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Observer-based Sliding Mode Control for Fractional Order Singular
Fuzzy Systems
Bingxin Li, Xuefeng Zhang, Xiangfei Zhao, Yaowei Liu, and Xin Zhao* �

Abstract: In the paper, observer-based sliding mode control (SMC) for fractional order singular fuzzy (FOSF)
systems with order 0< α < 1 is studied. The non-fragile FOSF observer is designed to reconstruct the unmeasured
states, and a novel fractional order integral sliding function is formulated. Then, the admissibility condition of the
FOSF error system is derived, based on the linear matrix inequality (LMI) approach. By using the singular value
decomposition approach, the strict LMI-based admissibility condition is improved. Based on the fractional order
Lyapunov function and sliding surface, the fractional order SMC is constructed to ensure the reachability of the
sliding surface. Two examples are given to illustrate the effectiveness of the methods proposed in the paper.

Keywords: Admissibility, fractional order singular fuzzy (FOSF), linear matrix inequality (LMI), observer-based,
sliding mode control (SMC).

1. INTRODUCTION

Recently, fractional order systems have made great
progress in theoretical research and engineering appli-
cation [1,2], since fractional order systems can describe
the model of the real world phenomena with memory
more concisely and precisely. The linear matrix inequal-
ity (LMI) approach is widely used as an effective tool
in fractional order systems. Many LMI-based conditions
of stability analysis for fractional order systems have
been discussed in [3,4]. Furthermore, event-triggered con-
trol, sliding mode control, adaptive robust tracking con-
trol, and output tracking control have been studied for
fractional order systems in [5-9]. Observer-based control
has been wildly studied for fractional order systems in
[10-13]. The observer-based control for uncertain systems
has been developed in [11,12]. Wang et al. [10] studied
the observer-based control for nonlinear fractional order
systems. Moreover, Geng et al. [13] give the conditions of
the observer-based control for input delay systems.

Singular systems have been widely applied in eco-
nomics and electricity [14]. The key problem of singu-
lar systems is the admissibility analysis, including sta-
bility, regularity, and impulse-free. Admissibility condi-
tions for fractional order singular systems have been stud-
ied in [15-17]. Robust admissibility conditions for order

1 < α < 2 and 0 < α < 1 have been proposed in [15,16].
Wang et al. [17] studied the observer-based control for
fractional order singular switched systems.

The systems in the real world are mostly nonlinear.
The T-S fuzzy model is an effective way to approximate
the nonlinear system [18-20]. Since fractional order sys-
tems, singular systems and T-S fuzzy systems play signif-
icant roles in control theory and application, Therefore,
the study of fractional order fuzzy systems or fractional
order singular fuzzy (FOSF) systems has attracted more
and more researchers. The output feedback control for
fuzzy fractional order systems has been studied in [21,22].
Moreover, fault-tolerant control, observer-based control,
H∞ control, and adaptive fuzzy control for fractional or-
der fuzzy systems have been developed in [23-28]. Sta-
bility analysis for fractional order fuzzy delayed systems
has been studied in [29]. Compared with fractional or-
der fuzzy systems, FOSF systems are more complex be-
cause not only the stability analysis, but also regularity
and impulsiveness-free need to be considered. Authors of
[30,31] studied the output feedback and observer-based
control for FOSF systems. Furthermore, the adaptive slid-
ing mode control (SMC) has been developed for FOSF
systems in [32].

SMC as a strongly robust strategy has been widely used
in industrial [33,34] and electrical equipment [35], since
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its fast response, is particularly robust and insensitive to
model errors, matching uncertainties, and external pertur-
bations. Many results have been proposed for construct-
ing the sliding function and controller. In [36,37], the slid-
ing mode controller design and guaranteed cost SMC are
considered. Observer-based control is a frequently applied
technique to overcome the shortcoming of the unmea-
sured states. The observer-based SMC scheme has been
wildly studied, see [38-42]. In [43], vector integral SMC
for fuzzy singular systems has been studied. Many results
of SMC have been reported in the field of fractional or-
der control. Mani et al. [44] developed the adaptive frac-
tional fuzzy integral SMC for the permanent magnet syn-
chronous motor model. Moreover, adaptive backstepping
SMC, neural network SMC, and H∞ adaptive output feed-
back for fractional order fuzzy systems have been stud-
ied in [45-47]. Some results have been published in en-
gineering, for example, admittance-based telerobotic sys-
tems [48], and LCL-type grid-connected converters [49].
SMC of FOSF systems as more general systems have
rarely been studied. [32] proposed the conditions of SMC
for FOSF systems. However, up to now, observer-based
SMC for FOSF systems has been studied.

Observer-based SMC strategy is designed and the ad-
missibility for FOSF systems is studied in the paper. The
main contributions of this paper are summarized as fol-
lows:

1) The new fractional order integral sliding function is
formulated for FOSF systems with order 0 < α < 1.
Compared with the sliding function in [29,44], the
constrained conditions of observer-based SMC are re-
laxed, which can allow us to build LMI-based condi-
tions that ensure the admissibility of FOSF systems.

2) A new non-fragile fractional order fuzzy singular ob-
server is represented. Based on the observer, system
state and output can be well estimated. Moreover,
the sliding motion of FOSF systems can be well dis-
played.

3) The condition of FOSF systems is derived to guaran-
tee admissibility for FOSF systems. Furthermore, by
using the singular value decomposition approach, the
strict LMI-based admissibility condition is improved.
Compared with the results in [31], it avoids solving
complex matrices.

4) Based on the fractional order Lyapunov function, the
fractional order SMC law is proved such that the
reachability of sliding function is guaranteed.

This paper is organized as follows: Problem formula-
tion and preliminaries are introduced in Section 2. In Sec-
tion 3, the non-fragile fuzzy observer and the fractional or-
der sliding surface are formulated. The LMI-based condi-
tions of admissibility are proved for FOSF systems. Then,
the fractional order SMC law is designed. In Section 4,

two examples are shown to verify the effectiveness of the
proposed methods. Section 5 concludes the paper.

Notations: In the paper, P > 0 represents the positive
definite matrix. Let Rm×n and Rn be m by n matrices and n
dimensional vectors. I is the identity matrix. rank(P) de-
notes the rank of matrix P. ‖P‖ denotes the norm of P,

sym(P) = P+PT , and
[

P W
W T P

]
=

[
P W
∗ P

]
.

2. PROBLEM FORMULATION AND
PRELIMINARIES

2.1. Problem formulation
In this paper, the T-S model FOSF system is represented

as follows:
Plant Rule i: IF z1 is H i

1, · · · , z2 is H i
2, · · · , and zs is H i

s,
THEN

EDα x(t) = (Ai +∆A(t))x(t)+Bi(u(t)+ f (t,x(t))),

y(t) =Cix(t), (1)

where 0 < α < 1, z1, z2, . . . , zs are premise variables, and
H i

j, i = 1, 2, . . . , r, j = 1, 2, . . . , s are the fuzzy sets.
x(t)∈Rn, u(t)∈Rm and y(t)∈Rp are the system state, the
control input and the measurement output. f (t,x(t)) is a
nonlinear function satisfying ‖ f (t,x(t))‖≤ µ1+µ2‖y(t)‖,
µ1 and µ2 are unknown constants. E ∈ Rn×n is the singu-
lar matrix where rank(E) = q< n. Ai, Bi and Ci are known
matrices. ∆A(t) is the uncertain term satisfying

∆A(t) = M∆1(t)N1,∆
T
1 (t)∆1(t)≤ I, (2)

where M and N1 are real matrices, ∆1(t) denotes the un-
known matrix.

Remark 1: Electric circuit in Fig. 1 can be better de-
scribed by the FOSF system, see [16,30]. R can be a non-
linear resistance, the relation function between voltage
and current is VR(t) = 3i− isin(i). f (t) denotes external
environmental interference of source voltages e1 and e2.
Based on Kirchhoff’s laws in [51], the system can be rep-
resented as

Fig. 1. Electrical circuit illustration.
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.

