{λmax(P̄i)}, λ2 = min

i∈M
{λmin(P̄i)}.

Then, combining (20), (21) with (22), it follows that

ξ
T(t)Rξ (t)<

eαT

λ2

(
λ1ξ

T(0)Rξ (0)+δλ

∫ T

0
k̃T

i k̃i ds
)
.

(23)

From ξ T(0)Rξ (0) ≤ c1 and k̃i ∈ W, we can derive
that ξ T(t)Rξ (t)< eαT

λ2
(λ1c1 +δλd), ∀t ∈ (0, T ]. Let c2 =

eαT

λ2
(λ1c1 +δλd), it is clear that c2 > c1, and thus the sys-

tem (16) is FTB and when k̃i = 0, the system (16) is FTS,
that is to say the system (2) is a FTS interval-observer for
the switched system (1) under the switching signal (8).

Step 3: Under the observer-state-dependent switching
strategy, the sliding motion may occur at the switching
surface Ψi j, that is, ξ TB̃iξ = ξ TB̃ jξ ≥ 0. So, what we’re
going to do is show that the FTB of the system (16) still
holds.

Using Filippov’s convex combination in [37], we can
describe the system on the switching surface as

ξ̇ = ρ(Ãiξ + k̃i)+(1−ρ)(Ã jξ + k̃ j),0≤ ρ ≤ 1.
(24)

When the sliding motion occurs along Ψi j, it has

ξ
THe(ÃT

i (B̃i− B̃ j))ξ +2ξ
T(B̃i− B̃ j)k̃i < 0, (25)

ξ
THe(ÃT

j (B̃i− B̃ j))ξ +2ξ
T(B̃i− B̃ j)k̃ j > 0. (26)

From (14) and ηi j > 0, we have

ξ
THe(ÃT

i (P̃j− P̃i))ξ +2ξ
T(P̃j− P̃i)k̃i < 0, (27)
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ξ
THe(ÃT

j (P̃j− P̃i))ξ +2ξ
T(P̃j− P̃i)k̃ j > 0. (28)

According to (13),

ξ
THe(ÃT

i P̃j)ξ +2ξ
TP̃j k̃i < ξ

THe(ÃT
i P̃i)ξ +2ξ

TP̃ik̃i

< αλ3ξ
T
ξ +δλ k̃T

i k̃i, (29)

ξ
THe(ÃT

j P̃i)ξ +2ξ
TP̃ik̃ j < ξ

THe(ÃT
j P̃j)ξ +2ξ

TP̃j k̃ j

< αλ3ξ
T
ξ +δλ k̃T

j k̃ j, (30)

which gives that

ξ
T[ρHe(ÃT

i P̃i)+(1−ρ)He(ÃT
j P̃i)]ξ +2ξ

TP̃ik̃i

< αλ3ξ
T
ξ +δλ k̃T

i k̃i, (31)

ξ
T[(1−ρ)He(ÃT

j P̃j)+ρHe(ÃT
i P̃j)]ξ +2ξ

TP̃j k̃ j

< αλ3ξ
T
ξ +δλ k̃T

j k̃ j, (32)

where λ3 = min
i∈M
{λmin(P̃i)}.

Hence, we can deduce that

ξ
THe[(ρÃT

i +(1−ρ)ÃT
j )P̃i]ξ +2ξ

TP̃ik̃i

< αξ
TP̃iξ +δλ k̃T

i k̃i, (33)

ξ
THe[(ρÃT

i +(1−ρ)ÃT
j )P̃j]ξ +2ξ

TP̃j k̃ j

< αξ
TP̃jξ +δλ k̃T

j k̃ j. (34)

Then, the conditions of (18) and (20) are satisfied for
the system (24) with Lyapunov functional ξ TP̃iξ and
ξ TP̃jξ , and the switched system (16) is FTS even if the
sliding motion occurs under given conditions. This com-
pletes the proof. �

Remark 1: In [38], observer-based control for uncer-
tain switched systems under time-dependent switching
signal was investigated. However, the designed observer in
[38] can not give the range of the system state in real time.
Reference [39] investigated the design of hybrid state
observer-based event-triggered controller for switched lin-
ear systems subject to time-dependent switching signal. In
the paper, we investigate the interval-observer based con-
troller design for switched linear systems under observer-
state-dependent switching signals. Different from [38,39],
interval-observers for switched systems with observer-
state-dependent switching signals is discussed in the pa-
per. Through interval-observers, we can give the range of
the system state in real time, that is, get the upper and
the lower bounds of the system state. Although work [19]
studied the design of interval-observer for switched linear
systems, it did not discuss the stabilization problem of the
system, that is, it did not design the controller. In addi-
tion, the conditions in [19] are difficult to verify, and the
inequality is dependent on the switching times.

