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Adaptive Variable Structure Controller Design for Uncertain Switched
Systems With Unknown Time-varying Delay
Zhongzheng Liu, Zhen Liu* � , Baoping Jiang, and Cunchen Gao

Abstract: In this paper, an innovative sliding mode framework is used to propose an observer-based adaptive
control scheme for uncertain switched systems with unknown time-varying delay. First, a state observer with no
input information is built incorporating a new sliding manifold (SM) to rebuild the unmeasured state variables,
which does not rely on accurate information of the time-delay. By picking a suitable Lyapunov function, using
the average dwell time (ADT) approach and linear matrix inequality (LMI) tool, a novel stability criterion for the
resultant sliding motion is devised. In addition, to meet the defined SM’s arrival condition, a new adaptive variable
structure controller is constructed. Finally, two illustrative examples are given to demonstrate the efficacy of the
control method.
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1. INTRODUCTION

Sliding mode control (SMC) is an effective nonlinear
control strategy that has been applied successfully to a
wide range of complex systems and engineering applica-
tion [1-6] due to its excellent transient performance, in-
sensitivity to unknown uncertainties and external distur-
bances. For instance, an SMC strategy was proposed for
stochastic Markov jump cyber-physical systems in [4].
The event-triggered SMC scheme for the discrete-time
two-dimensional Roesser systems was proposed in [5].

Switched systems, which play an important role in va-
riety of practical applications, including power systems,
chemical progress, have been extensively probed in re-
cent years and a significant deal of research has been done
in stability and stabilization problems [7-10]. In addition,
SMC has been utilized for switched systems to some ex-
tent [11-15]. As a further extension of switched systems,
switched time-delay systems (STDS) have attracted exten-
sive attention in past decades. Time-delay might not only
affect the response speed of the system [16-18], but also
cause the system to be unstable. Extensive researches have
been conducted to improve STDS performance, and nu-
merous contributions have been made in this field [19-22].
To name a few, the global sampled-data control problem
was studied for STDS in [19]. A novel control handling

the impulsive behavior for STDS subject to both states and
time-varying delays was developed in [21].

It should be pointed out that the above literature are
based on scenarios that system state variables are acces-
sible. From the point of view of practical engineering,
state variables are often unknown due to various environ-
ments such as incapable measurability as well as sensor
constraints. Therefore, estimating state information from
state observer is an effective way [23-26]. When the sys-
tem is subjected to control channel uncertainties and ex-
ternal disturbances, conventional observers cannot guar-
antee the estimation of unknown system state well [27].
At this point, sliding mode observer (SMO), in which
state estimation via the observer can be effectively real-
ized by SMC’s anti-interference capability, has been put
forward for uncertain nonlinear plants [28,29]. The de-
sign of SMO based on quantitative measure for a class of
Markovian jump systems with actuator faults was stud-
ied in [29]. What is noteworthy, there are few studies
based on SMO of STDS with uncertainty, which is the
initial motivation of the present research. Accordingly,
SMO has been applied to systems with time-delay grad-
ually [30,31]. In [30], Markov jump systems with time-
delay and Itô stochastic process was studied based on
SMO. Reference [31] investigated the robust estimation
and observer-based finite time SMC problems for STDS.
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As seen, the above results achieve the system stability by
constructing SMO in view of precise information of time-
delay. However, the complexity of the industrial environ-
ment, the time-delay information may not be correctly
predicted in practical applications, but the upper bound of
time-delay may be straightforward to be estimated. Thus,
the design of SMO in the absence of accurate time-delay
information has certain practical significance for STDS,
which forms the crucial motivation of the study.

Based on the above discussion, this paper is to inves-
tigate adaptive robust SMC of uncertain STDS in the oc-
curence of unmeasured states, unknown delay and para-
metric uncertainties under a modified observer frame-
work. Illustrative examples are discussed to validate the
efficacy of the current method. The main contributions are
listed below:

1) Compared to the observer designs in [31-33], a
smooth observer is set up without any control inputs,
which can generate the state variables without precise
knowledge of the time-delay.

2) In contrast to the designs in [28,34], a novel linear SM
is developed, from which a new exponential stability
criterion of the dynamics in sliding phase is derived
combining the multiple Lyapunov method and ADT
approach.

3) By comparison of the design of controller in [35,36],
a novel adaptive variable structure control signal is
synthesized to adapt unknown boundaries of poten-
tial uncertainties and solve the reachability problem
of the designated SM.

The rest of the article has the following structure: Sec-
tion 2 presents the system description. In Section 3, the
observer-based adaptive SMC scheme is introduced. Two
simulations are provided in Section 4 to confirm the effec-
tiveness of the control scheme. Finally, Section 5 gives a
brief summary of this paper.