The fuzzy basic function is shown as

hi(z(t)) =
ωiz(t)

∑
r
i=1 ωiz(t)

, (3)

where ωiz(t) = Πs
j=1H i

j(z j(t)), H i
j(z j(t)) are the grade of

membership of z j(t) in set H i
j. Hence, hi(z(t)) ≥ 0 and

∑
r
i=1 hi(z(t)) = 1, for all t > 0.
Then, the FOSF system (1) can be derived as

EDα x(t) = (Ah +∆A(t))x(t)+Bh(u(t)+ f (t,x(t))),

y(t) =Chx(t), (4)

where

Ah =
r

∑
i=1

hi(z(t))Ai,Bh =
r

∑
i=1

hi(z(t))Bi,

Ch =
r

∑
i=1

hi(z(t))Ci.

2.2. Preliminaries
In the part, to obtain the desired results in this paper,

some preliminaries are given in the following. Firstly, the
following singular fractional order system is given

EDα x(t) = Ax(t), (5)

where 0< α < 1, and rank(E) = q< n.
Then, one definition and some necessary lemmas are

introduced.

Definition 1 [32]: 1) The system (5) is regular if
det(sα E−A) 6≡ 0.

2) The system (5) is impulse-free if deg(det(sE−A)) =
rank(E).

3) The system (5) is asymptotically stable if all the roots
of det(sα E−A) satisfy |arg(λ (E,A))|> απ

2 .
4) The system (5) is admissible if it is regular, impulse-

free and stable.

Lemma 1 [16]: System (5) is admissible if and only
if there exist matrices X1,X2 ∈ Rq×q, X3 ∈ R(n−q)×q and
X4 ∈ R(n−q)×(n−q) such that[

X1 X2

−X2 X1

]
> 0,

sym(aUAV X−bUAVY )< 0,

where U and V are nonsingular matrices satisfying

UEV =

[
Iq 0
0 0

]
, a = sin( πα

2 ), b = cos( πα

2 ), and

X =

[
X1 0
X3 X4

]
, Y =

[
X2 0
0 0

]
.

Lemma 2 [50]: For given a scalar ε > 0, FT (t)F(t)≤ I
and matrices P, Q, have

PF(t)Q+QT FT (t)PT ≤ εPPT + ε−1QT Q.

Lemma 3 [18]: The following inequalities hold

Φ< 0, Φ+HF−1HT < 0,

if and only if[
Φ H

HT −F

]
< 0.

Lemma 4 [44]: Let x(t) ∈Rn be a smooth function of t
for t ≥ t0. Then there holds

1
2

Dα(xT (t)x(t))≤ xT (t)Dα x(t), ∀0< α < 1.

3. MAIN RESULTS

In this section, a non-fragile observer is developed.
Based on the observer, the system state can be estimated,
and the fractional order sliding mode controller can be de-
signed.

3.1. Non-fragile fuzzy observer design
To measure unavailable state of the system (4), the non-

fragile observer is developed as follows:

EDα x̂(t) = Ahx̂(t)+(Lh +∆L(t))(y(t)− ŷ(t)),

ŷ(t) =Chx̂(t), (6)

where x̂(t) and ŷ(t) are the estimations of x(t) and y(t). Lh

are the gain matrices, and ∆L(t) satisfies

∆L(t) = M∆2(t)N2,∆
T
2 (t)∆2(t)≤ I. (7)

Let e(t) = x(t)− x̂(t). From (4) and (6), obtain

EDα e(t) = ∆A(t)x(t)+(Ah−LhCh−∆L(t)Ch)e(t)

+Bh(u(t)+ f (t,x(t))). (8)

Remark 2: In the paper, the non-fragile observer (6) is
designed for the FOSF system (4). In practice, the non-
fragile observer is often used [35]. If the error system (8)
is admissible, then the admissibility of the observer can
be ensured. To design the observer, the gain Lh should be
determined.
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Then, the following sliding surface function is consid-
ered

s(t) = GhEx̂(t)+GhEe(t)

+ Iα [−Gh(Ah +BhKh)x̂(t)], (9)

where I represents integration operator, Kh is the gain ma-
trix, Gh is the constant matrix such that GhBh 6= 0.

Assumption 1: GhE =HCh holds if the following func-
tion holds

rank
[

GhE
Ch

]
= rank(Ch). (10)

Remark 3: Since system state x(t) and estimation er-
ror e(t) are unknown, the sliding function (9) is not well
defined. However, e(t) = y(t)− ŷ(t) is available. If GhE =
HCh holds, s(t) =Hy(t)+ Iα [−Gh(Ah+BhKh)x̂(t)] can be
designed. When Gh is found such that GhBh 6= 0. Then, a
set Ḡh can be found such that ḠiBi = Ḡ jB j(i 6= j), where
Ḡ1 = G1, and Ḡi = G1B1(GiBi)

−1Gi. In the paper, Gh can
be chosen as Gh = Ḡh.

Based on the fractional order SMC law in [6,44], get

Dα s(t) = Gh(Ahe(t)+∆A(t)x(t))+GhBh(u(t)

+ f (t,x(t))−Khx̂(t)). (11)

Let ue(t) be the equivalent control law, get

ue(t) = Khx̂(t)− f (t,x(t))− Ĝ(Ahe(t)+∆A(t)x(t)),
(12)

where Ĝh = (GhBh)
−1Gh.

Substituting (12) into (4) and (8), assume Ḡh = I −
BhĜh, we have

EDα x(t) = (Ah + Ḡh∆A(t)+BhKh)x(t)

− (BhĜhAh +BhKh)e(t), (13)

EDα e(t) = (Ḡh∆A(t)+BhKh)x(t)+(Ah−LhCh

−∆L(t)Ch−BhKhBhĜhAh)e(t). (14)

According to (13) and (14), obtain

ĒDα x̄(t) = Āh(t)x̄(t), (15)

where

x̄(t) =
[

x(t)
e(t)

]
, Āh(t) = Āh + M̄∆̄(t)N̄,

∆̄(t) =
[

∆1(t) 0
0 ∆2(t)

]
, Ē =

[
E 0
0 E

]
,

Āh =

[
Ah +BhKh −BhĜhAh−BhKh

BhKh Ah−LhCh−BhKh−BhĜhAh

]
,

M̄ =

[
ḠhM 0
ḠhM −M

]
, N̄ =

[
N1 0
0 N2Ch

]
.

3.2. Admissibility analysis
In the subsection, the LMI-based conditions are devel-

oped to ensure (15) robustly admissible.
Theorem 1: The FOSF system (15) is robustly admis-

sible with gain matrices Kh and Lh if there exist matrices
X11i, X12i, X13i, X14i, X21i, X22i, X23i, X24i, and the scalars εi,
i = {1, 2, . . ., r} such that[

X11i X12i

−X12i X11i

]
> 0, (16)[

X21i X22i

−X22i X21i

]
> 0, (17)

Φ11 Φ12 N1V1P1i 0
∗ Φ22 0 N2ChV1P2i

∗ ∗ −εiI 0
∗ ∗ ∗ −εiI

< 0, (18)

where a and b are given in Lemma 2, U1 and V1 are chosen
nonsingular matrices satisfying

U1EV1 =

[
Iq 0
0 0

]
, U =

[
U1 0
0 U1

]
, V =

[
V1 0
0 V1

]
,

and

Φ11 = sym(U1AhV1P1i +U1BhKhV1P1i)

+ εiU1ḠhMMT ḠT
h UT

1 ,

Φ12 =−U1BhĜhAhV1P2i−U1BhKhV1P2i

+PT
1iV

T
1 KT

h BT
h UT

1 +U1ḠhMMT ḠT
h UT

1 ,

Φ22 = sym(U1AhV1P2i−U1LhChV1P2i

−U1BhKhV1P2i−U1BhĜhAhV1P2i)

+ εiU1MMTUT
1 ,

X1i =

[
X11i 0
X13i X14i

]
, X2i =

[
X21i X23i

0 X24i

]
,

Y1i =

[
X12i 0

0 0

]
, Y2i =

[
X22i 0

0 0

]
,

Xi =

[
X1i 0
0 X2i

]
, Yi =

[
Y1i 0
0 Y2i

]
,

P1i = aX1i−bY1i, P2i = aX2i−bY2i.