Remark 2: The current literature on event-triggered
control of switched linear systems either directly assume
that the state of the system can be directly obtained, or are
based on the traditional observer to design the controller
under the time-dependent switching signal. In the paper,

the controller is designed based on the interval-observer,
which can provide the state estimation information at any
instant. In addition, since the state of the system cannot be
directly obtained, we design the observer-state-dependent
switching signal.

Next, we will prove the interval-observer based feed-
back controller (3) can stabilize the system (1).

Theorem 2: Let Assumptions 1 and 2 be satisfied. For
any initial condition x0 ≤ x0 ≤ x̄0 and any i, j ∈M, i 6= j,
if there exist matrices P > 0, Pii > 0, B̃i = B̃T

i , Xi, Ki, Ki,
and constants θi > 0, ηi j > 0, α > 0, δ > 0, ε > 0, such
that 

Σi 0 XiCi Pii KT
i ET

i
* Σi XiCi Pii KT

i ET
i

* * ϒi Pii 0
* * * −εI 0
* * * * −1/εI

< 0, (35)

P̃i = P̃j +ηi j(B̃ j− B̃i), (36)
N

∑
i=1

θiB̃i ≥ 0, (37)

where ϒi and Σi are given in Theorem 1.
Then with the interval-observer based feedback con-

troller (3), the switched system (1) is FTS with respect
to (c1,c2,T,λ ,R) under the switching signal (8), where,
λ = max

i∈M
{λmax(P̃i)} with Pi = diag{Pii, Pii}, P̃i = diag{Pi,

P}. The controller gains are given by Ki and Ki.
Proof: The proof of this result takes three steps. The

first step is similar to the first step in proving Theorem 1.
Step 2: Choose the Lyapunov function V (ξ ) = Vσ (ξ )

with Vi(ξ ) = ξ TP̃iξ for the switched system (5). For any
i ∈M, by Lemma 2, we deduce

V̇i(ξ ) = ξ
THe(P̃iĂi)ξ +2ξ

TP̃ik̃i

< ξ
T[He(P̃iĂi)+

1
δ

P̃i]ξ +δ k̃T
i P̃ik̃i. (38)

Further, in order to get (18), we need to ensure the fol-
lowing inequalityΣi +He(Ξi) PiiEiKi +ΞT

i XiCi +ΞT
i

* Σi +He(PiiEiKi) XiCi +(PiiEiKi)
T

* * ϒi


< 0, (39)

which is equal toΣi 0 XiCi

* Σi XiCi

* * ϒi

+2x̃Tỹ< 0, (40)

where Ξi = PiiEiKi, x̃=
[
Pii Pii Pii

]
, ỹ=

[
EiKi EiKi 0

]
.

The inequality (40) is equivalent to the following oneΣi 0 XiCi

* Σi XiCi

* * ϒi

+1/εx̃Tx̃+ εỹTỹ< 0. (41)
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By using Schur Complement Lemma and (35), we can
prove the inequality (39) holds.

Then, according to the steps of Theorem 1, we can get
similar formulas from (19)-(23). Therefore, it can be con-
cluded that the system (2) is FTB interval-observer for the
switched system (1).

Step 3: We consider the case of sliding motion prob-
lem, the step is the same as Theorem 1, and the following
inequalities can be obtained

ξ
T[ρ(ĂT

i P̃i+P̃iĂi)+(1−ρ)(ĂT
j P̃i+P̃iĂ j)]ξ+2ξ

TP̃ik̃i

< αξ
TP̃iξ +δλ k̃T

i k̃i, (42)

ξ
T[(1−ρ)(ĂT

j P̃j+P̃jĂ j)+ρ(ĂT
i P̃j+P̃jĂi)]ξ+2ξ

TP̃j k̃ j

< αξ
TP̃jξ +δλ k̃T

j k̃ j. (43)

Therefore, the switched system (5) is FTS even if the
sliding motion occurs under given conditions. This com-
pletes the proof. �

4. NUMERICAL SIMULATION

Example 1: Consider the system (1) without control
input, the system matrices are given as follows:

A1 =

[
−1.01 0.48

0 −1.1

]
, A2 =

[
−0.61 0.3
0.32 −1.07

]
,

k(t) =
[

sin(t)
cos(t)

]
, C1 =

[
0 0.5

]
, C2 =

[
0.5 0

]
,

o(t) = sin(t)Ō.