2. SYSTEM DESCRIPTION AND
PRELIMINARIES

Consider the following STDS given by

ż(t) = (A(ß)+∆A(ß, t))z(t)

+ [Ad(ß)+∆Ad(ß, t)]z(t−d(t))

+B(ß)(u(t)+g(ß, t,z)),

y(t) =C(ß)z(t),

z(t) = ψ(t), t ∈ [−τ̂, 0], (1)

in which z(t)∈ℜn denotes state vector, and u(t)∈ℜm and
y(t) ∈ℜp denote control input and measured output. The
initial continuous function defined on the interval [−τ̂ , 0]
is denoted by ψ(t). ß(t) : [0, ∞) 99KÆ is switching sig-
nal,which is a piecewise constant function. Æ = {1, 2, . . .,

æ}, where æ denotes the current subsystem under opera-
tion, then plant (1) becomes

ż(t) = (Ai +∆Ai(t))z(t)

+ [Adi +∆Adi(t)]z(t−d(t))

+Bi[u(t)+gi(t,z)],

y(t) =Ciz(t),

z(t) = ψ(t), t ∈ [−τ̂, 0]. (2)

Furthermore, ∆Ai(t) and ∆Adi(t) are parameter uncer-
tainties, and satisfy [∆Ai(t) ∆Adi(t)] = MiFi(t)[Ni Ndi],
where Mi, Ni and Ndi are known constant matrices, Fi(t)
is an unknown vector-valued function and Fi

T (t)Fi(t) ≤ I
for t ≥ 0. d(t) is unknown time-vary delay but the upper
bound is given by τ̂ , and satisfies ḋ(t)≤ θ < 1. gi(t,z(t))
is an unknown matching nonlinearity which is the lumped
perturbation in the range of the input channel satisfying
‖gi(t,z(t))‖ ≤ α1‖y(t)‖+α2, where α1, α2 > 0 are un-
known scalars.

Definition 1 [37]: For ∀0 ≤ t ≤ Tσ , Nß(t,Tσ ) signifies
the switching number of ß(t) over (t,Tσ ). If Nß(t,Tσ ) ≤
N0 +

Tσ − t
Ta

, where Ta > 0 and N0 ≥ 0, Ta is called ADT.

As used in [37], let N0 = 0.

3. MAIN RESULTS

3.1. Design of state observer
A modified state observer with no inputs is constructed

in the following to estimate the state variables

˙̂z(t) = Aiẑ(t)+Adiẑ(t− τ̂)+Li(y(t)−Ciẑ(t)),

ŷ(t) =Ciẑ(t),

ẑ(t) = ψ̂(t), t ∈ [−τ̂, 0], (3)

where ẑ(t) ∈ℜn indicates the estimation of the state z(t),
ŷ(t) indicates output of the observer dynamics, and Li ∈
Rn×p is an observer gain to be designed. The associated
error dynamics are obtained by subtracting (3) from (2) as
below

˙̃z(t) = (Ai−LiCi)z̃(t)+Adiz(t−d(t))+∆Ai(t)z(t)

+∆Adi(t)z(t−d(t))+Bi[u(t)+gi(t,z)]

−Adiẑ(t− τ̂), (4)

where z̃(t) denotes the estimation error and z̃(t) = z(t)−
ẑ(t).

Remark 1: It is worth noting that most previous ob-
server designs such as [32-34] require accurate time-delay
information, which may be hard to obtain in practical en-
gineering applications, while the proposed observer that
only needs the upper bound information of time-delay has
more practical significance from the perspective of the ap-
plication.
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3.2. Linear sliding manifold design
Based on the state estimation data, we develop a novel

SM function of the following linear-type

σ(t) = Yi[2y(t)−Ciẑ(t)], (5)

with parameter Yi ∈ Rm×p to be given later.
Remark 2: Compared with the widely used integral

SM [3,11,24], the novel SM has a simpler structure. More
specifically, the design of SM can effectively reduce the
technical difficulty in deducing the stability of the STDS,
and there is no need to discuss the influence of matching
disturbance on stability analysis by taking the attainability
of the SM, see Subsection 3.4.

3.3. Adaptive controller synthesis and reachability
analysis

In this section, an adaptive SM controller is developed to
ensure that the system trajectory can arrive at the prede-
fined SM in finite-time. To aid in the design of a controller,
a reasonable assumption is offered here.

Assumption 1 [38]: Unknown scalars c1 > 0, c2 > 0
may exist to satisfy ‖z(t−d(t))‖ ≤ c1‖z(t)‖+ c2.

Typically, the error term z̃(t) might not be properly es-
timated since the state variables are not entirely accessi-
ble. However, on the basis of the connection from z(t) and
y(t), it can be given that ‖z(t)‖ ≤ d1‖y(t)‖+ d2 for some
unknown positive scalars di, i = 1, 2. The following rea-
sonable estimate can then be given:

There are two unknown positive constants `1, `2 satify-
ing

(BT
i ZiBi)

−1BT
i Zi[2Ai +2∆Ai(t))−LiCi]z(t)

+(BT
i ZiBi)

−1BT
i Zi[2Adi +2∆Adi(t)]z(t−d(t))

+2gi(t,z)

≤max
i∈Æ
{‖(BT

i ZiBi)
−1BT

i Zi(2Ai−LiCi)z(t)‖}

+2max
i∈Æ
{‖(BT

i ZiBi)
−1BT

i ZiMi‖‖Ni‖}‖z(t)‖

+2max
i∈Æ
{‖(BT

i ZiBi)
−1BT

i ZiAdi‖}‖z(t−d(t))‖

+2max
i∈Æ
{‖(BT

i ZiBi)
−1BT

i ZiMi‖‖Ndi‖}‖z(t−d(t))‖

+2max
i∈Æ
{‖gi(t,z)‖}

≤ `1‖y(t)‖+ `2, t ≥ 0, (6)

some parameters Zi, Pi, Qi, Ri, Ti, Xi are defined and com-
puted in Subsection 3.4. Let ˆ̀1(t) and ˆ̀2(t) be the estima-
tions of unknown data `1 and `2 with the estimation errors
represented by ˜̀1(t) = ˆ̀1(t)− `1 and ˜̀2(t) = ˆ̀2(t)− `2,
then the new adaptive SM controller for the STDS is pro-
posed by

u(t) = 0.5[(BT
i ZiBi)