Proof: From the system (15), and Lemma 1, get that

sym(aUĀh(t)V Xi−bUĀh(t)VYi)< 0. (19)

Then, have

sym(aUĀhV Xi−bUĀhVYi)+ sym(aUM̄∆̄(t)N̄V Xi

−bUM̄∆̄(t)N̄VYi)< 0. (20)

Hence,

sym
([

U1 0
0 U1

]
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×
[

Ah +BhKh −BhĜhAh−BhKh

BhKh Ah−LhCh−BhKh−BhĜhAh

]
×
[
V1 0
0 V1

](
a
[

X1i 0
0 X2i

]
−b
[
Y1i 0
0 Y2i

]))
+ sym

([
U1 0
0 U1

][
ḠhM 0
ḠhM −M

][
∆1(t) 0

0 ∆2(t)

]
×
[

N1 0
0 N2Ch

][
V1 0
0 V1

](
a
[

X1i 0
0 X2i

]
−b
[
Y1i 0
0 Y2i

]))
< 0, (21)

where

∆̄
T (t)∆̄(t) =

[
∆1(t) 0

0 ∆2(t)

]T [
∆1(t) 0

0 ∆2(t)

]
≤
[

I 0
0 I

]
.

Let P1i = aX1i−bY1i, and P2i = aX2i−bY2i, obtain

sym
([

U1 0
0 U1

]
×
[

Ah +BhKh −BhĜhAh−BhKh

BhKh Ah−LhCh−BhKh−BhĜhAh

]
×
[
V1 0
0 V1

][
P1i 0
0 P2i

])
+ sym

([
U1 0
0 U1

][
ḠhM 0
ḠhM −M

][
∆1(t) 0

0 ∆2(t)

]
×
[

N1 0
0 N2Ch

][
V1 0
0 V1

][
P1i 0
0 P2i

])
< 0. (22)

According to Lemma 2, get that

sym
([

U1(Ah +BhKh)V1P1i

U1BhKhV1P1i

U1(−BhĜhAh−BhKh)V1P2i

U1(Ah−LhCh−BhKh−BhĜhAh)V1P2i

])
+ εh

[
U1 0
0 U1

][
ḠhM 0
ḠhM −M

]([
U1 0
0 U1

][
ḠhM 0
ḠhM −M

])T

+ ε−1
h

([
N1 0
0 N2Ch

][
V1 0
0 V1

][
P1i 0
0 P2i

])T

×
[

N1 0
0 N2Ch

][
V1 0
0 V1

][
P1i 0
0 P2i

]
< 0. (23)

From (23), obtain

sym
([

U1(Ah +BhKh)V1P1i

U1BhKhV1P1i

U1(−BhĜhAh−BhKh)V1P2i

U1(Ah−LhCh−BhKh−BhĜhAh)V1P2i

])
+ εh

[
U1ḠhM 0
U1ḠhM −U1M

][
U1ḠhM 0
U1ḠhM −U1M

]T

+ ε−1
h

[
N1V1P1i 0

0 N2ChV1P2i

]T [N1V1P1i 0
0 N2ChV1P2i

]
< 0. (24)

Then, according to Lemma 3, we have
Φ11 Φ12 N1V1P1i 0
∗ Φ22 0 N2ChV1P2i

∗ ∗ −εiI 0
∗ ∗ ∗ −εiI

< 0, (25)

where

Φ11 = sym(U1AhV1P1i +U1BhKhV1P1i)

+ εiU1ḠhMMT ḠT
h UT

1 ,

Φ12 =−U1BhĜhAhV1P2i−U1BhKhV1P2i

+PT
1iV

T
1 KT

h BT
h UT

1 +U1ḠhMMT ḠT
h UT

1 ,

Φ22 = sym(U1AhV1P2i−U1LhChV1P2i

−U1BhKhV1P2i−U1BhĜhAhV1P2i)

+ εiU1MMTUT
1 .

From (25), (15) can be obtained. Therefore, the FOSF
system (15) is robustly admissible. �

Remark 4: It is easy to see that there are some non-
linear terms in Theorem 1, such as U1BhKhV1P1i and
U1LhChV1P2i. Although some terms can be solved by
defining Zi = KhV1P1i. The terms are still difficult to solve,
such as U1LhChV1P2i. Hence, the singular value decompo-
sition approach will be used to solve the nonlinear terms
in [11,17].

Theorem 2: The FOSF system (15) is robustly admis-
sible with gain matrices Kh and Lh if there exist matrices
X11i, X12i, X13i, X14i, X21i, X22i, X23i, X24i, W1i, W2i, Zi and
the scalars εi, i = {1, 2, . . ., r} such that[

X11i X12i

−X12i X11i

]
> 0, (26)[

X21i X22i

−X22i X21i

]
> 0, (27)

Φ11 Φ12 N1V1P1i 0
∗ Φ22 0 N2ChV1P2i

∗ ∗ −εiI 0
∗ ∗ ∗ −εiI

< 0, (28)

where a and b are given in Lemma 2, U1, V1, U2, Sh and V2

are chosen nonsingular matrices satisfying

U1EV1 =

[
Iq 0
0 0

]
, U =

[
U1 0
0 U1

]
, V =

[
V1 0
0 V1

]
,

ChV1 =U2
[
Sh 0

]
V T

2 ,

and

Φ11 = sym(U1AhV1P1i +U1BhW1i)
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+ εiU1ḠhMMT ḠT
h UT

1 ,

Φ12 =−U1BhĜhAhV1P2i−U1BhW2i +W T
1i B

T
h UT

1

+U1ḠhMMT ḠT
h UT

1 ,

Φ22 = sym(U1AhV1P2i−U1ZiChV1−U1BhW2i

−U1BhĜhAhV1P2i)+ εhU1MMTUT
1 ,

X1i =

[
X11i 0
X13i X14i

]
, X2 =

[
X21i X23i

0 X24i

]
,

Y1i =

[
X12i 0

0 0

]
, Y2i =

[
X22i 0

0 0

]
,

Xi =

[
X1i 0
0 X2i

]
, Yi =

[
Y1i 0
0 Y2i

]
,

P1i = aX1i−bY1i, P2i = aX2i−bY2i,

P2i =V2

[
P21i 0
P22i P23i

]
V T

2 , P̄i =U2ShP21iS−1
h U−1

2 .

The gain matrices are

Kh =W1i(V1P1i)
−1,

Lh = ZiU2ShP−1
21i S−1

h U−1
2 . (29)

Proof: According to

ChV1 =U2
[
Sh 0

]
V2, P2i =V2

[
P21i 0
P22i P23i

]
V T

2 ,

we can get that the matrix P̄i = U2ShP21iS−1
h U−1

2 satisfies
ChV1P2i = P̄iChV1.

Let KhV1P1i =W1i, KhV1P2i =W2i, and LhP̄i = Zi, Theo-
rem 2 can be directly derived by Theorem 1. �

Remark 5: By using singular value decomposition ap-
proach (see Lemma 6 in [17]), Theorem 2 based on the
strict LMI can be proved, and it can be easily solved. It is
worth mentioning that the above conditions are equivalent
to these of integer order systems, when α = 1.

3.3. Sliding mode control
In this subsection, the SMC control law is developed

based on fractional order Lyapunov function, which can
ensure the system trajectories can be kept on the sliding
surface.

For the FOSF system (15), there exist the unknown
scalars λ1, λ2, ξ1 and ξ2 satisfying

‖e(t)‖ ≤ λ1‖y(t)‖+λ2‖ŷ(t)‖,
‖T‖‖e(t)‖ ≤ ξ1‖y(t)‖+ξ2‖ŷ(t)‖,

where T = GhBh.
Then, assume that ξ̄1, ξ̄2, µ̄1, and µ̄2 are the estimates of

ξ1, ξ2, µ1, and µ2. The errors are ξ̂1 = ξ̄1−ξ1, ξ̂2 = ξ̄2−ξ2,
µ̂1 = µ̄1−µ1 and µ̂2 = µ̄2−µ2. The SMC is

u(t) = Khx̂(t)−T−1Gh∆A(t)x(t)− [T−1(ξ̄1‖y(t)‖
+ ξ̄2‖ŷ(t)‖+ρ)+ µ̄1 + µ̄2‖y(t)‖]sgn(s(t)),

(30)

where

Dα
µ̄1 = cµ1‖T‖‖s(t)‖, Dα

µ̄2 = cµ2‖y(t)‖‖T‖‖s(t)‖,
Dα

ξ̄1 = cξ1‖y(t)‖‖s(t)‖, Dα
ξ̄2 = cξ2‖ŷ(t)‖‖s(t)‖,

(31)

and cµ1 , cµ2 , cξ1 , cξ2 , and ρ are positive constants.
Theorem 3: From the sliding surface (9), the system

state can reach the sliding surface in a finite time based on
the SMC (30) with the gain matrices Kh and Lh solved by
Theorem 2.