It is obvious that Ō= 1 and k̄ =
[
1 1

]T. And Assumption
2 is fulfilled due to the matrices A1−L1C1 and A2−L2C2

are Metzler, where L1 =
[
−0.0969 −0.0492

]T, L2 =[
−0.0256 0.166

]T.
Choose c1 = 1, c2 = 20, T = 10, R = I, let λ2 = 0.3981,

and fix α = 0.1, η = 1, δ = 1, then apply Theorem 1 we
obtain the following feasible solutions

P11 =

[
0.7272 0.1226

* 0.5405

]
, P22 =

[
1.0135 −0.0288

* 0.3994

]
,

P =

[
0.8443 0.1179

* 0.6211

]
, B11 = P22, B22 = P11,

P̃1 = diag{P11, P11,P}, P̃2 = diag{P22, P22, P},
tildeB1 = diag{B11, B11,0},
B̃2 = diag{B22, B22,0}.

Figs. 1 and 2 show the state estimations of variables x1

and x2, where the exogenous disturbance of the system (1)
is kT(t) =

[
sin(t) cos(t)

]
.

The simulations with the disturbance kT(t) =
[
e−t e−t

]
are provided in Figs. 3 and 4. Fig. 5 shows the system is
FTB with the initial condition ξ T(0)Rξ (0)≤ 1.

Then, according to Fig. 5, we find that the interval-
observer in this paper reaches FTB at t = 6.478 s. By using

Fig. 1. The state estimation for variable x1.

Fig. 2. The state estimation for variable x2.

Fig. 3. The state estimation for variable x1.

the simulation example in [40], it can be seen that the FTB
is achieved at t = 15 s. Therefore, the result in this paper
may be less conservative.

Example 2: Consider the system (1) with the same ex-
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Fig. 4. The state estimation for variable x2.

Fig. 5. ξ T(t)Rξ (t).

ternal disturbance and measurement noise as Example 1,

A1 =

[
−0.74 1.28
1.12 −1.82

]
, A2 =

[
−2.8 0.48
0.8 −2.7

]
,

E1 =

[
1 0
0 0.5

]
, E2 =

[
0.5 0
0 1

]
,

C1 =
[
0.5 0

]
, C2 =

[
0 0.5

]
.

According to Assumption 2, A1 − L1C1 and A2 −
L2C2 are Metzler, where L1 =

[
−1.1925 1.803

]T, L2 =[
−1.0659 −0.1364

]T. Let c1 = 1, c2 = 10, T = 10, R= I,
λ2 = 0.3649, and fix α = 0.9, η = 1, ε = 1, δ = 2, then
apply Theorem 2, we obtain the controller gains

K1 =

[
−0.2704 0.0171

* −0.4298

]
,

K2 =

[
−0.4182 0.0207

* −0.2818

]
,

K1 =

[
−0.2598 0.0098

* −0.2478

]
,

Fig. 6. The state estimation for variable x1.

Fig. 7. The state estimation for variable x2.

Fig. 8. The state estimation for variable x1.

K2 =

[
−0.8727 0

* −0.8727

]
.

Figs. 6 and 7 show the state estimations of the variables
x1 and x2 with kT(t) =

[
sin(t) cos(t)

]
. The simulations

with the disturbance kT(t) =
[
e−t e−t

]
are provided in

Figs. 8 and 9. Fig. 10 shows the open-loop system is not
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Fig. 9. The state estimation for variable x2.

Fig. 10. ξ T(t)Rξ (t).

Fig. 11. ξ T(t)Rξ (t).

FTB, while Fig. 11 shows the system is FTB with the ini-
tial condition ξ T(0)Rξ (0)≤ 1.

Then, according to Fig. 11, the switched system (1)
with the interval-observer based feedback controller (3)
reaches FTB at t = 1.801 s, however, reference [39] needs
t = 3.82 s to reach FTB. Therefore, the result in this paper
may be less conservative.

5. CONCLUSION

In the paper, the design of interval-observer based con-
troller for switched systems has been discussed. We have
constructed interval-observers and designed controller
based on the proposed interval-observers for the con-
sidered switched systems with observer-state-dependent
switching strategy. Then, some criteria characterizing the
FTB of the observer systems have been derived. The
event-triggered controller design based on intervalob-
server for switched linear systems is a interesting issue
that is worth further investigating.
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