−1BT
i Zi(Ai−LiCi)ẑ(t)

+(BT
i ZiBi)

−1BT
i ZiAdiẑ(t− τ̂)]

−0.5[ ˆ̀1(t)‖y(t)‖+ ˆ̀2(t)+δ ]sgn(σ(t)), (7)

furthermore, the updating laws are designed by

˙̀̂
1(t) = a1‖y(t)‖‖σ(t)‖, ˙̀̂

2(t) = a2‖σ(t)‖, (8)

and ai > 0, i = 1, 2, are scalars, and δ is a small positive
constant.

Theorem 1: Consider the STDS (2) with observer (3)
and SM variable designed in (5). Given the control signal
and updating laws as (7) and (8), the state trajectory will
be moved to the designed SM in limited time.

Proof: Choose the following Lyapunov function

V̂ı(t) = 0.5[σT(t)(BT
i ZiBi)

−1
σ(t)+a−1

1
˜̀2
1(t)

+a−1
2

˜̀2
2(t)].

Performing the time derivative of V̂ı(t) becomes

˙̂Vı(t) = σ
T(t)(BT

i ZiBi)
−1

σ̇(t)

+a−1
1

˜̀1(t) ˙̀̃
1(t)+a−1

2
˜̀2(t) ˙̀̃

2(t)

= 2σ
T(t)u(t)

+σ
T{−(BT

i ZiBi)
−1BT

i Zi(Ai−LiCi)ẑ(t)

− (BT
i ZiBi)

−1BT
i Adiẑ(t− τ̂)

+(BT
i ZiBi)

−1BT
i Zi[2Ai +2∆Ai(t)−LiCi]z(t)

+(BT
i ZiBi)

−1BT
i Zi2(Adi +∆Adi(t))z(t−d(t))

+2g(t,z)}+a−1
1

˜̀1(t) ˙̀̃
1(t)+a−1

2
˜̀2(t) ˙̀̃

2(t).
(9)

According to (6)-(9), it holds

˙̂Vı(t) = σ
T(t)[(BT

i ZiBi)
−1BT

i Zi(Ai−LiCi)ẑ(t)

+(BT
i ZiBi)

−1BT
i ZiAdiẑ(t− τ̂)]

−σ
T(t)[ ˆ̀1(t)‖y(t)‖+ ˆ̀2(t)+δ ]sgn(σ(t))

−σ
T(t)[(BT

i ZiBi)
−1BT

i Zi(Ai−LiCi)ẑ(t)

+(BT
i ZiBi)

−1BT
i ZiAdiẑ(t− τ̂)]

+σ
T{(BT

i ZiBi)
−1BT

i Zi[2Ai +2∆Ai(t)

−LiCi]z(t)+(BT
i ZiBi)

−1BT
i Zi[2Ai

+2∆Adi(t)]z(t−d(t))+2g(t,z)}

+a−1
1

˜̀1(t) ˙̀̃
1(t)+a−1

2
˜̀2(t) ˙̀̃

2(t)

≤−‖σ(t)‖‖y(t)‖ ˜̀1(t)−‖σ(t)‖ ˆ̀2(t)

+‖σ(t)‖`2 +a−1
1

˜̀1(t)a1‖y(t)‖‖σ(t)‖
−δ‖σ(t)‖+a−1

2
˜̀2(t)a2‖σ(t)‖

=−δ‖σ(t)‖< 0, if σ(t) 6= 0. (10)

Under the fact ˙̀̂
i(t) = ˙̀̃

i(t) > 0, i = 1, 2, then an in-
stant TΘ > 0 can be found to ensure both ˜̀i(t) > 0 and
a−1

i
˜̀i(t) ˙̀̃

i(t)> 0 hold for t > TΘ. Then

σ
T(t)(BT

i ZiBi)
−1

σ̇(t)≤−δ‖σ(t)‖<0, for t ≥ TΘ.
(11)
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Introducing an auxiliary function W (t) = 0.5σT(t)(BT
i Zi

Bi)
−1σ(t), one can further has

Ẇ (t)≤−δ‖σ(t)‖ ≤ −ØW
1
2 (t), for t ≥ TΘ, (12)

where Ø = δ
√

2/λmax(BT
i ZiBi)−1. Thus, we can find an

instant T ? = 2
√

W (TΘ)/Ø+TΘ to meet W (t) = 0, σ(t) =
0 as t ≥ T ?, the SM’s reaching condition has been satis-
fied, thereby ending the proof. �

3.4. Stability analysis
An auxiliary function is introduced here, i.e., g̃i(t,z) =

gi(t,x(t))+Kiz(t), where matrix Ki is given to satisfy Ai−
BiKi is Hurwitz. The following form will then be used to
express system (2) and error system (4)

ż(t) = (Ai−BiKi +∆Ai(t))z(t)

+ [Adi +∆Adi(t)]z(t−d(t))

+Bi(u(t)+ g̃i(t,z)),
˙̃z(t) = (Ai−LiCi)z̃(t)+Adiz(t−d(t))