Proof: The following Lyapunov function is chosen

V (t) =V1(t)+V2(t)+V3(t)+V4(t)+V5(t)

=
1
2

sT (t)s(t)+
1

2cµ1

µ̂
2
1 +

1
2cµ2

µ̂
2
2 +

1
2cξ1

ξ̂
2
1

+
1

2cξ2

ξ̂
2
2 . (32)

Based on Lemma 4, have

DαV1(t)≤ sT (t)Dα s(t) = sT (t)× [Gh(Ahe(t)

+∆A(t)x(t))+GhBh(u(t)+ f (t,x(t))

−Khx̂(t))]. (33)

From (30), the above inequality can be rewritten as

DαV1(t)≤ sT (t)[Gh(Ahe(t)+Bh( f (t,x(t))

−Khx̂(t)))−T (T−1(ξ̄1‖y(t)‖+ ξ̄2‖ŷ(t)‖
+ρ)+ µ̄1 + µ̄2‖y(t)‖)sgn(s(t))

−Khx̂(t)]

≤ sT (t)[GhAhe(t)+T ( f (t,x(t))−Khx̂(t))

−T (T−1(ξ̄1‖y(t)‖+ ξ̄2‖ŷ(t)‖+ρ)

+ µ̄1 + µ̄2‖y(t)‖)sgn(s(t))−Khx̂(t)].
(34)

Then, we have

DαV (t)≤ sT (t)[Gh(Ahe(t)+Bh( f (t,x(t))

−Khx̂(t)))−T (T−1(ξ̄1‖y(t)‖+ ξ̄2‖ŷ(t)‖
+ρ)+ µ̄1 + µ̄2‖y(t)‖)sgn(s(t))

−Khx̂(t)]+
µ̂1

cµ1

Dα
µ̂1 +

µ̂2

cµ2

Dα
µ̂2

+
ξ̂1

cξ1

Dα
ξ̂1 +

ξ̂2

cξ2

Dα
ξ̂2

≤ ‖s(t)‖(ξ1‖y(t)‖+ξ2‖ŷ(t)‖)
+‖s(t)‖‖T‖(µ1 +µ2‖y(t)‖)
−‖s(t)‖(ξ̄1‖y(t)‖+ ξ̄2‖ŷ(t)‖
+ρ)−‖T‖‖s(t)‖(µ̄1 + µ̄2‖y(t)‖)
+ µ̂1‖T‖‖s(t)‖+ µ̂2‖y(t)‖‖T‖‖s(t)‖

+ ξ̂1‖y(t)‖‖s(t)‖+ ξ̂2‖ŷ(t)‖‖s(t)‖
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=−ρ‖s(t)‖. (35)

According to Lemma 3 in [7] and (35), have

DαV (t)≤−ρ‖s(t)‖ ≤ −
√

2ρV
1
2 (t). (36)

Then, according to Lemma 8 in [2] and (36), we can get
t∗ ≤ ( α√

2ρ
V α− 1

2 (0)Γ(α)Γ( 1
2 )

Γ(α+ 1
2 )
)

1
α such that the system states

can reach the sliding surface (9) in finite time. This com-
pletes the proof. �

Remark 6: If the system (4) has the same matrices, i.e.,
B= B1 = . . .= Bn, and C =C1 = . . .=Cn. The results pro-
posed in the paper are still applicable. Hence, the results
are less conservative.

After the SMC design, the detailed process is outlined
below:

1) Choose appropriate matrices Gh satisfying GhBh 6= 0,
and choose U1, U2, V1, and V2 satisfying

U1EV1 =

[
Ir 0
0 0

]
,ChV1 =U2

[
Sh 0

]
V2.

2) Determine the gain matrices Kh and Lh by solving the
(26)-(29) in Theorem 2.

3) Design the sliding surface (9), and choose the param-
eters ρ , cµ1 , cµ2 , cξ1 , and cξ2 in (30), (31).

4) Apply the designed control law (30) to the plant.

4. ILLUSTRATIVE EXAMPLES

In the section, two examples to show the effectiveness
of our results.

4.1. Example 1
Consider the following FOSF system

ED
1
3 x(t) =

3

∑
i=1

hi(z(t))[(Ai +∆A(t))x(t)

+Bi(u(t)+ f (t,x(t)))],

y(t) =
3

∑
i=1

hi(z(t))Cix(t), (37)

where

E =

1 0 0
0 1 0
0 0 0

 , A1 =

−2 1 0
−1 2 0
−1 0 3

 ,
A2 =

 0 1 0
−2 1 −1
0 0 −1

 , A3 =

−2 1 0
−1 1 −2
1 0 −2

 ,
M =

0.1 0.3 1
0.2 0.1 0.5
0.2 0.2 0.1

 , N1 = I3, N2 =

0.3 0.2
0.2 0.1
0.2 0.3

 ,

∆1(t) = ∆2(t) =


sin(t)

4 0 0
0 cos(t)

4 0
0 0 sin(t)

4

 ,
B1 =

1
1
1

 , B2 =

 1.5
−0.5

2

 , B3 =

0
2
1

 ,
f (t,x(t)) = (sin2(t)− cos(t)−0.1)x1(t),

C1 =

[
3 0 3
0 2 2

]
, C2 =

[
2 0 2
0 1 1

]
, C3 =

[
1 0 1
0 1 1

]
,

h1(z(t)) =
sin(x2

1)

6
, h2(z(t)) =

1+ cos(x1)

6
,

h3(z(t)) = 1−h1(z(t))−h2(z(t)).

It is worth mentioning that B1 6= B2 6= B3 and C1 6= C2

6=C3. We can choose

G1 = G2 = G3 =
[
1 1 1

]
,

such that G1B1 = G2B2 = G3B3 = 3 is nonsingular, and

Ĝ1 = Ĝ2 = Ĝ3 =
[ 1

3
1
3

1
3

]
, Ḡ1 =

 2
3 − 1

3 −
1
3

− 1
3

2
3 − 1

3
− 1

3 −
1
3

2
3

 ,
Ḡ2 =

0.5 −0.5 −0.5
1
6

1
6

1
6

− 2
3 − 2

3
1
3

 , Ḡ3 =

 1 0 0
− 2

3
1
3 − 2

3
− 1

3 −
1
3

2
3

 .
Choose

U1 =

1 0 0
0 1 0
0 0 1

 , V1 =

1 0 0
0 1 0
0 0 1

 ,
U2 =

[
1 0
0 1

]
, V2 =

1 0 0
0 1 0
0 0 1

 ,
such that

U1EV1 =

1 0 0
0 1 0
0 0 0

 ,
S1 =

[
3 0
0 2

]
, S2 =

[
2 0
0 1

]
, S3 =

[
1 0
0 1

]
.

By solving (26)-(29) in Theorem 2, the gain matrices
Kh, Lh and εi can be obtained

K1 =
[
0.1054 −52.9027 2.1942

]
,

L1 =

 0.0883 13.2260
−8.7087 0.1871
−8.7510 13.1509

 , ε1 = 2.9694,

K2 =
[
0.5217 2.2231 −1.0883

]
,

L2 =

0.2042 −5.6773
2.7990 0.0357
2.9439 −5.5744

 , ε2 = 2.9342,
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Fig. 2. State response x(t).
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Fig. 3. State estimation x̂(t).

K3 =
[
−3.4123 −6.3039 −1.2016

]
,

L3 =

−0.5629 2.6542
−1.9725 7.8628
0.6551 2.0097

 , ε3 = 9.9629.

Then, the parameters can be chosen as ρ = 0.1, cµ1 =
0.15, cµ2 = 0.05, cξ1 = 0.2, and cξ2 = 0.1.

Figs. 2-4 show the state response, state estimation, and
estimation error of the FOSF system. Figs. 5-6 show the
sliding mode surface s(t) and the control signal u(t). From
Figs. 2-4, we can know that the FOSF system (37) is ad-
missible under the SMC scheme and the the initial condi-
tion x0 = [−1,0.2,−0.5]. Fig. 7 shows that µ̄1, µ̄2, ξ̄1, and
ξ̄2 are bounded.

Remark 7: One advantage of Theorem 2 is that it is
based on strict LMI, which avoids the computation com-
plexity. The other one is that it can be viewed as a gen-

0 2 4 6 8 10

Time (s)

-4

-2

0

2

4

6

8

10

12

4 4.5

-0.2

0

0.2

0.4

Fig. 4. Estimation error e(t).

0 2 4 6 8 10

Time (s)

-60

-40

-20

0

20

40

60

80

100

0.05 0.1 0.15
-50

0

50

Fig. 5. Sliding mode surface function s(t).
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Fig. 6. Control input u(t).
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Fig. 7. Parameter estimation.

eralization of the results of integer order systems. When
α = 1, the FOSF systems reduce to the integer order fuzzy
singular systems considered in [38-42]. Compared with
the results in [31], Theorem 2 avoids solving complex ma-
trices and reduces the computational cost.

4.2. Example 2
Consider the electrical circuit in Fig. 1. Let α = 0.6,

inductor L = 1, capacitances C1 = 1 C2 = 2, x(t) =[
x1(t) x2(t) x3(t)

]T
=
[
i u2 u1

]T , and membership
functions h1(z(t)) =

1−sin(x1)
2 , h2(z(t)) = 1−h1(z(t)).

Then, obtain

E =

1 0 0
0 −2 1
0 0 0

 , A1 =

4 0 −1
1 0 0
0 −1 −1

 ,
A2 =

2 0 −1
1 0 0
0 −1 −1

 , B1 = B2 =

1 0
0 0
0 1

 . (38)

Consider the system output, internal and external envi-
ronmental disturbances

C1 =C2 =
[
1 0 0

]
, f (t) = (sin(t)+0.1)x1(t),

M =

0.3 0.4 0.48
0.4 0.9 0.5
0.1 0.2 0.3

 , N1 = I3, N2 =

0.1
0.2
0.3

 ,
∆1(t) = ∆2(t) =


sin(t)

3 0 0
0 cos(t)

3 0
0 0 sin(t)

3

 . (39)

Choose

G1 = G2 =

[
1 0 0
0 0 1

]
.

Then, the gain matrices Kh, Lh and εi can be obtained

K1 =

[
−22.2464 −36.2670 −18.7884
−3.9176 −12.3690 −20.8654

]
,

L1 =

22.7262
−2.4684
−9.2483

 , ε1 = 7.2249,

K2 =

[
6.9307 25.6040 79.0750
−10.9817 −22.9383 −40.0365

]
,

L2 =

15.9354
−1.1346
−5.7224

 , ε2 = 6.1437.

Fig. 8 shows the state response, state estimation, and
estimation error in Example 2, which implies the effec-
tiveness of the method about observer-based sliding mode
controller design in the paper.

5. CONCLUSION

In the paper, the problem of observer-based SMC for
FOSF systems has been studied. Firstly, the non-fragile
observer and sliding mode surface is designed for FOSF
systems. Then, the sliding motion of the error system has
been proposed. Furthermore, the condition with the bilin-
ear term of admissibility has been obtained for FOSF sys-
tems. Thus, by using the singular value decomposition ap-
proach, the condition based on LMI has been improved.
Moreover, by designing the SMC law, the system state
can reach the sliding mode surface in a finite time. Two
examples have been used to verify the effectiveness of the
proposed methods.

In the future, we will focus on H∞ observer-based SMC
for FOSF systems.

CONFLICT OF INTEREST

The authors declare that they have no conflict of inter-
est.

REFERENCES

[1] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, and Y. Q. Chen,
“A new collection of real world applications of fractional
calculus in science and engineering,” Communications in
Nonlinear Science and Numerical Simulation, vol. 64, pp.
213-231, 2018.

[2] T. Hou, J. Yu, C. Hu, and H. Jiang, “Finite-time synchro-
nization of fractional-order complex-variable dynamic net-
works,” IEEE Transactions on Systems Man Cybernetics-
Systems, vol. 51, no. 7, pp. 4297-4307, 2021.

[3] J. G. Lu and Y. Q. Chen, “Robust stability and stabilization
of fractionalorder interval systems with the fractional order
α: The 0 < α < 1 case,” IEEE Transactions on Automatic
Control, vol. 55, no. 1, pp. 152-158, 2010.

https://doi.org/10.1016/j.cnsns.2018.04.019
https://doi.org/10.1016/j.cnsns.2018.04.019
https://doi.org/10.1016/j.cnsns.2018.04.019
https://doi.org/10.1016/j.cnsns.2018.04.019
https://doi.org/10.1016/j.cnsns.2018.04.019
https://doi.org/10.1109/TSMC.2019.2931339
https://doi.org/10.1109/TSMC.2019.2931339
https://doi.org/10.1109/TSMC.2019.2931339
https://doi.org/10.1109/TSMC.2019.2931339
https://doi.org/10.1109/TAC.2009.2033738
https://doi.org/10.1109/TAC.2009.2033738
https://doi.org/10.1109/TAC.2009.2033738
https://doi.org/10.1109/TAC.2009.2033738


2888 Bingxin Li, Xuefeng Zhang, Xiangfei Zhao, Yaowei Liu, and Xin Zhao

0 10 20 30 40 50

Time (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(a) State response.

0 10 20 30 40 50

Time (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

(b) State estimation.

0 10 20 30 40 50

Time (s)

-0.1

-0.05

0

0.05

0.1

0.15

(c) Estimation error.

Fig. 8. State response, state estimation, and estimation er-
ror in Example 2.

[4] C. Farges, M. Moze, and J. Sabatier, “Pseudo-state feed-
back stabilization of commensurate fractional order sys-
tems,” Automatica, vol. 46, pp. 1730-1734, 2010.

[5] T. Feng, Y Wang, L. L. Liu, and B. W. Wu, “Observer-
based event-triggered control for uncertain fractional-order
systems,” Journal of the Franklin Institute, vol. 357, pp.
9423-9441, 2020.

[6] A. Mujumdar, B. Tamhane, and S. Kurode, “Observer-
based sliding mode control for a class of noncommensu-
rate fractional-order systems,” IEEE/ASME Transactions
on Mechatronics, vol. 20, no. 5, pp. 2504-2512, 2015.

[7] X. F. Fan and Z. S. Wang, “Asynchronous event-triggered
fuzzy sliding mode control for fractional order fuzzy sys-
tems,” IEEE Transactions on Circuits and Systems II-
Express Briefs, vol. 69, no. 3, pp. 1094-1098, 2022.

[8] P. Gong and W. Y. Lan, “Adaptive robust tracking control
for multiple unknown fractional-order nonlinear systems,”
IEEE Transactions on Cybernetics, vol. 49, pp. 1365-1376,
2019.

[9] R. Sakthivel, S. Mohanapriya, C. K. Ahn, and H. R.
Karimi, “Output tracking control for fractional-order posi-
tive switched systems with input time delay,” IEEE Trans-
actions on Circuits and Systems II-Express Briefs, vol. 66,
pp. 1013-1017, 2019.

[10] C. Li, J. Wang, J. Lu, and Y. Ge, “Observer-based stabili-
sation of a class of fractional order non-linear systems for
0<α < 2 case,” IET Control Theory and Applications, vol.
8, no. 13, pp. 1328-1246, 2014.

[11] S. Ibrir and M. Bettayeb, “New sufficient conditions for
observer-based control of fractional-order uncertain sys-
tems,” Automatica, vol. 59, pp. 216-223, 2015.

[12] B. X. Li and X. F. Zhang, “Observer-based robust control
of (0<α < 1) fractional-order linear uncertain control sys-
tems,” IET Control Theory and Applications, vol. 10, no.
14, pp. 1724-1731, 2016.