+(∆Ai(t)−BiKi)z(t)−Adiẑ(t− τ̂)

+∆Adi(t)z(t−d(t))+Bi[u(t)+ g̃i(t,z)]. (13)

Theorem 2: Given a scalar % > 0 and the SM variable
defined in (5), if there exist matrices Zi > 0, Pi > 0, Qi > 0,
Ri > 0, Ti > 0, Xi and positive scalars εi, i = 1, 2 such that
there hold the following conditions

γ11 γ12 0 γ14 Γ1i

∗ γ22 0 (ZiAdi)
T 0

∗ ∗ γ33 −(ZiAdi)
T 0

∗ ∗ ∗ γ44 Γ2i

∗ ∗ ∗ ∗ Γ3i

< 0, (14)

YiCi = Bi
TZi, (15)

where γ11 = sym[Zi(Ai − BiKi)] + Pi + Qi + %Zi + (ε1 +
ε2)NT

i Ni, γ12 = ZiAdi +(ε1 +ε2)NT
i Ndi, γ14 =−(ZiBiKi)

T,
γ22 = −(1−θ)e−%τ̂ Pi +(ε1 + ε2)NT

diNdi, Γ1i = [0 0 Ω1],
γ33 = −e−%τ̂ Qi, γ44 = sym(ZiAi − XiCi) + Ri + Ti + %Zi,
Γ2i = [0 ZiAdi Ω2], γ55 = −(1 − θ)e−%τ̂ Ri, γ66 =
−e−%τ̂ Ti, Γ3i = diag{γ55, γ66, Ω3}, Ω1i = [ZiMi 0], Ω2i =
[0 ZiMi], Ω3i = diag{−ε1I,−ε2I}. Additionally, the gain
matrix of the observer can be computed by Li = Zi

−1Xi.
Then the exponential stability of the STDS (2) restricted
on the SM is guaranteed for arbitrary switching signal un-

der Ta >
lnκ

%
, where κ satisfies the following

Pi ≤ κPj, Qi ≤ κQ j, Ri ≤ κR j, Ti ≤ κTj, (16)

where ∀i, j ∈Æ. Further, the convergence of state is esti-
mated as

‖ξ (t)‖ ≤ ϖe−η(t−t0)‖z(t0)‖c1 , (17)

where ξT(t), [zT(t) zT(t−d(t)) zT(t− τ̂) z̃T(t) z̃T(t−
d(t)) z̃T(t− τ̂)] and

ϖ =

√
q
p
≥ 1, η =

1
2
(%− lnκ

Ta
), p = min

i∈Æ
λmin(Zi),

q = 2max
i∈Æ

λmax(Zi)+τ̂ max
i∈Æ

λmax(Ri)+τ̂ max
i∈Æ

λmax(Pi)

+ τ̂ max
i∈Æ

λmax(Qi)+ τ̂ max
i∈Æ

λmax(Ti). (18)

Proof: Consider the following Lyapunov candidate

V (i, t) =V1(i, t)+V2(i, t),

where

V1(i, t) = zT(t)Ziz(t)+ z̃T(t)Ziz̃(t),

V2(i, t) =
∫ t

t−d(t)
e%(s−t)zT(s)Piz(s)ds

+
∫ t

t−τ̂

e%(s−t)zT(s)Qiz(s)ds

+
∫ t

t−d(t)
e%(s−t)z̃T(s)Riz̃(s)ds

+
∫ t

t−τ̂

e%(s−t)z̃T(s)Tiz̃(s)ds. (19)

Performing the time derivative of V1(t) becomes

V̇1(i, t) = 2zT(t)Ziż(t)+2z̃TZi ˙̃z(t)

= 2zT(t)Zi(Ai−BiKi)z(t)

+2zT(t)ZiAdiz(t−d(t))

+2zT(t)Zi[∆Ai(t)z(t)

+∆Adi(t)z(t−d(t))]

+2[zT(t)+ z̃T(t)]ZiBi[u(t)+ g̃i(t,z)]

+2z̃T(t)ZiAdiz(t−d(t))

+2z̃T(t)Zi(Ai−LiCi)z̃(t)

+2z̃T(t)Zi[∆Ai(t)z(t)+∆Adi(t)z(t−d(t))]

−2z̃T(t)ZiBiKiz(t)

−2z̃T(t)ZiAdiẑ(t− τ̂). (20)

In addition, the following hold

2zT(t)Zi[∆Ai(t)z(t)+∆Adi(t)z(t−d(t))]

≤ ε
−1
1 zT(t)ZiMiMT

iZiz(t)+ ε1[Niz(t)

+Ndiz(t−d(t))]T[Niz(t)+Ndiz(t−d(t))], (21)

2z̃T(t)Zi[∆Ai(t)z(t)+∆Adi(t)z(t−d(t))]

≤ ε
−1
2 zT(t)ZiMiMT

iZiz(t)+ ε2[Niz(t)

+Ndiz(t−d(t))]T[Niz(t)+Ndiz(t−d(t))]. (22)

Since the STDS arrives and stays at the SM that has
been pre-programmed, σ(t) then = Yi[2y(t)−Ciẑ(t)] =
BT

i Zi[z(t) + z̃(t)] = 0 in view of (15), it further gives
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σT(t) = [zT(t)+ z̃T(t)]ZiBi equals to a zero vector. As a
result, the preceding formulation can also be condensed as
follows:

V̇1(i, t)≤ zT(t)[Zi(Ai−BiKi)+(Ai−BiKi)
TZi

+ ε
−1
1 ZiMiMi

TZi +(ε1 + ε2)NT
i Ni]z(t)

+2zT(t)[ZiAdi +(ε1 + ε2)NT
i Ndi]z(t−d(t))

+ z̃T(t)[Zi(Ai−LiCi)

+(Ai−LiCi)
TZi + ε

−1
2 ZiMiMi

TZi]z̃(t)

+2z̃T(t)ZiAdiz(t−d(t))−2z̃T(t)ZiBiKiz(t)

−2z̃T(t)ZiAdiẑ(t− τ̂)

+ zT(t−d(t))[(ε1 + ε2)NT
diNdi]z(t−d(t)).

(23)

In like manner, it follows that

V̇2(i, t)≤−(1−θ)e−%τ̂ zT(t−d(t))Piz(t−d(t))

− (1−θ)e−%τ̂ z̃T(t−d(t))Riz̃(t−d(t))

− e−%τ̂ zT(t− τ̂)Qiz(t− τ̂)

− e−%τ̂ z̃T(t− τ̂)Tiz̃(t− τ̂)

−%
∫ t

t−d(t)
e%(s−t)zT(s)Piz(s)ds+ zT(t)Piz(t)

−%
∫ t

t−τ̂

e%(s−t)zT(s)Qiz(s)ds+ zT(t)Qiz(t)

−%
∫ t

t−d(t)
e%(s−t)z̃T(s)Riz̃(s)ds+ z̃T(t)Riz̃(t)

−%
∫ t

t−τ̂

e%(s−t)z̃T(s)Tiz̃(s)ds+ z̃T(t)Tiz̃(t).

(24)

Combining (19)-(24), the following holds

V̇ (i, t)+%V (i, t)≤ ξ
T(t)Φiξ (t), (25)

where

Φi =


Φ11 Φ12 0 Φ14 0 0
∗ Φ22 0 (ZiAdi)

T 0 0
∗ ∗ Φ33 −(ZiAdi)

T 0 0
∗ ∗ ∗ Φ44 0 ZiAdi

∗ ∗ ∗ ∗ Φ55 0
∗ ∗ ∗ ∗ ∗ Φ66


with Φ11 = Zi(Ai − BiKi) + (Ai − BiKi)

TZi + Pi + Qi +
%Zi +ε

−1
1 ZiMiMi

TZi +(ε1 +ε2)NT
i Ni, Φ12 = ZiAdi +(ε1 +

ε2)NT
i Ndi, Φ14 = −(ZiBiKi)

T, Φ22 = −(1− θ)e−%τ̂ Pi +
(ε1 + ε2)NT

diNdi, Φ33 = −e−%τ̂ Qi, Φ44 = Zi(Ai − LiCi) +
(Ai − LiCi)

TZi + Ri + Ti + %Zi + ε
−1
2 ZiMiMi

TZi, Φ55 =
−(1−θ)e−%τ̂ Ri, Φ66 =−e−%τ̂ Ti.
According to the Shur complement and (14), (25) gives

V̇ (i, t)+%V (i, t)≤ 0. (26)

Define ß(t−p ) = j and ß(t+p ) = i for certain switching
moment tp, p ∈ {1, 2, ..., Nß}. Integrating (26) from tp to
t, we have

V (i, t)≤ e−%(t−tp)V (i, tp). (27)

It is obtained by combining (16) and (27)

V (i, tp)≤ κV ( j, tp
−). (28)

Combining (27), (28) and Nß(t0, t) ≤ N0 +
t− t0

Ta
, it leads

to

V (i, t)≤ e−%(t−tp)κV ( j, tp
−)

...

≤ e−%(t−t0)κNß(t0,t)V (ß(t0), t0)

≤ e−(%−
lnκ

Ta
)(t−t0)V (ß(t0), t0). (29)

Furthermore, it is deduced from (18) that

p‖ξ (t)‖2 ≤V (i, t),V (ß(t0), t0)≤ q‖ξ (t0)‖2
c1 . (30)

Together with (29), we have

‖ξ (t)‖2 ≤ 1
p

V (i, t)≤ q
p

e−(%−
lnκ

Ta
)(t−t0)‖ξ (t0)‖2

c1 , (31)

which implies (17). The dynamics of the STDS (2) are
exponentially stable. �

4. ILLUSTRATIVE EXAMPLES

4.1. Example 1
The system parameters are provided as follows:
Subsystem 1:

A1 =

[
−5 0.5
−4 −3

]
, Ad1 =

[
0.5 0
0.5 0

]
,B1 =

[
0.1
0.2

]
,

C1 =

[
0.1
0.2

]T
, M1 =

[
0.5
0.3

]T
, N1 =

[
0.2
−0.3

]T
,

F1(t) = sin(t), Nd1 =

[
0.2
0.2

]T
, g1(t,z) = 0.5e−t .

Subsystem 2:

A2 =

[
−4 −0.5
−2 −3

]
, Ad2 =

[
0.5 0
0.5 0

]
, B2 =

[
0.1
0.2

]
,

C2 =

[
0.1
0.2

]T
, M2 =

[
0.4
0.3

]T
, N2 =

[
0.1
−0.3

]T
,

F2(t) = cos(t), Nd1 =

[
0.1
0.3

]T
, g2(t,z) = 0.5e−t .