[13] W. T. Geng, C. Lin, and B. Chen, “Observer-based stabiliz-
ing control for fractional-order systems with input delay,”
ISA Transactions, vol. 100, pp. 103-108, 2020.

[14] L. Dai, Singular Control Systems, Springer-Verlag, Berlin,
Germany, 1989.

[15] S. Marir and M. Chadli, “Robust admissibility and sta-
bilization of uncertain singular fractional-order linear
time-invariant systems,” IEEE/CAA Journal of Automatic
Sinica, vol. 6, no. 3, pp. 685-692, 2019.

[16] X. F. Zhang and Y. Q. Chen, “Admissibility and robust sta-
bilization of continuous linear singular fractional order sys-
tems with the fractional order α: The 0< α < 1 case,” ISA
Transactions, vol. 82, pp. 42-50, 2018.

[17] Z. Wang, D. Y. Xue, and F. Pan, “Observer-based robust
control for singular switched fractional order systems sub-
ject to actuator saturation,” Applied Mathematics and Com-
putation, vol. 411, 126538, 2021.

[18] L. Qiao, Q. Zhang, and G. Zhang, “Admissibility analy-
sis and control synthesis for T-S fuzzy descriptor systems,”
IEEE Transactions on Fuzzy Systems, vol. 25, no. 4, pp.
729-740, 2017.

https://doi.org/10.1016/j.automatica.2010.06.038
https://doi.org/10.1016/j.automatica.2010.06.038
https://doi.org/10.1016/j.automatica.2010.06.038
https://doi.org/10.1016/j.jfranklin.2020.07.017
https://doi.org/10.1016/j.jfranklin.2020.07.017
https://doi.org/10.1016/j.jfranklin.2020.07.017
https://doi.org/10.1016/j.jfranklin.2020.07.017
https://doi.org/10.1109/TMECH.2014.2386914
https://doi.org/10.1109/TMECH.2014.2386914
https://doi.org/10.1109/TMECH.2014.2386914
https://doi.org/10.1109/TMECH.2014.2386914
https://doi.org/10.1109/TCSII.2021.3099530
https://doi.org/10.1109/TCSII.2021.3099530
https://doi.org/10.1109/TCSII.2021.3099530
https://doi.org/10.1109/TCSII.2021.3099530
https://doi.org/10.1109/TCYB.2018.2801345
https://doi.org/10.1109/TCYB.2018.2801345
https://doi.org/10.1109/TCYB.2018.2801345
https://doi.org/10.1109/TCYB.2018.2801345
https://doi.org/10.1109/TCSII.2018.2871034
https://doi.org/10.1109/TCSII.2018.2871034
https://doi.org/10.1109/TCSII.2018.2871034
https://doi.org/10.1109/TCSII.2018.2871034
https://doi.org/10.1109/TCSII.2018.2871034
https://doi.org/10.1049/iet-cta.2013.1082
https://doi.org/10.1049/iet-cta.2013.1082
https://doi.org/10.1049/iet-cta.2013.1082
https://doi.org/10.1049/iet-cta.2013.1082
https://doi.org/10.1016/j.automatica.2015.06.002
https://doi.org/10.1016/j.automatica.2015.06.002
https://doi.org/10.1016/j.automatica.2015.06.002
https://doi.org/10.1049/iet-cta.2015.0453
https://doi.org/10.1049/iet-cta.2015.0453
https://doi.org/10.1049/iet-cta.2015.0453
https://doi.org/10.1049/iet-cta.2015.0453
https://doi.org/10.1016/j.isatra.2019.11.026
https://doi.org/10.1016/j.isatra.2019.11.026
https://doi.org/10.1016/j.isatra.2019.11.026
https://doi.org/10.1109/JAS.2019.1911480
https://doi.org/10.1109/JAS.2019.1911480
https://doi.org/10.1109/JAS.2019.1911480
https://doi.org/10.1109/JAS.2019.1911480
https://doi.org/10.1016/j.isatra.2017.03.008
https://doi.org/10.1016/j.isatra.2017.03.008
https://doi.org/10.1016/j.isatra.2017.03.008
https://doi.org/10.1016/j.isatra.2017.03.008
https://doi.org/10.1016/j.amc.2021.126538
https://doi.org/10.1016/j.amc.2021.126538
https://doi.org/10.1016/j.amc.2021.126538
https://doi.org/10.1016/j.amc.2021.126538
https://doi.org/10.1109/TFUZZ.2016.2574917
https://doi.org/10.1109/TFUZZ.2016.2574917
https://doi.org/10.1109/TFUZZ.2016.2574917
https://doi.org/10.1109/TFUZZ.2016.2574917


Observer-based Sliding Mode Control for Fractional Order Singular Fuzzy Systems 2889

[19] J. X. Dong and G. H. Yang, “Reliable state feedback con-
trol of T-S fuzzy systems with sensor faults,” IEEE Trans-
actions on Fuzzy Systems, vol. 23, no. 2, pp. 421-433,
2015.

[20] Z. X. Zhang and J. X. Dong, “A novel H∞ control for T-S
fuzzy systems with membership functions online optimiza-
tion learning,” IEEE Transactions on Fuzzy Systems, vol.
30, no. 4, pp. 1129-1138, 2022.

[21] C. Lin, B. Chen, and Q. G. Wang, “Static output feedback
stabilization for fractional-order systems in T-S fuzzy mod-
els,” Neurocomputing, vol. 218, pp. 354-358, 2016.

[22] J. T. Fei, Z. Wang, X. Liang, Z. L. Feng, and Y. C.
Xue, “Fractional sliding-mode control for microgyroscope
based on multilayer recurrent fuzzy neural network,” IEEE
Transactions on Fuzzy Systems, vol. 30, no. 6, pp. 1712-
1721, 2022.

[23] R. Sakthivel, C. Ahn, and M. Joby, “Fault-tolerant resilient
control for fuzzy fractional order systems,” IEEE Transac-
tions on Systems Man Cybernetics-Systems, vol. 49, no. 9,
pp. 1797-1805, 2019.

[24] X. P. Zhang, X. H. Zhang, D. Li, and D. Yang, “Adaptive
synchronization for a class of fractional order time-delay
uncertain chaotic systems via fuzzy fractional order neural
network,” International Journal of Control, Automation,
and Systems, vol. 17, pp. 1209-1220, 2019.

[25] S. Song, J. H. Park, B. Zhang, and X. Song, “Observer-
based adaptive hybrid fuzzy resilient control for fractional-
order nonlinear systems with time-varying delays and ac-
tuator failures,” IEEE Transactions on Fuzzy Systems, vol.
29, no. 3, pp. 471-485, 2021.

[26] J. H. Ning and C. C. Hua, “H∞ output feedback control for
fractional-order T-S fuzzy model with time-delay,” Applied
Mathematics and Computation, vol. 416, 126736, 2022.

[27] B. Y. Liang, S. Q. Zheng , C. K. Ahn, and F. Liu, “Adaptive
fuzzy control for fractional-order interconnected systems
with unknown control directions,” IEEE Transactions on
Fuzzy Systems, vol. 30, no. 1, pp. 75-87, 2022.

[28] L. Q. Wang and J. X. Dong, “Adaptive fuzzy consensus
tracking control for uncertain fractional-order multiagent
systems with event-triggered input,” IEEE Transactions on
Fuzzy Systems, vol. 30, no. 2, pp. 310-320, 2022.

[29] H. Liu, Y. Pan, J. Cao, Y. Zhou, and H. Wang, “Positivity
and stability analysis for fractional-order delayed systems:
a T-S fuzzy model approach,” IEEE Transactions on Fuzzy
Systems, vol. 29, no. 4, pp. 927-939, 2021.

[30] X. F. Zhang and K. Jin, “State and output feedback con-
troller design of Takagi-Sugeno fuzzy singular fractional
order systems,” International Journal of Control, Automa-
tion, and Systems, vol. 19, no. 6, pp. 2260-2268, 2021.

[31] Y. Yan, H. Zhang, Z. Ming, and Y. Wang, “Observer-based
adaptive control and faults estimation for T-S fuzzy singu-
lar fractional order systems,” Neural Computing & Appli-
cations, vol. 34, pp. 4265-4275, 2022.

[32] R. C. Li and X. F. Zhang, “Adaptive sliding mode observer
design for a class of T-S fuzzy descriptor fractional order
systems,” IEEE Transactions on Fuzzy Systems, vol. 28, no.
9, pp. 1951-1960, 2020.

[33] S. P. Wen, M. Z. Q. Chen, Z. G. Zeng, X. H. Yu, and
T. W. Huang, “Fuzzy control for uncertain vehicle active
suspension systems via dynamic sliding-mode approach,”
IEEE Transactions on Systems Man Cybernetics-Systems,
vol. 47, no. 1, pp. 24-32, 2017.

[34] Z. Sun, J. C. Zheng, Z. H. Man, and H. Wang, “Robust con-
trol of a vehicle steer-by-wire system using adaptive slid-
ing mode,” IEEE Transactions on Industrial Electronics,
vol. 63, no. 4, pp. 2251-2262, 2016.

[35] W. H. Qi, Y. Y. Zhou, L. H. Zhang, J. D. Cao and J. Cheng,
“Non-fragile H∞ SMC for Markovian jump systems in a
finite-time,” Journal of the Franklin Institute, vol. 358, no.
9, pp. 4721-4740, 2021.,

[36] P. Mani, R. Rajan, and Y. H. Joo, “Integral sliding
mode control for T-S fuzzy descriptor systems,” Nonlinear
Analysis-Hybrid Systems, vol. 39, 100953, 2021.

[37] X. Liu, Y. Xie, F. Li, and W. Gui, “Sliding-mode-based
admissible consensus tracking of nonlinear singular mul-
tiagent systems under jointly connected topologies,” IEEE
Transactions on Cybernetics, vol. 52, no. 11, pp. 12491-
12500, 2021.

[38] X. Sun and Q. Zhang, “Observer-based adaptive sliding
mode control for T-S fuzzy singular systems,” IEEE Trans-
actions on Systems Man Cybernetics-Systems, vol. 50, no.
11, pp. 4438-4446, 2020.

[39] J. Li, Q. Zhang, X. G. Yan, and S. K. Spurgeon, “Observer-
based fuzzy integral sliding mode control for nonlinear de-
scriptor systems,” IEEE Transactions on Fuzzy Systems,
vol. 26, no. 5, pp. 2818-2832, 2018.

[40] X. Liu, X. Su, P. Shi, and C. Shen, “Observer-based slid-
ing mode control for uncertain fuzzy systems via event-
triggered strategy,” IEEE Transactions on Fuzzy Systems,
vol. 27, no. 11, pp. 2190-2201, 2019.

[41] J. Zhang, F. Zhu, H. R. Karimi, and F. Wang, “Observer-
based sliding mode control for T-S fuzzy descriptor sys-
tems with time delay,” IEEE Transactions on Fuzzy Sys-
tems, vol. 27, no. 10, pp. 2009-2023, 2019.

[42] J. Wang, C. Y. Yang, J. W. Xia, Z. G. Wu, and H. Shen,
“Observer-based sliding mode control for networked fuzzy
singularly perturbed systems under weighted try-once-
discard protocol,” IEEE Transactions on Fuzzy Systems,
vol. 30, no. 6, pp. 1889-1899, 2022.

[43] Y. Zhang, Z. H. Jin, and Q. L. Zhang, “Impulse elimination
of the Takagi-Sugeno fuzzy singular system via sliding-
mode control,” IEEE Transactions on Fuzzy Systems, vol.
30, no. 4, pp. 1164-1174, 2022.

[44] P. Mani, R. Rajan, L. Shanmugam, and Y. H. Joo, “Adap-
tive fractional fuzzy integral sliding mode control for
PMSM model,” IEEE Transactions on Fuzzy Systems, vol.
27, no. 8, pp. 1674-1686, 2019.

[45] S. Song, B. Zhang, J. Xia, and Z. Zhang, “Adaptive back-
stepping hybrid fuzzy sliding mode control for uncer-
tain fractional-order nonlinear systems based on finite-time
scheme,” IEEE Transactions on Systems Man Cybernetics-
Systems, vol. 50, no. 4, pp. 1559-1569, 2020.

https://doi.org/10.1109/TFUZZ.2014.2315298
https://doi.org/10.1109/TFUZZ.2014.2315298
https://doi.org/10.1109/TFUZZ.2014.2315298
https://doi.org/10.1109/TFUZZ.2014.2315298
https://doi.org/10.1109/TFUZZ.2021.3053315
https://doi.org/10.1109/TFUZZ.2021.3053315
https://doi.org/10.1109/TFUZZ.2021.3053315
https://doi.org/10.1109/TFUZZ.2021.3053315
https://doi.org/10.1016/j.neucom.2016.08.085
https://doi.org/10.1016/j.neucom.2016.08.085
https://doi.org/10.1016/j.neucom.2016.08.085
https://doi.org/10.1109/TFUZZ.2021.3064704
https://doi.org/10.1109/TFUZZ.2021.3064704
https://doi.org/10.1109/TFUZZ.2021.3064704
https://doi.org/10.1109/TFUZZ.2021.3064704
https://doi.org/10.1109/TFUZZ.2021.3064704
https://doi.org/10.1109/TSMC.2018.2835442
https://doi.org/10.1109/TSMC.2018.2835442
https://doi.org/10.1109/TSMC.2018.2835442
https://doi.org/10.1109/TSMC.2018.2835442
https://doi.org/10.1007/s12555-018-0342-0
https://doi.org/10.1007/s12555-018-0342-0
https://doi.org/10.1007/s12555-018-0342-0
https://doi.org/10.1007/s12555-018-0342-0
https://doi.org/10.1007/s12555-018-0342-0
https://doi.org/10.1109/TFUZZ.2019.2955051
https://doi.org/10.1109/TFUZZ.2019.2955051
https://doi.org/10.1109/TFUZZ.2019.2955051
https://doi.org/10.1109/TFUZZ.2019.2955051
https://doi.org/10.1109/TFUZZ.2019.2955051
https://doi.org/10.1016/j.amc.2021.126736
https://doi.org/10.1016/j.amc.2021.126736
https://doi.org/10.1016/j.amc.2021.126736
https://doi.org/10.1109/TFUZZ.2020.3031694
https://doi.org/10.1109/TFUZZ.2020.3031694
https://doi.org/10.1109/TFUZZ.2020.3031694
https://doi.org/10.1109/TFUZZ.2020.3031694
https://doi.org/10.1109/TFUZZ.2020.3037957
https://doi.org/10.1109/TFUZZ.2020.3037957
https://doi.org/10.1109/TFUZZ.2020.3037957
https://doi.org/10.1109/TFUZZ.2020.3037957
https://doi.org/10.1109/TFUZZ.2020.2966420
https://doi.org/10.1109/TFUZZ.2020.2966420
https://doi.org/10.1109/TFUZZ.2020.2966420
https://doi.org/10.1109/TFUZZ.2020.2966420
https://doi.org/10.1007/s12555-020-0078-5
https://doi.org/10.1007/s12555-020-0078-5
https://doi.org/10.1007/s12555-020-0078-5
https://doi.org/10.1007/s12555-020-0078-5
https://doi.org/10.1007/s00521-021-06527-0
https://doi.org/10.1007/s00521-021-06527-0
https://doi.org/10.1007/s00521-021-06527-0
https://doi.org/10.1007/s00521-021-06527-0
https://doi.org/10.1109/TFUZZ.2019.2928511
https://doi.org/10.1109/TFUZZ.2019.2928511
https://doi.org/10.1109/TFUZZ.2019.2928511
https://doi.org/10.1109/TFUZZ.2019.2928511
https://doi.org/10.1109/TSMC.2016.2564930
https://doi.org/10.1109/TSMC.2016.2564930
https://doi.org/10.1109/TSMC.2016.2564930
https://doi.org/10.1109/TSMC.2016.2564930
https://doi.org/10.1109/TSMC.2016.2564930
https://doi.org/10.1109/TIE.2015.2499246
https://doi.org/10.1109/TIE.2015.2499246
https://doi.org/10.1109/TIE.2015.2499246
https://doi.org/10.1109/TIE.2015.2499246
https://doi.org/10.1016/j.jfranklin.2021.04.010
https://doi.org/10.1016/j.jfranklin.2021.04.010
https://doi.org/10.1016/j.jfranklin.2021.04.010
https://doi.org/10.1016/j.jfranklin.2021.04.010
https://doi.org/10.1016/j.nahs.2020.100953
https://doi.org/10.1016/j.nahs.2020.100953
https://doi.org/10.1016/j.nahs.2020.100953
https://doi.org/10.1109/TCYB.2021.3081801
https://doi.org/10.1109/TCYB.2021.3081801
https://doi.org/10.1109/TCYB.2021.3081801
https://doi.org/10.1109/TCYB.2021.3081801
https://doi.org/10.1109/TCYB.2021.3081801
https://doi.org/10.1109/TSMC.2018.2852957
https://doi.org/10.1109/TSMC.2018.2852957
https://doi.org/10.1109/TSMC.2018.2852957
https://doi.org/10.1109/TSMC.2018.2852957
https://doi.org/10.1109/TFUZZ.2018.2802458
https://doi.org/10.1109/TFUZZ.2018.2802458
https://doi.org/10.1109/TFUZZ.2018.2802458
https://doi.org/10.1109/TFUZZ.2018.2802458
https://doi.org/10.1109/TFUZZ.2019.2895804
https://doi.org/10.1109/TFUZZ.2019.2895804
https://doi.org/10.1109/TFUZZ.2019.2895804
https://doi.org/10.1109/TFUZZ.2019.2895804
https://doi.org/10.1109/TFUZZ.2019.2893220
https://doi.org/10.1109/TFUZZ.2019.2893220
https://doi.org/10.1109/TFUZZ.2019.2893220
https://doi.org/10.1109/TFUZZ.2019.2893220
https://doi.org/10.1109/TFUZZ.2021.3070125
https://doi.org/10.1109/TFUZZ.2021.3070125
https://doi.org/10.1109/TFUZZ.2021.3070125
https://doi.org/10.1109/TFUZZ.2021.3070125
https://doi.org/10.1109/TFUZZ.2021.3070125
https://doi.org/10.1109/TFUZZ.2021.3053325
https://doi.org/10.1109/TFUZZ.2021.3053325
https://doi.org/10.1109/TFUZZ.2021.3053325
https://doi.org/10.1109/TFUZZ.2021.3053325
https://doi.org/10.1109/TFUZZ.2018.2886169
https://doi.org/10.1109/TFUZZ.2018.2886169
https://doi.org/10.1109/TFUZZ.2018.2886169
https://doi.org/10.1109/TFUZZ.2018.2886169
https://doi.org/10.1109/TSMC.2018.2877042
https://doi.org/10.1109/TSMC.2018.2877042
https://doi.org/10.1109/TSMC.2018.2877042
https://doi.org/10.1109/TSMC.2018.2877042
https://doi.org/10.1109/TSMC.2018.2877042