Ki is selected as
[
−1 −1

]
to meet that Ai − BiKi is

Hurwitz, i = 1, 2. The time-vary delay is set by d(t) =
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Fig. 1. Switching signal.
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Fig. 2. Responses of system states and sliding variable.

0.1+0.1sin(t), then τ̂ = 0.2, a1 = a2 = 1 can be selected,
θ can be chosen as 0.2 and % = 0.5. Then by solving the
LMI (14), the solutions are obtained as

P1 =

[
39.9718 1.0263
1.0263 41.4087

]
,

P2 =

[
35.7126 −1.1161
−1.1161 38.8274

]
,

Q1 =

[
35.9622 −0.2490
−0.2490 37.1662

]
,

Q2 =

[
32.9687 −1.7005
−1.7005 33.5379

]
,

R1 =

[
40.8548 −0.0945
−0.0945 40.7130

]
,

R2 =

[
37.7819 −0.1403
−0.1403 37.5714

]
,

T1 =

[
37.8111 −0.0792
−0.0792 37.6922

]
,

T2 =

[
34.9578 −0.1176
−0.1176 34.7814

]
.
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Fig. 3. Responses of observer and adaptive values.

Then, κ and Ta can be calculated as κ = 2.4802 and Ta =
1.82 s. For the method in [31], the parameters κ = 5.7021,
Ta = 3.48 s are set under the proposed conditions. Fig. 1
shows the switching signal of the system. In contrast to
[31], the proposed method does not require precise time
delay information during the observer construction pro-
cess. Fig. 2 shows that, for the same system parameters,
the closed-loop system with the control strategy proposed
in this paper has a faster convergence speed and a smaller
overshoot, demonstrating the effectiveness of this method.
In addition, Fig. 2 also shows the sliding variable. The
evolutions of adaptive values and responses of the ob-
server are provided in Fig. 3.

4.2. Example 2
Consider that both of the reactors are isothermal contin-

uous stirred tanks reactors (CSTR) as shown in Fig. 4. The
partition structure in the reactor automatically switches for
a period of time to ensure the efficiency of the material re-

Rβ2, z2(t-τ)

recycle

Rβ1, z1(t-τ)

recycle

product stream

Eβ, Fresh feed
partition 

structure

Vβ2

Vβ1

Fig. 4. CSTR.
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action. According to [39], the CSTR model can be trans-
formed as (2), where

A(ß) =

− 1
θß1
− kß1

1−Rß2

Vß1

0 − 1
θß2
− kß2

 , B(ß) =

 0
Eß

Vß2

 ,
Ad(ß) =

 0 0
Rß1

Vß2

Rß2

Vß2

 , ∆A(ß, t) =
[

∆p1(t) ∆p2(t)
0 ∆p3(t)

]
,

∆Ad(ß, t) =
[

0 0
∆p4(t) ∆p5(t)

]
,

where Rß1 and Rß1 are the recycle flow rates, θß1 and θß2

are the reactor residence times, ki are the reaction con-
stants, Eß is the feed rate and Vß1 and Vß2 are the reactor
volumes (ß = 1, 2). ∆p j(t) ( j = 1, 2, 3, 4, 5) are unknown
variables. In this simulation, we choose θ11 = θ12 = 1,
k11 = k12 = 2, R11 = R12 = 2, V11 = 1, V12 = 2, E1 = 2
and θ21 = θ22 = 0.8, k21 = k22 = 1.55, R21 = R22 = 1.4,
V21 = 0.5, V22 = 1.4, E2 = 1.4. Then, one has

Subsystem 1:

A1 =

[
−3 −1
0 −3

]
, Ad1 =

[
0 0
1 1

]
, B1 =

[
0
1

]
,

C1 =

[
0
1

]T
, M1 = I2×2, N1 =

[
−0.2 −0.2

0 0.2

]
,

F1(t) = sin(t), Nd1 =

[
0 0

0.7 0.7

]
, g1(t,z) =

1
1+ t3 .

Subsystem 2:

A2 =

[
−2.8 −0.8

0 −2.8

]
, Ad2 =

[
0 0
1 1

]
, B2 =

[
0
1

]
,

C2 =

[
0
1

]T
, M2 = I2×2, N2 =

[
−0.25 −0.25

0 0.2

]
,

F2(t) = cos(t), Nd1 =

[
0 0

0.7 0.7

]
, g2(t,z) =

1
1+ t3 .

Ki is selected as
[
−1 0.8

]
to meet that Ai−BiKi is Hur-

witz, i = 1, 2. The time-vary delay is set by d(t) =
0.2+0.1sin(t), then τ̂ = 0.3, θ can be chosen as 0.2 and
% = 0.5. Then by solving the LMI (14), the solutions are
obtained as

P1 =

[
0.4621 0.4001
0.4001 0.4781

]
, P2 =

[
0.4181 0.3803
0.3803 0.4743

]
,

T1 =

[
0.1343 0.0692
0.0692 0.1433

]
, T2 =

[
0.1181 0.0774
0.0774 0.1259

]
,

Q1 =

[
0.1076 0.0319
0.0319 0.0903

]
, Q2 =

[
0.0778 0.0325
0.0325 0.0696

]
,

R1 =

[
0.073 −0.0018
−0.0018 0.0847

]
,

R2 =

[
0.0455 −0.0019
−0.0019 0.056

]
.

0 2 4 6 8 10 12 14 16 18 20

Time(sec)

0

1

2

3

S
w

it
c
h
in

g
 s

ig
n

a
l

0 2 4 6 8 10 12 14 16 18 20

Time(sec)

-0.2

0

0.2

0.4

S
lid

in
g
 v

a
ri
a

b
le

Fig. 5. Switching signal and sliding variable.
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Fig. 6. Responses of system states.
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Fig. 7. Responses of observer and adaptive values.

Then, κ and Ta can be calculated as κ = 13.4098 and Ta =
5.20 s.

The simulation results are shown in Figs. 5-7. Fig. 5
represents the switching signal and the sliding variable.
Fig. 6 shows the responses of system states. The evo-
lutions of adaptive values and responses of the observer
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Table 1. Range of residence time for different upper
bounds τ̂ of time-delay.

τ̂ κ Ta

0.3 13.4098 Ta ≥ 5.1920
0.4 15.2705 Ta ≥ 5.4518
0.5 17.1752 Ta ≥ 5.6869
0.6 21.0557 Ta ≥ 6.0943
0.7 25.9375 Ta ≥ 6.5114

are provided in Fig. 7. Furthermore, some relationship be-
tween residence time and time-delay is probed, it can be
found that the minimum value of residence time increases
with the increment of the upper bound of time delay, as
shown in Table 1. Therefore, the variation of time delay
will affect the selection of residence time.

5. CONCLUSION

In this paper, a novel observer-based robust SMC issue
of STDS subject to structural uncertainties, unknown state
delay and unmeasured state variables has been addressed,
including the simplified observer design, the ADT and as-
sociated adaptive SMC law to satisfy the control effect.
The design of the observer no longer needs accurate time-
delay information, which enhances the practicability of
controller synthesis, and the SM establishment effectively
reduces the derivation of the stability criterion. Finally,
simulation examples have been performed to confirm the
efficacy of the proposed control scheme.
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[32] G. Göksu and U. Başer, “Observer-based H∞ finite-time
control for switched linear systems with interval time-
delay,” Transactions of the Institute of Measurement and
Control, vol. 41, no. 5, pp. 1348-1360, December 2019.

[33] L. Lin, Z. Liu, Y. Kao, and R. Xu, “Observer-based adap-
tive control for a class of uncertain switched systems with
time-delay: a sliding mode approach,” International Jour-
nal of Control, Automation and Systems, vol. 18, no. 11,
pp. 2907-2916, June 2020.

[34] H. Zhao, and Y. Niu, “Finite-time sliding mode control
of switched systems with one-sided Lipschitz nonlinear-
ity,” Journal of the Franklin Institute, vol. 357, no. 16, pp.
11171-11188, November 2020.

[35] Y. Liu, T. Jia, Y. Niu, and Y. Zou, “Design of sliding mode
control for a class of uncertain switched systems,” Interna-
tional Journal of Systems Science, vol. 46, no. 6, pp. 993-
1002, 2015.

[36] Y. Zhang, J. F. Zhang, and X. K. Liu, “Implicit function
based adaptive control of non-canonical form discrete-time
nonlinear systems,” Automatica, vol. 129, 109629, 2021.

[37] D. Liberzon, Switching in Systems and Control, Springer
Science & Business Media, 2003.

[38] L. Wu and J. Lam, “Sliding mode control of switched hy-
brid systems with time-varying delay,” International Jour-
nal of Adaptive Control and Signal Processing, vol. 22, no.
10, pp. 909-931, 2008.

[39] S. K. Nguang, “Robust stabilization of a class of time-delay
nonlinear systems,” IEEE Transactions on Automatic Con-
trol, vol. 45, no. 4, pp. 756-762, April 2000.

Zhongzheng Liu received his B.S. degree
in automation from the University of Qing-
dao, China, in 2018. He is currently pur-
suing a master’s degree with the School
of Automation, Qingdao University, Qing-
dao, China. His current research interests
include sliding mode control, uncertain
switched systems, and adaptive control.

Zhen Liu received his Ph.D. degree in
control theory and applications from
Ocean University of China, Qingdao,
China, in 2017; and from 2015 to 2017, he
was a joint Ph.D. candidate at the Depart-
ment of Engineering, Design and Mathe-
matics, University of the West of England,
UK, and the College of Engineering, Uni-
versity of Kentucky, USA. He is currently

a Distinguished Professor at the School of Automation, Qingdao
University, China. His current research interests include intel-
ligent control and robot, sliding mode control, hybrid systems,
and cyber-physical systems.