2890 Bingxin Li, Xuefeng Zhang, Xiangfei Zhao, Yaowei Liu, and Xin Zhao

[46] J. Fe, H. Wang, and Y. Fang, “Novel neural network
fractional-order sliding-mode control with application to
active power filter,” IEEE Transactions on Systems Man
Cybernetics-Systems, vol. 52, no. 6, pp. 3508-3518, 2021.

[47] X. F. Zhang and W. K. Huang, “Robust H∞ adaptive out-
put feedback sliding mode control for interval type-2 fuzzy
fractional-order systems with actuator faults,” Nonlinear
Dynamics, vol. 104, pp. 537-550, 2021.

[48] Z. Ma, Z. Liu, P. Huang, and Z. Kuang, “Adaptive
fractional-order sliding mode control for admittance-based
telerobotic system with optimized order and force estima-
tion,” IEEE Transactions on Industrial Electronics, vol. 69,
no. 5, pp. 5165-5174, 2022.

[49] B. Long, P. J. Lu, K. T. Chong, J. Rodriguez and J. M.
Guerrero, “Robust fuzzy-fractional-order nonsingular ter-
minal sliding-mode control of LCL-type grid-connected
converters,” IEEE Transactions on Industrial Electronics,
vol. 69, no. 6, pp. 5854-5866, 2022.

[50] L. H. Xie, “Output feedback H∞ control of systems with
parameter uncertainty,” International Journal of Control,
vol. 63, no. 4, pp. 741-750, 1996.

[51] T. Kaczorek and K. Rogowski, Fractional Linear Systems
and Electrical Circuits, Springer International Publishing,
Switzerland, 2015.

Bingxin Li received his B.S. degree in
automation from Shandong University, Ji-
nan, China, in 2014, an M.S. degree in sys-
tems analysis and integration from North-
eastern University, Shenyang, China, in
2017, and he is currently pursuing a Ph.D.
degree in control science and engineering
from Nankai University. His research in-
terests include fractional order control sys-

tems, singular systems, and robust control.

Xuefeng Zhang received his B.Sc. degree
in applied mathematics, an M.S. degree
in control theory and control engineer-
ing, and a Ph.D. degree in control theory
and control engineering from Northeast-
ern University, Shenyang, China, in 1989,
2004, and 2008, respectively, where he is
currently with the college of Sciences. He
has published more than 100 journal and

conference papers and 3 books. He is the Associate Editor of
IEEE Access and the Committee member of Technical Commit-
tee on Fractional and Control of Chinese Association of Automa-
tion. His research interests include fractional order control sys-
tems and singular systems.

Xiangfei Zhao received his B.S. degree
from Department of Wind Energy and
Power Engineering, Hebei University of
Technology, Tianjin, China, in 2013, an
M.A. degree from the Automation College
of Tianjin University of Technology, Tian-
jin, China, in 2017. He is currently work-
ing toward a Ph.D. degree in control theory
and control engineering with the Nankai

University, Tianjin, China. His current research interests include
micromanipulation and microsystems.

Yaowei Liu received his B.Eng. degree
in automation and a Ph.D. degree in con-
trol theory and control engineering from
Nankai University, Tianjin, China, in 2013
and 2019, respectively. He is currently a
Post-Doctoral Fellow with the College of
Artificial Intelligence, Nankai University,
Tianjin, China. He is also with Institute of
Intelligence Technology and Robotic Sys-

tems, Shenzhen Research Institute of Nankai University, Shen-
zhen, China. His research interests include micromanipulators
and microsystems.

Xin Zhao received his B.S. degree in
control theory and control engineering
from Nankai University, Tianjin, China, in
1991, an M.S. degree in control theory and
control engineering from the Shenyang In-
stitute of Automation, CAS, Shenyang,
China, in 1994, and a Ph.D. degree in con-
trol theory and control engineering from
Nankai University in 1997. He joined the

faculty at Nankai University in 1997, where he is currently a Pro-
fessor and the Dean of the College of Artificial Intelligence. His
current research interests include micromanipulator, microsys-
tems, and mathematical biology.

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

https://doi.org/10.1109/TSMC.2021.3071360
https://doi.org/10.1109/TSMC.2021.3071360
https://doi.org/10.1109/TSMC.2021.3071360
https://doi.org/10.1109/TSMC.2021.3071360
https://doi.org/10.1007/s11071-021-06311-8
https://doi.org/10.1007/s11071-021-06311-8
https://doi.org/10.1007/s11071-021-06311-8
https://doi.org/10.1007/s11071-021-06311-8
https://doi.org/10.1109/TIE.2021.3078385
https://doi.org/10.1109/TIE.2021.3078385
https://doi.org/10.1109/TIE.2021.3078385
https://doi.org/10.1109/TIE.2021.3078385
https://doi.org/10.1109/TIE.2021.3078385
https://doi.org/10.1109/TIE.2021.3094411
https://doi.org/10.1109/TIE.2021.3094411
https://doi.org/10.1109/TIE.2021.3094411
https://doi.org/10.1109/TIE.2021.3094411
https://doi.org/10.1109/TIE.2021.3094411
https://doi.org/10.1080/00207179608921866
https://doi.org/10.1080/00207179608921866
https://doi.org/10.1080/00207179608921866