https://doi.org/10.1093/imamci/dnz030
https://doi.org/10.1093/imamci/dnz030
https://doi.org/10.1093/imamci/dnz030
https://doi.org/10.1093/imamci/dnz030
https://doi.org/10.1093/imamci/dnz030
https://doi.org/10.1109/JSYST.2019.2919767
https://doi.org/10.1109/JSYST.2019.2919767
https://doi.org/10.1109/JSYST.2019.2919767
https://doi.org/10.1109/JSYST.2019.2919767
https://doi.org/10.1016/j.nahs.2019.02.010
https://doi.org/10.1016/j.nahs.2019.02.010
https://doi.org/10.1016/j.nahs.2019.02.010
https://doi.org/10.1016/j.nahs.2019.02.010
https://doi.org/10.1016/j.nahs.2019.02.010
https://doi.org/10.1016/j.automatica.2019.02.004
https://doi.org/10.1016/j.automatica.2019.02.004
https://doi.org/10.1016/j.automatica.2019.02.004
https://doi.org/10.1016/j.automatica.2019.02.004
https://doi.org/10.1016/j.amc.2012.11.078
https://doi.org/10.1016/j.amc.2012.11.078
https://doi.org/10.1016/j.amc.2012.11.078
https://doi.org/10.1016/j.amc.2012.11.078
https://doi.org/10.1016/j.amc.2012.11.078
https://doi.org/10.1016/j.automatica.2019.108596
https://doi.org/10.1016/j.automatica.2019.108596
https://doi.org/10.1016/j.automatica.2019.108596
https://doi.org/10.1016/j.automatica.2019.108596
https://doi.org/10.1109/TII.2019.2946291
https://doi.org/10.1109/TII.2019.2946291
https://doi.org/10.1109/TII.2019.2946291
https://doi.org/10.1109/TII.2019.2946291
https://doi.org/10.1109/TII.2019.2946291
https://doi.org/10.1016/j.automatica.2021.109665
https://doi.org/10.1016/j.automatica.2021.109665
https://doi.org/10.1016/j.automatica.2021.109665
https://doi.org/10.1016/j.automatica.2021.109665
https://doi.org/10.1007/s12555-017-0173-4
https://doi.org/10.1007/s12555-017-0173-4
https://doi.org/10.1007/s12555-017-0173-4
https://doi.org/10.1007/s12555-017-0173-4
https://doi.org/10.1016/j.isatra.2020.11.004
https://doi.org/10.1016/j.isatra.2020.11.004
https://doi.org/10.1016/j.isatra.2020.11.004
https://doi.org/10.1016/j.isatra.2020.11.004
https://doi.org/10.1016/j.automatica.2015.11.007
https://doi.org/10.1016/j.automatica.2015.11.007
https://doi.org/10.1016/j.automatica.2015.11.007
https://doi.org/10.1109/TIE.2015.2442221
https://doi.org/10.1109/TIE.2015.2442221
https://doi.org/10.1109/TIE.2015.2442221
https://doi.org/10.1109/TIE.2015.2442221
https://doi.org/10.1109/TII.2018.2812754
https://doi.org/10.1109/TII.2018.2812754
https://doi.org/10.1109/TII.2018.2812754
https://doi.org/10.1109/TII.2018.2812754
https://doi.org/10.1109/TII.2018.2812754
https://doi.org/10.1002/oca.2586
https://doi.org/10.1002/oca.2586
https://doi.org/10.1002/oca.2586
https://doi.org/10.1002/oca.2586
https://doi.org/10.1002/oca.2586
https://doi.org/10.1177/0142331218777559
https://doi.org/10.1177/0142331218777559
https://doi.org/10.1177/0142331218777559
https://doi.org/10.1177/0142331218777559
https://doi.org/10.1007/s12555-019-0955-y
https://doi.org/10.1007/s12555-019-0955-y
https://doi.org/10.1007/s12555-019-0955-y
https://doi.org/10.1007/s12555-019-0955-y
https://doi.org/10.1007/s12555-019-0955-y
https://doi.org/10.1016/j.jfranklin.2019.05.019
https://doi.org/10.1016/j.jfranklin.2019.05.019
https://doi.org/10.1016/j.jfranklin.2019.05.019
https://doi.org/10.1016/j.jfranklin.2019.05.019
https://doi.org/10.1080/00207721.2013.803635
https://doi.org/10.1080/00207721.2013.803635
https://doi.org/10.1080/00207721.2013.803635
https://doi.org/10.1080/00207721.2013.803635
https://doi.org/10.1016/j.automatica.2021.109629
https://doi.org/10.1016/j.automatica.2021.109629
https://doi.org/10.1016/j.automatica.2021.109629
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-1-4612-0017-8
https://springerlink.bibliotecabuap.elogim.com/book/10.1007/978-1-4612-0017-8
https://doi.org/10.1002/acs.1030
https://doi.org/10.1002/acs.1030
https://doi.org/10.1002/acs.1030
https://doi.org/10.1002/acs.1030
https://doi.org/10.1109/9.847117
https://doi.org/10.1109/9.847117
https://doi.org/10.1109/9.847117


Adaptive Variable Structure Controller Design for Uncertain Switched Systems With Unknown Time-varying Delay 3859

Baoping Jiang received his Ph.D. de-
gree in control theory from the Ocean
University of China, Qingdao, China, in
2019. From 2017 to 2019, he was a joint
training Ph.D. Candidate with the Depart-
ment of Mechanical Engineering, Politec-
nico di Milano, Milan, Italy. He joined the
Suzhou University of Science and Tech-
nology, Suzhou, China, in 2019, where he

is an associate professor. His research interests include sliding
mode control and stochastic systems.

Cunchen Gao received his Ph.D. degree
in control theory from the South China
University of Technology, Guangzhou,
China, 1997. He is currently a Full Pro-
fessor in control theory with the School of
Mathematical Sciences, Ocean University
of China, Qingdao, China. His research
interests include variable structure control,
distributed parameter systems, time-delay

systems, and singular systems.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.


